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Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability
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We systematically study dynamics of a generalized Kuramoto model of globally coupled phase oscillators.
The coupling of modified model depends on the fraction of phase-locked oscillators via a power-law function
of the Kuramoto order parameter r through an exponent α, such that α = 1 corresponds to the standard
Kuramoto model, α < 1 strengthens the global coupling, and the global coupling is weakened if α > 1. With
a self-consistency approach, we demonstrate that bifurcation diagrams of synchronization for different values
of α are thoroughly constructed from two parametric equations. In contrast to the case of α = 1 with a typical
second-order phase transition to synchronization, no phase transition to synchronization is predicted for α < 1,
as the onset of partial locking takes place once the coupling strength K > 0. For α > 1, we establish an abrupt
desynchronization transition from the partially (fully) locked state to the incoherent state, whereas there is
no counterpart of abrupt synchronization transition from incoherence to coherence due to that the incoherent
state remains linearly neutrally stable for all K > 0. For each case of α, by performing a standard linear
stability analysis for the reduced system with Ott-Antonsen ansatz, we analytically derive the continuous and
discrete spectra of both the incoherent state and the partially (fully) locked states. All our theoretical results are
obtained in the thermodynamic limit, which have been well validated by extensive numerical simulations of the
phase-model with a sufficiently large number of oscillators.
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I. INTRODUCTION

Spontaneous synchronization is a universal cooperative
phenomenon in large systems consisting of many interacting
oscillatory units, which has long been an important issue of
research in the fields of nonlinear dynamics, network science,
and complex systems. Investigating the underlying mecha-
nism of synchrony provides deep insights for understanding
the macroscopic dynamics in diverse contexts of physics,
chemistry, and biology [1–3]. The most successful paradigm
for studying synchronization of coupled oscillators is the
Kuramoto model introduced in 1975 [4], which has been
used to explain the emergence of collective synchronization
in many parts of science and technology [5–8], such as
electrochemical oscillators [9], flashing fireflies [10], arrays
of lasers [11,12], power grids [13–15], Josephson junctions
[16,17], etc. Marvelously, the Kuramoto model turns out to be
analytically tractable in the thermodynamic limit.

The Kuramoto model describes a collection of N phase
oscillators, whose dynamics is governed by the following set
of globally coupled first-order ordinary differential equations,

θ̇ j = w j + K

N

N∑
k = 1

sin(θk − θ j ), j = 1, 2, ..., N, (1)

where θ j is the phase of the jth oscillator, w j is its natural fre-
quency sampled according to a prescribed distribution func-
tion g(w), and the parameter K controls the global coupling
strength. To quantify the degree of coherence of system (1),
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the complex order parameter is generally defined as

R = reiψ = 1

N

N∑
k = 1

eiθk , (2)

which is the centroid of N points eiθ j on the unit circle in the
complex plane. The amplitude 0 � r � 1 measures the phase
coherence, and ψ gives the average phase. If all the oscillators
are scattered roughly uniformly around the unit circle, then
one has r ≈ 0. However, if a large amount of oscillators are
concentrated tightly, then r ≈ 1; most of the oscillators seem
to form a single giant clump. In the continuum limit of N →
∞, Kuramoto developed a self-consistency approach to show
that if g(w) is unimodal and symmetric with respective to its
center w0, the second-order phase transition to synchroniza-
tion is generically observed, where the partially synchronized
(locked) state with a constant r > 0 bifurcates supercritically
and continuously from the incoherent state with r = 0 at a
critical coupling strength Kc = 2/πg(w0) [1]. Although Ku-
ramoto’s self-consistency analysis is ingenious and successful
in identifying the steady solutions of his model in the infinite-
N limit, it fails to reveal stability properties of the system dy-
namics. By linearizing the Fokker-Planck equation about the
incoherent state, Strogatz and Mirollo obtained the first rigor-
ous stability results for Kuramoto model [18]. Later, Mirollo
and Strogatz continued to settle the issues of the linear sta-
bility of the fully and the partially synchronized states for the
model [19,20]. In recent years, the stability analysis of both
the incoherent and the partially locked states for the Kuramoto
model has been justified in a more mathematically rigorous
footing [21–25].
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Another significant advance in the analytical description
of macroscopic dynamics for the Kuramoto model has been
made by Ott and Antonsen in their seminal works [26,27],
where they presented an amazing ansatz that allows the
asymptotic behavior of the model to be explored from a
reduced low-dimensional system. After that, for past decades,
the Ott-Antonsen ansatz has been served as a powerful tool
to study dynamics of various variants of the Kuramoto model.
Some examples of such studies include effects with symmetric
(or asymmetric) rational frequency distributions [28–34], time
delays [35–37], heterogeneous couplings [38–42], external
forcing [43–46], chimera states [47–49], phase lag [50–53],
etc. Recently, it has been further proved [54] that no loss
of generality results in investigating both the existence and
the linear stability of the partially locked states of Kuramoto
model from the reduced system derived by Ott-Antonsen
ansatz.

In this paper, we consider an extension of the Kuramoto
model, where the global coupling is modified to depend on the
number of synchronized oscillators via a power-law function
of the Kuramoto order parameter r through an exponent
α > 0,

θ̇ j = w j + Krα−1

N

N∑
k = 1

sin(θk − θ j ), (3)

which was first proposed by Filatrella, Pedersen, and Wiesen-
feld in Ref. [55], suggested by experiments on arrays of
coupled Josephson junctions, lasers, and mechanical systems.
The coupling scheme in Eq. (3) can be deemed to be a minimal
form of nonlinear coupling for Kuramoto-type model [56,57],
which has also been extended to the Winfree model [58]. The
model Eq. (3) with α = 1 degenerates to the classic Kuramoto
model, whereas α �= 1 produces the desired functional de-
pendence of the coupling on the fraction of the phase-locked
oscillators. With Kuramoto’s self-consistency argument, the
authors of Ref. [55] analytically predicted the value of r
on the stable branch of partially locked states, where they
confined their study to Lorentzian-distributed nature frequen-
cies. However, they did not treat the other unstable branch of
partially (fully) locked states when α > 1, and did not carry
out the stability analysis of their model. To the best of our
knowledge, until now, both the detailed bifurcation diagrams
of synchronization and the linear stability analyses of steady
states for the modified model Eq. (3) are still missing.

The present work is devoted to filling the theoretical gaps
of the generalized Kuramoto model with r-dependent cou-
pling in Eq. (3). First, we show that synchronization diagrams
of r versus K can be systematically constructed from two
parametric expressions of the self-consistency equation for
r, which well predict all branches of partially and fully
locked states for general forms of g(w). With the parametric
approach, we illustrate synchronization diagrams of r ver-
sus K for different cases of α with g(w) to be Lorentzian,
uniform, and triangle frequency distributions, respectively.
Then, we analytically work out the spectrum of both the
incoherent and the partially (fully) locked states by carrying
out linear stability analyses for the reduced system with Ott-
Antonsen ansatz, from which their linear stability conditions
are explicitly obtained. In what follows, we report our main

results together with numerical simulations that validating our
theoretical analyses.

II. THE MEAN-FIELD THEORY

By means of some simple manipulations, the model in
Eq. (3) can be reformulated as the mean-field form of

θ̇ j = w j + Krα sin(ψ − θ j ). (4)

Clearly, it can be seen that each oscillator is in fact coupled
collectively through two macroscopic quantities rα and ψ .
The effective strength of the coupling in Eq. (4) is described
by Krα . Due to the fact r < 1, the coupling is weakened for
α > 1 and strengthened if α < 1 as compared with that of
α = 1. With the form in Eq. (4), it is convenient for us to apply
Kuramoto’s classical analysis to derive a self-consistency
equation for the order parameter r. Throughout the paper,
the frequency distribution g(w) is taken to be unimodal and
symmetric with respect to its center w0. Note that by shifting
to a frame rotating with frequency (i.e., θ → θ − w0t), one
may assume with no loss in generality that g(w) has mean
zero, i.e., w0 = 0.

A. Continuum limit formulation

In the thermodynamic limit N → ∞, the macroscopic
dynamics of the generalized Kuramoto model in Eq. (3) can
be described by a density function f (θ,w, t ), which denotes
a probability distribution of oscillators with phase θ at time t
for a given frequency w. The density f (θ,w, t ) satisfies the
continuity equation of the form

∂ f

∂t
+ ∂

∂θ
( f v) = 0, (5)

with the normalization condition∫ 2π

0
f (θ,w, t )dθ = g(w) (6)

for all w and t , where the phase velocity v is given by

v = w + Krα sin(ψ − θ )

= w + KIm(H (t )e−iθ )

= w + K

2i
[H (t )eiθ − H∗(t )e−iθ ], (7)

with H (t ) = rαeiψ , and the Kuramoto order parameter R
defined in Eq. (2) takes the integral form of

R = reiψ =
∫ +∞

−∞

∫ 2π

0
eiθ f (θ,w, t )dθdw. (8)

Equations (5)–(8) form a closed description for the dy-
namics of Kuramoto-type systems of globally coupled phase
oscillators Eq. (3) in the formal continuum limit of infinitely
many oscillators N → ∞.

B. Solutions of steady states

Our first task is to determine the steady solutions of Eq. (5)
characterized by a density f (θ,w) and a velocity v(θ,w)
independent of time t , for which both values of r and ψ are
also time independent. Without loss of generality, one can set

012219-2



DYNAMICS OF THE GENERALIZED KURAMOTO MODEL … PHYSICAL REVIEW E 102, 012219 (2020)

ψ = 0 after an appropriate phase shift θ → θ − ψ if ψ �= 0,
which is due to the invariance of Eq. (3) under the global
rotation. All stationary solutions of Eq. (5) satisfy

f v = C(w)g(w), (9)

where C(w) denotes the coefficient function depending only
on w. One trivial stationary solution of Eq. (5) is

fIcS(θ,w) = g(w)

2π
, (10)

which corresponds to the incoherent state with r = 0. Beside
the incoherent state, the nontrivial stationary solutions of
Eq. (5) with nonzero order parameter r �= 0 given by

fPLS(θ,w) =
{

δ(θ − arcsin ( w
Krα ))g(w) if |w| � Krα

√
w2−(Krα )2

2π |w−Krα sin θ |g(w) if |w| > Krα
(11)

correspond to the partially locked states with the first and
second terms representing the densities of the locked and the
drifting oscillators, respectively. Here δ(x) denotes the Dirac
δ function. It can be seen that Eq. (11) consists of two distinct
parts with heterogeneous and singular nature, which is in
contrast to Eq. (10) for the incoherent state described by a
smooth and constant density. Note that the density f (θ,w)
of the fully locked states is given only by the first term of
Eq. (11), in which |w| � Krα should be satisfied for all the
oscillators.

The density of partially locked states in Eq. (11) can be
derived as follows. By plugging ψ = 0 into Eq. (7), we get

θ̇ = w − Krα sin θ. (12)

If |w| � Krα , then Eq. (12) has the stable fixed point θ̇ = 0
given by

θ∗ = arcsin(
w

Krα
),

π

2
< θ∗ <

π

2
, (13)

which leads to the first expression in Eq. (11) for the density
of the locked oscillators. If |w| > Krα , then we have

f (θ,w) = C(w)g(w)

w − Krα sin θ
. (14)

From the normalization condition in Eq. (6), C(w) satisfies

C−1(w) =
∫ 2π

0

dθ

w − Krα sin θ
, (15)

which can be calculated to obtain

C(w) = sgn(w)

√
w2 − (Krα )2

2π
, (16)

with sgn(w) denoting the sign function of w. Obviously, C(w)
is an odd function of w. After inserting the above C(w) back
to Eq. (14), we arrive at the second expression in Eq. (11) for
the density of the drifting oscillators.

C. Self-consistency equation for r

Next we will deduce the self-consistency equation of r >

0 for the partially locked states. In terms of the real and
imaginary parts, Eq. (8) breaks up to

r sin ψ =
∫ +∞

−∞

∫ 2π

0
sin θ f (θ,w, t )dθdw (17)

and

r cos ψ =
∫ +∞

−∞

∫ 2π

0
cos θ f (θ,w, t )dθdw. (18)

The above two integrals in Eqs. (17) and (18) can be split
into two parts according to whether |w| � Krα or |w| >

Krα , which correspond to the locked and drifting oscillators,
respectively.

The integral in Eq. (17) for |w| � Krα is evaluated as∫
|w|�Krα

∫ 2π

0
sin θ f (θ,w, t )dθdw

=
∫

|w|�Krα

∫ 2π

0
sin θδ

(
θ − arcsin(

w

Krα
)

)
g(w)dθdw

=
∫

|w|�Krα

w

Krα
g(w)dw

= 0, (19)

and the part for |w| > Krα becomes∫
|w|>Krα

∫ 2π

0
sin θ f (θ,w, t )dθdw

=
∫

|w|>Krα

∫ 2π

0
sin θ

C(w)

w − Krα sin θ
g(w)dθdw

=
∫

|w|>Krα

wC(w)g(w)

Krα

∫ 2π

0

[
1

w − Krα sin θ
− 1

w

]
dθdw

=
∫

|w|>Krα

wC(w)g(w)

Krα

[
1

C(w)
− 2π

w

]
dw

=
∫

|w|>Krα

[w − 2πC(w)]g(w)

Krα
dw

= 0, (20)

because the integrand is an odd function of w. From Eqs. (19)
and (20), we have r sin ψ = 0, which is in accordance with
the previous assumption of ψ = 0.

However, the integral in Eq. (18) for |w| > Krα can be
calculated as∫

|w|>Krα

∫ 2π

0
cos θ f (θ,w, t )dθdw

=
∫

|w|>Krα

∫ 2π

0

C(w)g(w) cos θ

w − Krα sin θ
dθdw

= 0, (21)

since the integrand has a periodic antiderivative with
the period of 2π . So, r is solely decided by Eq. (18) with
|w| � Krα , i.e.,

r =
∫ Krα

−Krα

∫ 2π

0
cos θ f (θ,w, t )dθdw

=
∫ Krα

−Krα

∫ 2π

0
cos θδ

(
θ − arcsin(

w

Krα
)

)
g(w)dθdw

=
∫ Krα

−Krα

√
1 −

(
w

Krα

)2

g(w)dw, (22)
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or equivalently

r =
∫ 1

−1

√
1 − s2g(Krαs)Krαds, (23)

which gives a complete description of the order parameter r
of the steady states for Eq. (5)

The self-consistency Eq. (23) always has a trivial solu-
tion r = 0, which corresponds to the incoherent state with
f (θ,w) = g(w)/2π . Other branches of solution in Eq. (23)
with r �= 0, corresponding to the partially (or fully) locked
states, obey

1

Krα−1
=

∫ 1

−1

√
1 − s2g(Krαs)ds. (24)

Let p = Krα and define a function �(p) as

�(p) =
∫ 1

−1

√
1 − s2g(ps)ds, (25)

all solutions of K and r for Eq. (24) can be parametrized by p
as

K = p1−α�−α (p) and r = p�(p) (26)

for p ∈ (0,∞), where �(p) is continuous, positive, and non-
increasing on [0,∞), and r is a monotonic increasing function
of p. As

lim
p→0+

�(p) = πg(0)

2
, (27)

thus r → 0+ when p → 0+, then we have a critical coupling
strength

Kc = lim
p→0+

p1−α�−α (p)

=
⎧⎨⎩

0 if α < 1
2

πg(0) if α = 1
+∞ if α > 1,

(28)

which gives the coupling threshold for the initial onset of
partial locking.

With increasing p just beyond 0+, the first oscillators with
|w| � Krα start to phase-lock. For a larger value of p (p =
Krα ), more oscillators are recruited into the synchronized
pack. As further increasing p, the locked process persists for-
ever if the support of g(w) (defined as a set of w with g(w) �=
0) is infinite, which implies that only the partially locked states
are permissible. However, for other frequency distributions of
g(w) supported on a finite interval, e.g., [−1, 1] without lack
of generality, the process of phase locking starts at p → 0+,
and is complete for p = 1. Thus, there has a second critical
coupling strength

Kl = �−α (1), (29)

satisfying Krα = 1; the partially locked states exist only if
0+ < p < 1, for p � 1 all the oscillators are entrained to the
same common frequency, i.e., the fully locked state appears.

For a fixed value of α, the synchronization diagrams of
r versus K for a given frequency distribution g(w) can be
detected from the two parametric equations in Eq. (26). How-
ever, the stability of the corresponding steady solutions of
Eq. (5) is still elusive until here, which will be particularly

FIG. 1. (a) The plot of �(p) as a function of p in Eq. (30)
for Lorentzian frequency distribution g(w) = 	/π (w2 + 	2) with
	 = 1. The upper-right inset shows the plot of g(w). (b, c) Syn-
chronization diagrams by plotting r as a function of K for α = 1,
0.5, and 2, respectively. The theoretical prediction of r vs. K from
Eq. (26) is depicted by the solid red line and the dashed blue line,
which denote the stable partially locked states and the unstable ones,
respectively. The open circles in (b) and (c) represent numerical
results for the coupled system Eq. (3) with N = 10 000 and random
initial conditions, whereas the forward and backward continuations
are adopted to numerically monitor the value of r as adiabatically
increasing or decreasing K for α = 2 in (d), marked by the black
lines with open circles and stars, respectively. In the numerical
simulations, the oscillators’ natural frequencies are assigned as w j =
	 tan[(π/2)(2 j − N − 1)/(N + 1)] [59].

treated in Sec. III. Figures 1, 2, and 3 show bifurcation
diagrams of r versus K obtained from Eq. (26) for g(w) to
be Lorentzian, uniform, and triangle frequency distributions,
respectively. The steady solutions of r �= 0 from Eq. (26)
are plotted by the red solid lines and the blue dashed lines,
which correspond to the stable and unstable steady states,
respectively. All the theoretical predictions of r on the stable
branch are well confirmed by the results from the numerical
simulations by directly integrating the coupled system Eq. (3)
with N = 10 000, where the natural frequencies w j are sam-
pled in a deterministic way for each of the distributions as in
[59]. For α � 1, random initial conditions are used, whereas
for α > 1, we adopt both forward and backward continua-
tions to monitor the value of r as adiabatically increasing or
decreasing K , which are indicated by the black lines with
open circles and stars, respectively. In the following, we
will present the detailed results for Lorentzian, uniform, and
triangle frequency distributions, respectively.

1. Lorentzian frequency distribution

The Lorentzian distribution has the density function as

g(w) = 	

π (w2 + 	2)
,
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FIG. 2. The same as Fig. 1 for uniform frequency distribution
prescribed by g(w) = 1/2 for |w| � 1, and 0 otherwise. The dashed
black lines in the panels of (b–d) denote the hyperbola Krα = 1.
The points of (K, r) from Eq. (26) below and above the hyperbola
Krα = 1 correspond to the partially locked states and the fully locked
ones, respectively. The solid red lines in (b–d) mark the stable steady
states, whereas the dashed blue line in (d) represents the unstable
steady states. In the numerical simulations, the oscillators’ natural
frequencies are assigned as w j = (2 j − N − 1)/(N − 1) [59].

where 	 = 1 is fixed in the numerical simulations. Equation
(25) can then be integrated to yield

�(p) = 1

	 +
√

	2 + p2
,

FIG. 3. The same as described in the caption of Fig. 2 for triangle
frequency distribution prescribed by g(w) = 1 − |w| for |w| < 1,
and 0 otherwise. In the numerical simulations, the oscillators’ natural
frequencies are assigned as w j = √

2( j − 1)/(N − 1) − 1 for j <

(N + 1)/2 and w j = 1 − √
2(N − j)/(N − 1) for j > (N + 1)/2

[59].

which is plotted in Fig. 1(a) with g(w) shown in the upper-
right corner. As Lorentzian frequency distribution has infinite
support (−∞,+∞), the full locking is never achieved for any
K > 0. For α = 1, a second-order phase transition to partial
locking has been well established, i.e., the partially locked
state bifurcates continuously from the incoherent state r = 0
at Kc = 2	, which is reproduced in Fig. 1(b). Synchronization
diagrams of r versus K for α �= 1 are distinctly different
from that of α = 1. For α = 0.5 in Fig. 1(c), we find that
the partially locked state emerges continuously from r = 0 at
Kc = 0 and is stable for all K > 0, whereas the incoherent is
unstable for any K > 0. Interestingly, for α = 2 in Fig. 1(d),
the incoherent state is numerically observed to be linearly
stable for all K > 0, whereas the partial locking is initiated
at K = Kc → ∞. One branch of the partially locked states is
stabilized with pronounced values of r > 0 if K is beyond a
certain coupling threshold Kb, which is always accompanied
by the other unstable branch. For K > Kb, there exists a bista-
bility between the partially locked states and the incoherent
state. Thus, at K = Kb, the transition to synchronization may
occur in an abrupt way manifested via a jump of r from zero
to a pronounced positive value in numerical simulations with
special initial conditions, which mimics a first-order transition
at the onset of synchronization but in the absence of hysteretic
behavior. In fact, as adiabatically decreasing K from a suf-
ficiently large value, an abrupt desynchronization transition
appears at K = Kb, whereas there is no counterpart of abrupt
synchronization transition as adiabatically increasing K from
zero, which has been exclusively reported in globally coupled
oscillator simplexes quite recently [60–62].

2. Uniform frequency distribution

Let

g(w) =
{ 1

2 if |w| � 1

0 if |w| > 1,

which corresponds to a uniform distribution of frequencies
over the interval of [−1, 1]. Equation (25) then becomes

�(p) =
{

π
4 if 0 < p � 1
1
2 (arcsin 1

p +
√

p2−1
p2 ) if p > 1.

Figure 2(a) plots the function of �(p) calculated from the
uniform frequency distribution g(w) shown in the upper-right
corner. Now g(w) has a finite (compact) support of [−1, 1],
the onset of partial locking starts at p → 0+ and ends up at
p = 1, which correspond to two critical coupling strengths Kc

and Kl given by Eqs. (28) and (29), respectively. The points
(K, r) from Eq. (26) that are below and above the hyperbola
of Krα = 1 (i.e., p = 1), plotted by the black dashed lines in
Figs. 2(b)–2(d), correspond to the partially and fully locked
states, respectively. For α = 1, the partial locking is onset and
complete at the same coupling strength K = Kc = Kl = 4/π ,
at which r continuously and monotonically increases from
r = 0 to r = π/4 as increasing p from p → 0+ to p = 1.
Thus, synchronization diagram for α = 1 in Fig. 2(b) has
a vertical segment at K = 4/π , corresponding to infinitely
many partially locked states with 0 < r < 4/π ; full locking
is achieved for K > 4/π . Note that r jumps from zero to a
finite value of r = π/4 for an infinitesimal variation of the
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coupling strength K around Kc = 4/π , i.e., limK→K−
c

r = 0 �=
limK→K+

c
r = π/4. The phase transition to synchronization

for the uniform distribution of the natural frequencies shown
in Fig. 2(b) for α = 1 is of first-order type [63], which can
be extended to frequency distributions g(w) with a plateau at
their maximum [64]. For α = 0.5 in Fig. 2(c), one can clearly
observe that the partial locking begins at K = Kc = 0, and is
complete at Kl = �−α (1) = (π/4)−0.5 ≈ 1.13, then the full
locking is established for all K � Kl ≈ 1.13. Interestingly,
for α = 2 in Fig. 2(d), we find that the partially locked
states are always unstable as increasing p from 0+ to 1, and
the full locked state is not immediately stabilized when the
partial locking is complete at p = 1, which becomes stabilized
for p far beyond 1 with K > Kb ≈ 1.57. With adiabatically
decreasing K from K > Kb, an abrupt desynchronization is
manifested via the transition from the fully locked state to the
incoherent state at K = Kb ≈ 1.57.

3. Triangle frequency distribution

In the following, we consider a triangle distribution of
frequencies over [−1, 1]:

g(w) =
{

1 − |w| if |w| � 1
0 if |w| > 1,

which is provided to make a comparison with the case of the
uniform frequency distribution. Substitution of the above g(w)
into Eq. (25) yields

�(p) =
{

π
2 − 2p

3 if 0 < p � 1

arcsin 1
p +

√
p2−1
p2 − 2p

3

[
1 − ( p2−1

p2

) 3
2
]

if p > 1.

Figure 3(a) portraits the function of �(p) with the correspond-
ing g(w) in the up-right inset, which has a finite (compact)
support of (−1, 1) implying the existence of two critical
coupling strengths Kc and Kl . A typical second-order phase
transition to partial locking is retrieved in Fig. 3(b) for α = 1.
As increasing K from zero, the onset of partial locking takes
place at K = Kc = 2/(πg(0)) ≈ 0.64, and is complete at
another coupling value of Kl = �−α (1) = (π/2 − 2/3)−1 ≈
1.1, which is different from the case of uniform frequency
distribution with Kc = Kl shown in Fig. 2(b). For α = 0.5, the
synchronization diagram in Fig. 3(c) is quite similar to that
in Fig. 2(c), where the corresponding two critical coupling
thresholds are now given by Kc = 0 and Kl = �−α (1) =
(π/2 − 2/3)−0.5 ≈ 1.05, respectively. For α = 2 in Fig. 3(d),
one branch of the partially locked states is found to be stabi-
lized at Kb ≈ 1.16 with a finite value of r > 0, which remains
stable for an interval of [Kb, Kl ) with Kl = �−α (1) = (π/2 −
2/3)−2 ≈ 1.22. A unique branch of the fully locked states
emerges at K = Kl ≈ 1.22 and is stable for all K � Kl ≈
1.22. When progressively decreasing K from a sufficiently
large value, the partially locked state transits abruptly to the
incoherent state at K = Kb ≈ 1.16.

D. Average effective frequencies

The appearance of partially (fully) locked state can be
directly clarified by calculating the average effective frequen-

FIG. 4. (a, b) Bifurcation trees of the average effective frequency
wav, j vs. the coupling strength K for α = 1 and 0.5 with the natural
frequencies uniformly distributed over [−1, 1]. (c, d) The same as
(a) and (b) with the triangle distribution of frequencies over [−1, 1]
considered. The average effective frequencies wav, j are numerically
calculated from the coupled system Eq. (3) with N = 1000. For clar-
ity, the results for only a subset of the 50 oscillators are represented
in each panel.

cies defined by

wav, j := lim
τ→∞

∫ τ

0
θ̇ j (t )dt = lim

τ→∞
θ j (τ ) − θ j (0)

τ
. (30)

In the thermodynamic limit, the time-averaged quantity in
Eq. (30) can be analytically predicted by averaging the phase
velocity v(θ,w, t ) for 0 � θ � 2π with a fixed value of w

under the conditional probability f (θ,w, t )/g(w) as

wav(w) =
∫ 2π

0
v(θ,w, t )

f (θ,w, t )

g(w)
dθ

= 1

g(w)

∫ 2π

0
(w − Krα sin θ ) fPLS(θ,w)dθ

=
{

0 if |w| � Krα

sgn(w)
√

w2 − (Krα )2 if |w| > Krα.
(31)

Clearly, the average effective frequencies for the locked os-
cillators with |w| � Krα equal to zero, whereas the drifting
oscillators with |w| > Krα have different average effective
frequencies dependent on K , w, r, and α. For two extreme
cases, all the oscillators have wav(w) = w for the incoherent
state, whereas wav(w) = 0 holds for the fully locked states.

In Fig. 4 we present bifurcation trees of wav, j versus
K , where g(w) is adopted to be the uniform distribution in
Figs. 4(a) and 4(b) with α = 1 and 0.5 and the triangle distri-
bution for Figs. 4(c) and 4(d) with α = 1 and 0.5, respectively.
For each fixed K , the average effective frequencies wav, j

are numerically computed by integrating the coupled system
Eq. (3) with N = 1000 and random initial conditions. Figure 4
gives a complementary view of synchronization diagrams of r
versus K for the coupled system Eq. (3), which clearly reveals
three distinctive routes to synchronization with increasing K
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FIG. 5. The average effective frequency wav,j vs. the natural
frequency w for (a) the incoherent state with K = 0.5, (b, c) the
partially locked states with K = 0.7 and K = 0.9, and (d) the fully
locked state with K = 1.2, respectively. g(w) is taken to be the
triangle distribution and α = 1 is fixed. In all panels, the open circles
denote the numerical data directly extracted from Fig. 4(c), which
agrees well with the analytical prediction wav in Eq. (31) plotted
by the red lines. The lower-right inset in each subfigure shows the
spectrum for the corresponding steady state in the thermodynamic
limit N → ∞.

from zero. From Fig. 4(a), it is observed that the system
undergoes an abrupt transitions from a totally incoherent state
to a fully locked state at K = 4/π , which is due to the process
of partial locking is initiated and complete at a single coupling
strength K = Kc = Kl = 4/π for the uniform distribution
g(w) and α = 1. The bifurcation trees in Figs. 4(b) and 4(d)
show that the partial locking takes place at K = Kc = 0 for
α < 1, which is independent of the frequency distribution
g(w). As gradually increasing K from zero, it can be observed
that the oscillators with the natural frequencies close to zero
are successively entrained to the center, and the synchronized
cluster grows until all the drifting oscillators are absorbed at
K = Kl > 0, after that the fully locked states are established
for K > Kl . Figure 4(c) corroborates that the coupled systems
Eq. (3) with α = 1 experiences a transition from the totally
incoherent state to the partially locked state at K = Kc > 0,
and then the fully locked state is achieved for K = Kl > Kc,
which is in congruence with the synchronization diagram in
Fig. 3(b).

Figure 5 further depicts the dependence of the average
effective frequency wav,j on the natural frequency w for
various steady states with different coupling values of K ,
where α = 1 is fixed and g(w) is prescribed by the triangle
distribution. Clearly, as gradually increasing the coupling
strength K , the coupled system experiences from the inco-
herent state [Fig. 5(a) with K = 0.5], via the partially locked
states [Figs. 5(b) and 5(c) with K = 0.7 and 0.9], to the fully
locked state [Fig. 5(d) with K = 1.2], respectively. In all the
panels of Figs. 5(a)–5(d), the open circles mark the numerical
data, extracted correspondingly from Fig. 4(c), which are
well predicted by wav(w) in Eq. (31) indicated by the red

lines. Moreover, in the lower-right inset of each subfigure,
we portray the spectrum for the corresponding steady state,
which will be analytically derived in the thermodynamic limit
of N → ∞ in Sec. III. We would like to stress that the validity
of wav(w) in Eq. (31) has been corroborated for other values of
α �= 1 and the different types of frequency distribution g(w),
where a similar agreement between the numerical simulations
and the theoretical results has been observed as in Fig. 5.

III. STABILITY ANALYSIS OF STEADY SOLUTIONS

The above section reveals that the structures of steady
states for the system can be thoroughly explored through the
self-consistency equation in the frame of mean-field theory,
which, however, cannot address the stability of corresponding
steady states. In this section, we will analyze the linear stabil-
ity of the incoherent state and of the partially (fully) locked
states of coupled system Eq. (3) in the thermodynamic limit
N → ∞. For the limit of large N , the macroscopic dynamics
of coupled system Eq. (3) can be well characterized by the
density function f (θ,w, t ) governed by Eq. (5), which is a
nonlinear partial differential equation. In the following, we
will show that the spectrum of both the incoherent state and
the partially (fully) locked states can be systematically worked
out from a frequency dependent version of the Ott-Antonsen
system represented by a nonlinear ordinary integrodifferential
equation.

A. The Ott-Antonsen approach

Since the density function f (θ,w, t ) is required to be 2π -
periodic in θ , we can expand in the form of the Fourier series

f (θ,w, t ) = 1

2π

+∞∑
n=−∞

zn(t,w)e−inθ , (32)

with the nth Fourier coefficient

zn(t,w) =
∫ 2π

0
einθ f (θ,w, t )dθ, n = 0, 1, 2, ..., (33)

where z0(t,w) = g(w) and z−n(t,w) = z∗
n (t,w). z∗

n (t,w) de-
notes the complex conjugate of zn(t,w). From the continuity
Eq. (5) and the velocity in Eq. (7), we can get that the evolu-
tions of zn(t,w) are determined by the differential equations

∂zn

∂t
= niwzn + nK

2
[H (t )zn−1 − H∗(t )zn+1], (34)

with n � 1.
By adopting the Ott-Antonsen ansatz, i.e., zn(t,w) =

zn(t,w)g(w) [26,27], Eq. (34) is reduced to

∂z(t,w)

∂t
= iwz(t,w) + K

2
H (t ) − K

2
H∗(t )z2(t,w), (35)

with H (t ) = rαeiψ as in Eq. (7). The amplitude r(t ) and phase
ψ (t ) of the order parameter are now given by

R = reiψ =
∫ +∞

−∞
z(t,w)g(w)dw := P̂z(t,w), (36)

where P̂ denotes the integral operator defined as above. Equa-
tions (35) and (36) with |z(t,w)| � 1 constitute as a closed
reduced Ott-Antonsen system, which is invariant with respect
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to the phase shift z(t,w) → z(t,w)eiφ . The spectral analysis
of both the incoherent state and the partially (fully) locked
states will be conducted from Eqs. (35) and (36) within a
unified framework based on spectral theory of linear operators
[65]. Before that, we need to identify the solutions of z(t,w)
for the incoherent and the partially locked states, respectively.

By performing the summation of series in Eq. (32) for
|z(t,w)| � 1, we obtain

f (θ,w, t ) = g(w)

2π

(1 − |z|)(1 + |z|)
(1 − |z|)2 + 4|z| sin2( θ−arg z

2 )
. (37)

Clearly, from Eq. (37), we have f (θ,w, t ) = g(w)/(2π ) if
z(t,w) = 0, which is a trivial solution of Eq. (35) with r = 0
corresponding to the incoherent state. However, for z(t,w) �=
0, the density degenerates to f (θ,w, t ) = δ(θ − arg z)g(w) if
|z(t,w)| = 1, whereas f (θ,w, t ) is a unimodal distribution
in the phase θ with the center located on arg z for any w

at time t if |z(t,w)| < 1. The locked and drifting oscillators
in the partially locked states are perfectly characterized by
|z(t,w)| = 1 and |z(t,w)| < 1, respectively.

To derive z(t,w) for the partially locked states, we look for
the nonzero steady solution of system Eq. (35) in the form of
z(t,w) = β(s), where β(s) is decided by

β2(s) − 2isβ(s) − 1 = 0, (38)

with s = w/Krα . It is easy to get one root from Eq. (38) as

β(s) =
{

is + √
1 − s2 if s � 1

is(1 − √
1 − s−2) if s > 1,

(39)

where |β(s)| = 1 holds for |s| � 1 and |β(s)| < 1 for |s| > 1.
The root β(s) in Eq. (39) with s = w/Krα gives the steady
solution of z(t,w) in Eq. (35) for the partially locked states,
which can be verified in a self-consistency way provided in
Appendix A. Moreover, we have

r =
∫ +∞

−∞
z(t,w)g(w)dw =

∫ +∞

−∞
β

(
w

Krα

)
g(w)dw

=
∫ +∞

−∞
β(s)g(Krαs)Krαds

=
∫ 1

−1

√
1 − s2g(Krαs)Krαds,

which recreates the self-consistency equation for r as the same
in Eq. (23), thus further confirming the steady solution of
z(t,w) in Eq. (39) for the partially locked states.

B. Stability of incoherent state

We begin to analyze the linear stability of the incoherent
state by introducing a small perturbation away from the trivial
solution z(t,w) = 0:

z(t,w) = 0 + εv(t,w), (40)

where ε 	 1. After incorporating the perturbation Eq. (40),
H (t ) in the right-hand side of Eq. (35) becomes

H (t ) = R
α+1

2 R∗ α−1
2

= (εP̂v)
α+1

2 (εP̂v∗)
α−1

2

= εα (P̂v)
α+1

2 (P̂v∗)
α−1

2 . (41)

Then, by substituting Eqs. (40) and (41) into Eq. (35), the
evolution of the perturbation is given by

∂v

∂t
= iwv + K

2
εα−1(P̂v∗)

α−1
2 (P̂v)

α+1
2 + o(ε). (42)

It can be seen that if α < 1, the second term in the right-
hand side of Eq. (42) goes to infinite as ε → 0, which implies
that the linear perturbation v in Eq. (42) diverges with time.
Thus, we conclude that the incoherent state is unstable for any
K > 0 when α < 1.

In contrast, if α > 1, then the second term associated with
the coupling strength K in the right-hand side of Eq. (42)
will be absorbed to o(ε), in which case only the first one
survives at o(ε). The coupling between the oscillators makes
no contribution to the evolution of the linear perturbation.
Therefore, one can infer that the perturbation v does not grow
nor decay with time, which means that the incoherent state
keeps always linearly neutrally stable for K > 0 if α > 1.

For α = 1, the evolution Eq. (42) at o(ε) becomes

∂v

∂t
= iwv + K

2
P̂v. (43)

Since the perturbation v in Eq. (43) is complex-valued, its
complex conjugated term v∗ should be considered for com-
pleteness. Introducing the vector-function as

−−→
V (t ) =

(
v(t,w)
v∗(t,w)

)
,

we have

∂
−→
V

∂t
= L

−→
V with L = L1 + L2,

where L1 is a multiplication operator defined by

L1
−→
V =

(
iw 0
0 −iw

)(
v

v∗

)
,

and L2 is an integral operator given by

L2
−→
V = K

2
P̂
−→
V = K

2

∫ +∞

−∞
g(w)

−→
V dw.

The operator L1 is completely uncoupled in the sense that
L1

−→
V depends only on w, whereas the coupling of the oscilla-

tors is only involved in the operator L2.
The linear operator L has both a continuous and a discrete

spectrum [65]. The continuous spectrum of the linear operator
L consists of λ by solving equation

det(λI − L1) = det

(
λ − iw 0

0 λ + iw

)
= 0,

from which one can easily calculate

σcs(L) = {λ = iw : w ∈ Support(g)}.
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The above formula indicates that the continuous spectrum
σcs(L) lies exactly on the imaginary axis, which is always
neutral and cannot induce a linear instability of the incoherent
state.

The discrete spectrum of the linear operator L is obtained
by seeking nontrivial solutions of the equation

L
−→
V = λ

−→
V . (44)

Substituting the explicit forms of the operators L1 and L2, we
can transform Eq. (44) into

−→
V = K

2
(λI − L1)−1P̂

−→
V , (45)

where λI − L1 is invertible for λ /∈ σcs(L). Applying the inte-
gral operator P̂ to both sides of Eq. (45), we arrive at[

I − K

2
P̂(λI − L1)−1

]
P̂
−→
V = 0,

which yields the characteristic equation for the discrete spec-
trum of linear operator L as

det

[
I − K

2
P̂(λI − L1)−1

]
= 0, (46)

with

(λI − L1)−1 =
( 1

λ−iw 0
0 1

λ+iw

)
.

After straightforward calculations, Eq. (46) becomes equiva-
lent to

1 − K

2

∫ +∞

−∞

λg(w)

λ2 + w2
dw = 0, (47)

which has only the possibility of positive real roots for sym-
metric and unimodal distributions g(w). By letting λ → 0+ in
Eq. (47), one obtains

Kc = 2

πg(0)
,

above which the discrete spectrum appears in the right half-
plane Reλ > 0, implying the instability of incoherent state.
Thus, the incoherent state is linearly neutrally stable for K <

Kc = 2
πg(0) and unstable for K > Kc = 2

πg(0) , which exactly
recovers the well-known result for the standard Kuramoto
model.

As mentioned in the Introduction, in the case of α = 1 for
the classic Kuramoto model, the first rigorous stability anal-
ysis of the incoherent state has been well made by Strogatz
and Mirollo in Ref. [18], where they carried out their study
by directly linearizing the continuity equation (5) about the
incoherent state f = g(w)/(2π ). Here, we have illustrated
that all the information about linear stability of incoherent
state for the Kuramoto model can be successfully retrieved
from the reduced Ott-Antonsen system of Eqs. (35) and (36)
with α = 1.

C. Stability of partially locked states

In this subsection, we turn our attention to the stability
analysis of partially locked states, which can be carried out
in a similar way as that for the incoherent state presented in

Sec. III B. Let us consider a small perturbation away from the
steady solution in Eq. (39):

z(t,w) = β(w/Krα ) + εv(t,w), (48)

with ε 	 1. The perturbed H (t ) is evaluated as

H (t ) = R
α+1

2 R∗ α−1
2

= (r + εP̂v)
α+1

2 (r + εP̂v∗)
α−1

2

= rα + εrα−1

[
α + 1

2
P̂v + α − 1

2
P̂v∗

]
+ o(ε2).

To linearize Eq. (35), insert z(t,w) = β(w/Krα ) + εv(t,w)
and the above perturbed H (t ), after gathering all the linear
terms in the first order of ε, we obtain the evolution of the
perturbation v(t,w) governed by the equation

∂v

∂t
= η(w)v + K

4
rα−1(μP̂v + νP̂v∗), (49)

where η(w) = iw − Krαβ(w/Krα ), μ = (α + 1) − (α −
1)β2(w/Krα ), and ν = (α − 1) − (α + 1)β2(w/Krα ). As

before, we need to switch to the vector-function
−→
V = (

v

v∗),

which has again the form of

∂
−→
V

∂t
= L

−→
V with L = L1 + L2,

where the multiplication operator L1 is now given by

L1
−→
V =

(
η(w) 0

0 η∗(w)

)(
v

v∗

)
, (50)

and the integral operator L2 by

L2
−→
V = K

4
rα−1QP̂

−→
V = K

4
rα−1Q

∫ +∞

−∞
g(w)

−→
V dw, (51)

with

Q =
(

μ ν

ν∗ μ∗

)
. (52)

Again, the continuous spectrum σcs(L) of the linear opera-
tor L is given by solving equation

det(λI − L1) = det

(
λ − η(w) 0

0 λ − η∗(w)

)
= 0,

which implies

σcs(L) = {λ = η(w), η∗(w) : w ∈ Support(g)},
with

η(w) = iw − krαβ

(
w

Krα

)

=
{−

√
(Krα )2 − w2 if |w| � Krα

iw
√

1 − (
Krα

w

)2
if |w| > Krα.

Obviously, the partially locked states have a T-shaped
continuous spectrum σcs(L) in the complex plane, where a
symmetric interval along the imaginary axis is generated by
the drifting oscillators with |w| > Krα , and another interval
on the negative side of the real axis arises due to the locked
oscillators with |w| � Krα . Hence, similar to the incoherent
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state, the continuous spectrum of the partially locked states
is always neutral, where the instability is only possible to
be caused by discrete spectrum. In contrast, the fully locked
states, which require |w| � Krα for all w ∈ Support(g), are
always linearly stable with respective to their continuous
spectrum.

The discrete spectrum of the linear operator L consists of
λ /∈ σcs(L) for the equation

L
−→
V = λ

−→
V

having a nontrivial solution
−→
V . After some transformations,

the above equation can be rewritten as

−→
V = K

4
rα−1(λI − L1)−1QP̂

−→
V . (53)

Applying the operator P̂ to both sides of Eq. (53), we can get[
I − K

4
rα−1P̂(λI − L1)−1Q

]
P̂
−→
V = 0,

which leads to the characteristic equation of discrete spectrum

det

(
I − K

4
rα−1P̂(λI − L1)−1Q

)
= 0, (54)

with

(λI − L1)−1 =
(

1
λ−η(w) 0

0 1
λ+η∗(w)

)
.

The partially (fully) locked states are unstable if Eq. (54) has
a root λ with positive real part.

To derive explicit equations for the discrete spectrum λ, we
rewrite the characteristic Eq. (54) as

det

[
I − K

4
rα−1M(λ, r)

]
= 0,

with

M(λ, r) = P̂(λI − L1)−1Q

=
(

J1(λ, r) J2(λ, r)
J∗

2 (λ∗, r) J∗
1 (λ∗, r)

)
,

where

J1(λ, r) = P̂
(α + 1) − (α − 1)β2( w

Krα )

λ − η(w)

=
∫ +∞

−∞

(α + 1) − (α − 1)β2
(

w
Krα

)
λ − iw + Krαβ

(
w

Krα

) g(w)dw

and

J2(λ, r) = P̂
(α − 1) − (α + 1)β2

(
w

Krα

)
λ − η(w)

=
∫ +∞

−∞

(α − 1) − (α + 1)β2( w
Krα )

λ − iw + Krαβ
(

w
Krα

) g(w)dw.

It can be proved by straightforward calculations that

J1(λ, r) = J∗
1 (λ∗, r) and J2(λ, r) = J∗

2 (λ∗, r)

hold for symmetric and unimodal distribution g(w). Thus, the
characteristic Eq. (54) is reduced to

1 − K

4
rα−1[J1(λ, r) − J2(λ, r)] = 0 (55)

and

1 − K

4
rα−1[J1(λ, r) + J2(λ, r)] = 0, (56)

respectively. After lots of tedious computations, one obtains
that Eq. (55) is equivalent to

hs(λ) = 1

Krα−1
, (57)

with

hs(λ) =
∫

|s|�1

1 − s2(
λ

Krα

) + √
1 − s2

g(Krαs)ds

+
∫

|s|>1

(
λ

Krα

)
[1 − s2(1 − √

1 − s−2)](
λ

Krα

)2 + s2 − 1
g(Krαs)ds,

and Eq. (56) to

hc(λ) = 1

αKrα−1
, (58)

with

hc(λ) =
∫

|s|�1

s2(
λ

Krα

) + √
1 − s2

g(Krαs)ds

+
∫

|s|>1

(
λ

Krα

)
s2(1 − √

1 − s−2)(
λ

Krα

)2 + s2 − 1
g(Krαs)ds.

Equations (57) and (58) completely describe the discrete spec-
trum of partially locked states. For the fully locked states, as
|w| � Krα (i.e., |s| < 1) is satisfied for all the oscillators, the
discrete spectrum of fully locked states is decided by Eqs. (57)
and (58) involving only the first integral with |s| � 1.

From the self-consistency equation of r in Eq. (24), one can
see that Eq. (57) always holds for λ = 0, i.e., the characteristic
equation (54) has a root of λ = 0 irrespective of the values of
parameters K , r, and α. The discrete spectrum must contain
λ = 0, which is a consequence of the rotational symmetry
of the original phase-model in Eq. (3). Following the similar
procedures of the proof of Proposition 4 in Ref. [20], it can
be further proved that Eq. (57) has no other roots except
0, and that Eq. (58) has no root with positive real part for
α � 1. Therefore, for α � 1 the partially (fully) locked states
are always stable once they emerge for K � Kc, which are
in accordance with the numerical observations in Figs. 1, 2,
and 3 with α � 1. The instability of partially (fully) locked
states is only possible for α > 1 caused by the appearance
of a positive real root in Eq. (58). As Eq. (58) has only the
possibility of real root, the condition for linear stability of
the partially (fully) locked states for α > 1 can be ultimately
stated as

hc(λ) �= 1

αKrα−1
for all λ > 0, (59)

which has been tested numerically for α = 2 with the results
in line with Figs. 1(d), 2(d), and 3(d).
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The direct integrations of Eq. (57) for hs(λ) and Eq. (58)
for hc(λ) turn out to be very difficult for a general g(w). How-
ever, using Cauchy’s residue theorem [66], both hs(λ) and
hc(λ) can be explicitly obtained for the Lorentzian frequency
distribution g(w) = 	/π (w2 + 	2) as

hs(λ) = 1

2λ + Krα−1
(60)

and

hc(λ) = 1

2λ + Krα−1 + (1 + α)Krα+1
, (61)

for which the detailed calculations are provided in Appendix
B. It is obvious from Eq. (60) that λ = 0 is the only root
for Eq. (57). From Eq. (61), it can be inferred that for the
appearance of a positive root in Eq. (58), one requires

αKrα−1 > Krα−1 + (1 + α)Krα+1,

which is equivalent to

r2 <
α − 1

α + 1
. (62)

Clearly, Eq. (62) fails for α � 1, which holds only possible for
α > 1. The above analysis indicates that for the Lorentzian
frequency distribution g(w), the partially locked states are
stable once they are born when α � 1, and are stable only for
r2 � α−1

α+1 if α > 1. For α = 2, r = √
1/3 ≈ 0.577 is predicted

at the coupling threshold K = Kb, which agrees very well with
the numerical observation in Fig. 1(d).

It should be remarked that for α = 1, Eqs. (57) and (58)
degenerate to the same two characteristic equations obtained
previously by Mirollo and Strogatz in Ref. [20], whereas they
solved the linear stability of partially (fully) locked states
relied on the theory of functional spaces. Here, we have
clearly shown that a complete understanding of the spectrum
of partially (fully) locked states for Kuramoto-type model can
also be achieved from the reduced Ott-Antonsen system with
a standard and straightforward method.

IV. CONCLUSIONS

To summarize, we have systematically explored the bi-
furcation and linear stability of steady states for a variation
of Kuramoto model, where the global coupling is modified
to depend on the fraction of synchronized oscillators via
a power-law function of the Kuramoto order parameter r
through an exponent α. The modified phase-model with r-
dependent coupling is shown to be analytically tractable in
solving both the existence and the linear stability of the
steady states for the continuum limit, which degenerates to a
standard Kuramoto model in the case of α = 1. As r < 1, the
effective coupling is strengthened if α < 1 and weakened if
α > 1, which result in completely different dynamics of phase
transition to synchronization.

Based on a self-consistency analysis in the thermodynamic
limit of N → ∞, all the steady states are well characterized by
two parametric expressions of the Kuramoto order parameter
r and the coupling strength K in Eq. (26). We have found that
synchronization diagrams of K versus r for α < 1 and α > 1
distinctly differ from that of α = 1. For α = 1, it has been well

documented that the partially locked state bifurcates contin-
uously from the incoherent state at K = Kc = 2/πg(0) > 0,
and the second-order phase transition to synchronization is
generically reported for strictly unimodal distributions of the
natural frequencies such as the Lorentzian and triangle dis-
tributions illustrated in Figs. 1(b) and 3(b). One exception is
that the first-order phase transition is observed for the uniform
frequency distribution in Fig. 2(b), which is due to that the
process of partial locking is initiated and completed at the
same coupling strength K = Kc = Kl = 2/πg(0). However,
for α < 1, no phase transition is predicted, where the partial
locking takes place at K = Kc = 0 and the incoherent state is
unstable for any K > 0. Interestingly, for α > 1, the coupling
threshold Kc for initial onset of partial locking is found to
go to infinity, in contrast to the case of α � 1 with a finite
value of Kc. Furthermore, for α > 1, we have established an
abrupt desynchronization transition from the partially (fully)
locked state to the incoherent state at a critical coupling
strength K = Kb when adiabatically decreasing K , whereas
there is no counterpart of abrupt synchronization transition
from incoherence to coherence when progressively increasing
K , as the incoherent state is always linearly neutrally stable
for all K > 0. For K > Kb, there exists a bistability between
the incoherent state and the partially (fully) locked states.

For each case of α, we have demonstrated that the stability
of both the incoherent state and the partially (fully) locked
states can be addressed in a similar way by performing a
linear stability analysis for the reduced Ott-Antonsen system,
despite of the singular nature of the partially locked states.
The continuous and discrete spectra are analytically obtained
for not only the incoherent state but also the partially (fully)
locked states within a uniform framework, from which the
linear stability conditions of the corresponding steady states
have been derived explicitly. Our work provides a complete
framework to investigate the bifurcation and stability of
Kuramoto-type systems of globally coupled phase oscillators.

In this work, the Ott-Antonsen ansatz has been employed
as a starting point in investigating the stability properties
of both the incoherent state and the partially (fully) locked
states. However, it is worth to warn that there is no complete
guarantee that the Ott-Antonsen ansatz will work, which is
due to that the applicability of the Ott-Antonsen ansatz gener-
ally requires certain strong assumption, such as the analytic
continuations for the oscillator frequency distribution func-
tion g(w) to ensure the attraction of Ott-Antonsen manifold
[67]. Furthermore, it has been proved that the fairly strong
regularity condition should be imposed on the initial phase
density for the Ott-Antonsen ansatz to capture the asymptotic
behavior of the standard Kuramoto model [68]. Although,
the analytic continuations do not hold for the uniform and
triangular distributions, our study seems to indicate that the
Ott-Antonsen ansatz is perfectly valid in solving both the
existence and the linear stability of the steady states of
the generalized Kuramoto model with nonlinear coupling
in Eq. (3) even for the uniform and triangular frequency
distributions. Finally, we hope that the reported results in this
paper could be useful for understanding complicated dynam-
ics of phase transitions in complex oscillator networks with
nonlinear coupling dependent on the fraction of synchronized
subunits.
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APPENDIX A: VERIFICATION OF THE ROOT IN EQ. (39)
FOR PARTIALLY LOCKED STATES

In this Appendix, we provide a self-consistency way to
verify that the root β(s) in Eq. (39) for the nonzero steady
solution of Ott-Antonsen system precisely corresponds to the
partially locked states of the continuum model.

First, we show that substitution of the root in Eq. (39) into
Eq. (37) yields the same density f (θ,w, t ) of partially locked
states in Eq. (11). From Eq. (39), |β(s)| = |is + √

1 − s2| =
1 holds for |s| � 1, corresponding to |z(t,w)| = 1 for |w| �
Krα as z(t,w) = β(s) with s = w/(Krα ). Thus, the density
f (θ,w, t ) in Eq. (37) by inserting β(s) for |s| � 1 is

f (θ,w, t ) = δ(θ − arg z)g(w),

with

arg z = arg(is +
√

1 − s2) = arcsin

(
w

Krα

)
,

which becomes the same to the first part of Eq. (11) with
|w| � Krα . However, for |s| > 1, it is easy to see that |β(s)| =
|is(1 − √

1 − s−2)| = 1/(|s| + √
s2 − 1) < 1, i.e., |z(t,w)| <

1 for |w| > Krα . By substituting z(t,w) = is(1 − √
1 − s−2)

with s = w/(Krα ) into Eq. (37), the density f (θ,w, t ) is
calculated as

f (θ,w, t ) = g(w)

2π

(1 − |z|)(1 + |z|)
(1 − |z|)2 + 4|z| sin2( θ−arg z

2 )

= g(w)

2π

1 − |z|2
1 + |z|2 − 2|z| cos(θ − arg z)

= g(w)

2π

√
s2 − 1

|s| − sgn(s) sin θ

= g(w)

2π

√
s2 − 1

sgn(s)(s − sin θ )

= g(w)

2π

√
w2 − (Krα )2

sgn(w)(w − Krα sin θ )
,

which is equivalent to the second part of Eq. (11) with |w| >

Krα .
Second, we demonstrate that the root β(s) in Eq. (39)

can be obtained from direct computations of the Fourier
coefficients in Eq. (33) with the density fPLS(θ,w) in Eq. (11).
Specifically, for |w| � Krα , the corresponding Fourier coeffi-
cients are computed as

zn(t,w) =
∫ 2π

0
einθ f (θ,w, t )dθ

=
∫ 2π

0
einθ δ

(
θ − arcsin

(
w

Krα

))
g(w)dθ

=
⎡⎣i

w

Krα
+

√
1 −

(
w

Krα

)2
⎤⎦n

g(w)

= βn
( w

Krα

)
g(w),

with

β(s) = is +
√

1 − s2 for |s| � 1. (A1)

And for |w| > Krα , there have

zn(t,w) =
∫ 2π

0
einθ f (θ,w, t )dθ

=
∫ 2π

0
einθ

√
w2 − (Krα )2

2π |w − Krα sin θ |g(w)dθ

= C(w)g(w)
∫ 2π

0

einθ

w − Krα sin θ
dθ,

where C(w) is given in Eq. (16). The above integral can be
further computed with the substitution γ = eiθ and Cauchy’s
residue theorem as∫ 2π

0

einθ

w − Krα sin θ
dθ

=
∫

|γ |=1

2γ n

Krαγ 2 − i2wγ − Krα
dγ

= sgn(w)
2πβn

(
w

Krα

)√
w2 − (Krα )2

,

with

β(s) = is(1 −
√

1 − s−2) for |s| > 1. (A2)

Thus, for |w| > Krα , the Fourier coefficients in Eq. (33)
become

zn(t,w) = βn

(
w

Krα

)
g(w),

with β(s) given in Eq. (A2). Now, we have that the two
expressions for β(s) in Eqs. (A1) and (A2) are the same as
those in Eq. (39).

Note that from the above calculations, the Fourier series of
f (θ,w, t ) in Eq. (11) for partially (fully) locked states has the
form of

f (θ,w, t ) = g(w)

2π

+∞∑
n=−∞

βn

(
w

Krα

)
e−inθ , (A3)

which in turn provides a direct indication for Ott-Antonsen
ansatz [26,27].

APPENDIX B: hc(λ) and hs(λ) FOR LORENTZIAN
FREQUENCY DISTRIBUTION g(w)

In this Appendix, we provide the detailed calculations of
hs(λ) in Eq. (60) and hc(λ) in Eq. (61) for the Lorentzian
frequency distribution

g(w) = 	

π (w2 + 	2)
.
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Using a contour integration in the complex plane with
Cauchy’s residue theorem, the order parameter r is computed
as

r =
∫ +∞

−∞
z(t,w)g(w)dw =

∫ +∞

−∞
β

(
w

Krα

)
g(w)dw

= 2π i · Res[β

(
w

Krα

)
g(w), i	]

= 2π i · lim
w→i	

(w − i	)β

(
w

Krα

)
g(w)

= β

(
i	

Krα

)
,

where β(s) satisfies the equation

β2(s) − 2isβ(s) − 1 = 0.

Substituting s = i	/Krα in the above equation of β(s) gives

Krα+1 − Krα−1 + 2	 = 0. (B1)

Again, using Cauchy’s residue theorem, we have

J1(λ, r) =
∫ +∞

−∞

(α + 1) − (α − 1)β2
(

w
Krα

)
λ − iw + Krαβ

(
w

Krα

) g(w)dw

= (α + 1) − (α − 1)β2
(

i	
Krα

)
λ − i(i	) + Krαβ

(
i	

Krα

)

= (α + 1) − (α − 1)r2

λ + 	 + Krα+1
(B2)

and

J2(λ, r) =
∫ +∞

−∞

(α − 1) − (α + 1)β2
(

w
Krα

)
λ − iw + Krαβ

(
w

Krα

) g(w)dw

= (α − 1) − (α + 1)β2
(

i	
Krα

)
λ − i(i	) + Krαβ

(
i	

Krα

)
= (α − 1) − (α + 1)r2

λ + 	 + Krα+1
. (B3)

After substituting Eqs. (B2) and (B3) with Eq. (B1) back in
Eqs. (55) and (56), we obtain

hs(λ) = 1

2λ + Krα−1

and

hc(λ) = 1

2λ + Krα−1 + (1 + α)Krα+1
,

respectively.
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