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In this work, a detrending-moving-average- (DMA) based bivariate linear regression analysis method is
proposed. The method is combination of detrended moving average analysis and standard regression method-
ology, which allows us to estimate the scale-dependent regression coefficients for nonstationary and power-law
correlated time series. By using synthetic simulations with error of estimation for different position parameter θ

of detrending windows, we test our DMA-based bivariate linear regression algorithm and find that the centered
detrending technique (θ = 0.5) is of best performance, which provides the most accurate estimates. In addition,
the estimated regression coefficients are in good agreement with the theoretical values. The center DMA-based
bivariate linear regression estimator is applied to analyze the return series of Shanghai stock exchange composite
index, the Hong Kong Hangseng index and the NIKKEI 225 index. The dependence among the Asian stock
market across timescales is confirmed. Furthermore, two statistics based on the scale-dependent t statistic and
the partial detrending-moving-average cross-correlation coefficient are used to demonstrate the significance of
the dependence. The scale-dependent evaluation parameters also show that the DMA-based bivariate regression
model can provide rich information than standard regression analysis.
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I. INTRODUCTION

Detrended fluctuation analysis (DFA) is one of the most
popular and reliable method in fractal analysis [1,2] which
can explore the long-range autocorrelations and multifractal
features of time series in diverse fields [3–11]. Alternatively,
the detrending-moving-average (DMA) method and its gen-
eralized various versions can also be used for multifractal
analysis [12–21]. Synthetic tests suggest that the performance
of the DMA method is comparable to the DFA method
with slightly different priorities under certain circumstances
[22–24]. Furthermore, the competitive methods have similar
performances while the DMA algorithms are computationally
less demanding as they contain no box splitting and regression
fitting in most cases [25,26].

Recently, DFA- and DMA-based regression analysis
method for bivariate series have been developed to analyze
the nonstationary and long-range-dependent data at differ-
ent scales [27,28]. The DFA-based regression method [27]
is based on the least-squares estimator, translated by the
scale-dependent detrended fluctuation variance and covari-
ance which is obtained by DFA and detrended cross corre-
lation analysis (DCCA) [29]. The DFA-DCCA setting is ca-
pable of estimating regression parameters, standard errors of
the estimates, and the coefficient of determination for specific
scales. Similarly, DMA-based regression framework was also
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formulated [28]. The most important advantage of DFA- or
DMA-based regression estimators over standard linear regres-
sion analysis is the interpretation of the dependence between
two variables at different time periods. Furthermore, DFA-
based bivariate regression model was introduced to investigate
the dependence among PM2.5 series of three adjacent cities
[30].

In this work, we propose an alternative but also a comple-
mentary estimators DMA-based bivariate regression model,
which is constructed by merging standard regression least
squares with detrending-moving-average analysis. The frame-
work not only allows for studying the dependence among
variables at different scales but also provides related standard
errors and coefficients of determination. Since the DMA
algorithm is comparable to the DFA algorithm, we expect
that the DMA-based bivariate regression model will show
similar advantages. Our numerical experiments and empirical
analysis confirm this conjecture.

The rest is organized as follows: In Sec. II, we briefly
recall standard bivariate regression analysis and introduce
the DMA-based bivariate regression model. In Sec. III, first,
we conduct the numerical simulation to test the validity of
the proposed method and present comparing results with
DFA-based bivariate regression model; then we discuss the
financial series used to develop our method, including re-
gression parameter estimates, statistical significance test, and
discussion of the coefficient of determination, etc. This study
represent a point of view of a practitioner who wants to
choose a better tool for his or her analyses without entering
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subtle theoretical considerations. Section IV gives a brief
summary.

II. METHODOLOGY

A. The standard bivariate regression model

The bivariate linear regression model is designed to study
the dependence among series, described as

Z = β0 + β1X + β2Y + ε, (1)

where Z is a dependent (response) variable, X and Y are
two independent (impulse) variables, ε is a Gaussian error
term with zero mean value, and β1 and β2 are the partial
regression coefficients characterizing the dependence on X
and Y , respectively. The next key point for researchers is to
estimate β1 and β2 in empirical studies. The ordinary least-
squares (OLS) method is utilized by

β̂1 =
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where xt = Xt − 〈Xt 〉, yt = Yt − 〈Yt 〉, and zt = Zt − 〈Zt 〉 and
〈·〉 denotes the mean value. By using the residuals êt = Zt −
β̂1Xt − β̂2Yt − 〈Zt − β̂1Xt − β̂2Yt 〉, variance of the estimator
of residuals is obtained by
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The variance explains the accuracy of the estimated pa-
rameters, and the estimated regression coefficients together
with their corresponding variances can be further utilized for
hypothesis test and model evaluation. To evaluate the effi-
ciency of the regression model, the following determination
coefficient R2, β coefficient β∗, and elasticity coefficient η are
also given by
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ε

σ̂ 2
Z

, (6)
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{
η1 = β̂1

〈X 〉
〈Z〉 ,

η2 = β̂2
〈Y 〉
〈Z〉 .

(8)

Generally speaking, R2 ranges in (0, 1), which quantifies
a proportion of variance of Z explained by X and Y , and the
higher value of R2 implies a better model explaining ability.
The above β∗

j ( j = 1, 2) coefficient is described to quantify the
sensitivity of explained variable to each explaining variable,
and η j ( j = 1, 2) is the average elasticity coefficient, which
can explain the relative importance of variables X and Y to Z .

B. Detrended moving average and cross-correlation analysis
(DMA and XDMA)

The DMA and XDMA methodology is well described in
Refs. [13,16–18]. Here we briefly outline the variance and
covariance procedure in the following. Suppose that {xt } is a
time series with length N . The sequence of cumulative sums is
X (t ) = ∑t

k=1 xk , for t = 1, 2, . . . , N , and the moving average
function in a moving window is defined as

X̃ (t ) = 1

s

�(s−1)(1−θ )�∑
k=−�(s−1)θ	

X (t − k), (9)

where s is the window size and θ is a factor of of moving av-
erage type ranging in [0, 1] (forward, centered, and backward
for θ = 0, θ = 0.5, and θ = 1, respectively). The residual
series is obtained as ε(i) = X (i) − X̃ (i) for s − �(s − 1)θ	 �
i � N − �(s − 1)θ	, which is divided into Ns = �N/s − 1	
disjoint segments with the same size s. In the vth box, εv (i) =
ε((v − 1)s + i) for 1 � i � s the fluctuation function can be
calculated by

f 2
XX (s, v) = 1

s

s∑
i=1

[X (i) − X̃ (i)]2. (10)

Averaging the fluctuation function f 2
XX (s, v) over all the box

gets

F 2
XX (s) = 1

Ns

Ns∑
v=1

f 2
XX (s, v). (11)

In a similar way, we get the detrended covariance of bivariate
series {xt } and {yt }, which is determined as

f 2
XY (s, v) = 1

s

s∑
i=1

[X (i) − X̃ (i)][Y (i) − Ỹ (i)], (12)

F 2
XY (s) = 1

Ns

Ns∑
v=1

f 2
XY (s, v). (13)

F 2
XX (s) and F 2

XY (s) are considered as scale-dependent variance
and covariance, respectively.
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C. DMA-based bivariate regression estimator

In this section, the detrending-moving-average-based bi-
variate regression estimator is proposed. Motivated by the
idea in Refs. [27,28,30], we utilize the correspondence of
variance and covariance in Eqs. (11) and (13), and then two
scale-dependent estimators translated from Eqs. (2) and (3)
are obtained through⎧⎨⎩β̂1

DMA
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F 2
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(14)

Similarly, the scale-dependent residuals can also be refor-
mulated as
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〉
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with zero mean value. Furthermore, DMA algorithm is ap-
plied to êt (s), and the calculated fluctuation F 2

ε (s) can be used

to estimate the variance of β̂ j
DMA

( j = 1, 2) in Eq. (14),⎧⎨⎩var[β̂1
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The corresponding scale-specific determination coefficient
R2

DMA(s), β coefficient β∗DMA(s), and elasticity coefficient
ηDMA(s) are presented as follows:
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III. NUMERICAL EXPERIMENTS

In order to test the validity and performance of the
proposed DMA-based bivariate regression estimator, we first
perform two numerical experiments. It is worth noting that
different position types (forward, centered, and backward for
θ = 0, θ = 0.5, and θ = 1, respectively) of moving averages
schemes produce different results. Some literatures have re-
ported that the centered one (θ = 0.5) showed the best results
[17,31]. For the sake of completeness, we first compare the
error results of different moving averages schemes on the two
simulations and then present the results of the best scheme.
Artificial series are generated by autoregressive fractionally
integrated moving-average process (ARFIMA (0, d, 0)) [32],{

Xt = ∑∞
n=1 αn(d1)ξ1(t − n),

Yt = ∑∞
n=1 αn(d2)ξ2(t − n).

(20)

where di(i = 1, 2) is fractional integration parameters with
the range (−0.5, 0.5), αn(di ) = 	(n − di )/[	(−di )	(n + 1)],
and 	(·) denotes the Gamma function. ξ1 and ξ2 are
independent Gaussian noises.

In the first test, suppose β0 = β1 = 1 and β2 = 2, Zt =
β0 + β1Xt + β2Yt + εt . We generate series Xt and Yt with
length 10 000. Both of them share the same parameter (d1 =
d2)d ranging from −0.5 to 0.5 with the step size 0.1, and then
11 groups of series are obtained. The error term εt is set as a
standard Gaussian noise, and hence the response variable Zt

has the same parameter d as the two independent variables.
This case is to verify the performance of the DMA estimator
under various levels of long-range dependence among series
Xt , Yt , and Zt . The second test is designed to study how the
estimator fares for long-range-dependent error terms εt . The
two regression coefficients are set as the same as the first
test, i.e., Zt = 1 + Xt + 2Yt + εt . In this situation, we fix the
memory parameter d = 0.4 for the both series Xt and Yt . The
εt is generated by an ARFIMA process with d varying from
−0.5 to 0.5 with a step of 0.1. Similarly, we also get 11 groups
of simulated series. Each test is run 1000 times to eliminate
the noise interference and the corresponding scales vary from
10 and 100 with a logarithmic isometric step.

We show the standard deviation of all estimators vary-
ing with different parameter θ for the two experiments [see
Figs. 1(a) and 1(b)]. The final results are averaged over all ds.
It is clear that the central moving averaging θ = 0.5 has better
performance for the two tests. Furthermore, the result of the
second test is much better, which contributes to the setting of
error terms εt . In this regards, we take θ = 0.5 in the following
discussion.

Figures 2(a) and 2(b) show mean values and standard
deviation of the two DMA estimators βDMA

i (i = 1 and 2)
for the generated series with d ranging from −0.5 to 0.5
of step size 0.1. It is clear that the two estimators locate
the two given regression coefficients of 1 [Fig. 2(a)] and
2 [Fig. 2(b)] unbiasedly and are independent of the value
of d . In addition, the standard deviations of both estimators
decrease with the increasing memory. The narrow range of
the estimators and small fluctuations show that the method
is feasible. Figures 2(c) and 2(d) record similar information
for the second test. The DMA estimator is again remarkably
stable and unbiased for different levels of memory in the error
terms. Even though variance of the estimator increases with
d , which is expected due to an increasing weight of the error
term in the whole dynamics of Z with the increasing memory
of the error-term. For the both tests, as a comparison, we
also calculate the DFA-based bivariate regression estimator
[30] together with its standard deviation and show in the
four subplots. Clearly, it is seen that the standard deviation
of the DMA-based and DFA-based estimators possess similar
trends and our DMA method is slightly superior to the DFA
method.

Next, we wish to verify the antitrend performance of the
proposed DMA-based regression. To this end, we employ
the same bivariate regression model as the first test here.
The two fractional integration parameters are set d1 = d2 =
0.1. Then we add linear trend into Xt and keep Yt and εt

unchanged. Xt with linear trend is shown in the left panel
of Fig. 3. The red solid lines denote the trends: wt = kt ,
where t = i/100, i = 0, 2, . . . , N − 1, and k denotes slope.
Three slopes, namely k = 0.01, 0.02, and 0.03, are discussed.
The OLS-based regression estimator is also calculated as
a comparison. The right panel of Fig. 3 shows the result.
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FIG. 1. Standard deviation of all estimators for θ ∈ [0, 1] with step size 0.1. (a) The result of the two estimated β̂DMA(s) for the first tests.
(b) The result for the second test.

It is gratifying that β̂DMA
1 (s) (solid lines) is stably situated

nearby at 1 for available scale s regardless of trend intensity.
However, the OLS-based regression model is not satisfactory.

The estimated β̂1 (dotted lines) is disturbed by the trend
greatly. With the increasing of trend intensity (slope), its
deviation from 1 is also increasing.
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FIG. 2. Estimated two DMA regression coefficients for the two tests. [(a) and (b)] The results of the estimated β̂DMA
1 (s) and β̂DMA

2 (s)
based on the DMA method as well as the DFA method, respectively for the first test. [(c) and (d)] Results for the second test. The two
multi-scale-based estimators β̂DMA

1 (s) and β̂DMA
2 (s) are unbiased at 1 and 2, respectively, and their standard deviations decrease with the

memory strength for the first test and increase for the second test.
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FIG. 3. Effect of linear trend on estimated regression coefficient.
The left panel is Xt adding linear trend with different slope (the solid
line is trend line) and the right panel is the estimated β̂1 calculated
by DMA-based regression (solid line) and OSL-based regression
(dotted line). Noting that the estimation of OLS-based β̂1 is seriously
disturbed by the trend but the DMA-based estimator does not.

Finally, we discuss the distribution of the estimated re-
gression coefficients. To do so, another bivariate regression
model is considered, i.e., β0 = 0, β1 = 0.3, and β2 = −0.8
for Zt = β0 + β1Xt + β2Yt + εt . Three groups of (X,Y ) are
generated by AFRIMA with different fractional integration
parameters, namely {d1 = 0, d2 = 0}, {d1 = 0.2, d2 = 0.3},
and {d1 = 0.1, d2 = 0.4}. The first case means that X and Y
are Gaussian white noises, and the last two cases illustrate
that X and Y are power-law correlated variables, respectively.
Similarly to the former tests, 1000 independent calculations
are conducted for those cases. We record the PDF of the
two regression coefficient estimators in Fig. 4. The left panel
is for β̂1 and the right panel is for β̂2. For each group, the
results for scales s = 14, 10, and 48 are exhibited. In addition
to the DMA-based regression, we also show the PDF of
the two estimators obtained from standard regression with
OLS method. It is not surprising that the PDFs are a normal
shape which are centered at 0.3 and −0.8, respectively, for
both the DMA-based and OLS-based methods. Compared
with the OLS method, the standard deviation of β̂ j
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FIG. 4. PDF of regression coefficients of the DMA-based and
OLS-based methods for the third test (Zt = 0.3Xt − 0.8Yt + εt ). The
left panel is for β̂1 and the right panel is for β̂2. Panels (a) and
(b) are for the Xt and Yt generated by Gaussian noise (d1 = d2 = 0
in ARFIMA process). Panels (c) and (d) are for the two series gener-
ated by ARFIMA process with d1 = 0.2 and d2 = 0.3, respectively.
Panels (e) and (f) are for d1 = 0.1 and d2 = 0.4. In each case, three
scales s are considered for the DMA-based regression.

is larger and increases with the increasing of scale s. Some
subtle properties are unveiled for both methods. The standard
deviation of β̂2 is slightly smaller than that of β̂1 due to the
stronger long-term correlation of series Y (i.e., d2 is larger
than d1). That is, the divergence between the two standard
deviations of the estimated regression coefficients depends on
the fractional integration parameters.

IV. APPLICATION TO FINANCIAL DATA

Many researchers have found short-term or long-term in-
terdependence of the returns among different stock markets
[33]. Especially, the linkages among Asian stock markets have
become increasingly more evident in recent years [34–39].
The empirical analysis that will be carried out is to explore
the dependence among stock indices of three Asian countries
by the proposed DMA-based bivariate regression estimator.
The Shanghai Stock Exchange Composite Index (SSEC), the
Hong Kong Hang Seng Index (HSI), and NIKKEI 225 index

0 50 100 150 200
-0.2

0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
β

D
M

A
i

(s
)

β (s): SSEC
β (s): HSI

(a)

0 50 100 150 200

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
es

ti
m

at
ed

β
D

M
A

i
(s

)

β (s): N225
β (s): HSI

(b)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

E
st

im
at

ed
β

D
M

A
i

(s
)

β (s): SSEC
β (s): N225

(c)

FIG. 5. Bivariate DMA regression for the three models. Light-colored zones denote 95% confidence intervals. (a) For model I. β̂DMA
1 (s)

and β̂DMA
2 (s) are the estimated coefficient of SSEC and HSI, respectively. (b) For model II. β̂DMA

1 (s) and β̂DMA
2 (s) are the estimated coefficient

of N225 and HSI, respectively. (c) For model III. β̂DMA
1 (s) and β̂DMA

2 (s) are the estimated coefficient of SSEC and N225, respectively.
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statistical test with 10 000 times of the shuffled investigated series.

(N225) are the representatives of the mainland China, Hong
Kong, and Japan stock markets, respectively.

This paper samples daily data from January 2007 to
December 2011, which includes the global financial crisis
period of 2008–2009. All these indexes are collected from
the RESSET database. After the elimination of incomplete
data, there are 1124 observations. Since we will use the index
return instead of the raw data, the return is defined as the daily
difference of the logarithmic closing prices.

A. DMA-based bivariate regression coefficients

Three bivariate models are built for SSEC, HSI, and N225,
respectively. In model I, the dependent variable (Z ) is the
N225 series while the two independent variables are the SSEC
series (X ) and HSI series (Y ); in model II, (Z ) is the SSEC
series, (X ) is the N225 series, and (Y ) is the HSI series; and
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FIG. 7. The t statistical test of the estimated DMA-based bivari-
ate regression coefficients. The red dotted line represents the t c(s)
with 0.01 significant level.
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FIG. 8. Statistical test of DMPCA-based correlation coefficients
among the three stock index return series. The red dotted line
represents the ρc

DMPCA(s) with 0.01 significant level.

in model III, (Z ) is the HSI series and (X ) and (Y ) denote
the SSEC and N225 series, respectively. In this section, we
first show the performance of the regression coefficients at
different scales in the three models.

Figures 5(a)–5(c) show the two regression coefficient es-
timators for the three models, respectively. In model I [see
Fig. 5(a)], it is observed that SSEC has negative transmission
on N225 across all timescales, which means an boost of
SSEC is connected to a depression of N225. While the effect
of HSI is positive, and the transmission of HSI to N225
is very stable across scales with the effect of between 0.6
and 0.8. This means that if the HSI increases by a single
percentage point, then the N225 appreciate by between 0.6
and 0.8 percentage points. The effect (in absolute terms) of
SSEC is lower compared to HSI. It implies that Japan stock
market is more sensitive to the Hong Kong stock market. In
model II [see Fig. 5(b)], HSI has a positive effect on SSEC,
and N225 has a negative effect on SSEC for all timescales.
Especially β̂DMA

1 (s) (N225) fluctuates in (−0.36, 0), while
β̂DMA

2 (s) (HSI) varies from approximately 0.5 to 0.8. It is
explained that the transmission of HSI to SSEC is more
strong. In model III [see Fig. 5(c)], both SSEC and N225 has
positive effect on HSI; however, the effect of N225 is higher.

B. Statistical significance test of regression coefficients

Due to the size limitation, the estimated regression co-
efficients for finite time series are not equal 0 even if the
impulse variables and the response variables have no depen-
dence. Thus a hypothesis test for the estimated regression
coefficients β̂ j

DMA
( j = 1, 2) should be carried out to ensure

the significance. In standard regression analysis, the t statistic

t j = β̂ j−β j√
var(β j )

is utilized in the hypothesis test, where t j ∼
t (N − 3), β̂ j ∼ N (β j, var(β j )).

To overcome the shortcoming of the single critical value
of tα/2(N − 3) for many timescales, we follow the idea in
Ref. [40] to obtain critical value for different timescale. First,
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FIG. 9. Determination coefficients of bivariate DMA and standard regression model. [(a)–(c)] For models of the N225, HSI, and SSEC
series, respectively. The solid line denotes R2

DMA(s) and the dashed line denotes R2.

by shuffling the investigated series (the three return series) and
repeating the DMA-based regression coefficients’ calculation
for 10 000 times, let the integral of probability distribution
function (PDF) from −t c(s) to t c(s) be equal to 1 − α (here
we took α = 0.01). Figure 6 shows the PDF of t statistic
at different timescales with five given ss produced by the
shuffled SSEC, HSI, and N225 return series 10 000 times.
It can be observed that P(t c) is symmetric, and the PDF
converges to a Gaussian due to the central limit theorem [41].
Moreover, the critical value increases with s’s increasing. This
implies that large timescale may weaken dependence between

two variables. Then we calculate the practical t j = β̂ j−β j√
var(β j )

from empirical series with the null hypothesis of β j = 0
and compare it with the critical point t c. If t j > |t c|, then
the dependence between impulse variables and the response
variables are considered statistically significant, and we reject
the null hypothesis.

We obtain six t (s) statistics of estimated regression coef-
ficients β̂ j

DMA
(s)( j = 1, 2) for the three models. In fact, the

t (s) statistic of β̂1
DMA

(s) (coefficient of SSEC on N225) in
model I is equal the statistic of β̂1

DMA
(s) (coefficient of N225

on SSEC) obtained in model II. Similar results are obtained
for other four estimated regression coefficients. So we just
consider three t (s) statistics for pairs of SSEC, HSI, and
N225 series. Figure 7 illustrates the t (s) statistic of estimated
regression coefficients and critical value t c(s).

The detrending-moving-average partial cross-correlation
coefficients (DMPCA-based correlation coeffcient)

ρDMPCA(s) for the three pairs of series (SSEC and HSI,
HSI and N225, and SSEC and N225) are also calculated,
which is developed to uncover the intrinsic relation for two
nonstationary series at different timescales [42]. In order to
test the statistical significance, we also produce a critical
value for three pairs of series. Similarly, all the series are
shuffled 10 000 times in the ρDMPCA calculations, and thus
ρc

DMPCA(s) for 99% confidence level is obtained, which is
also shown in Fig. 8. A similar shape of the curves can be
observed in Figs. 7 and 8, which are also in agreement with
the results shown in Fig. 5. The results give an interesting
insight into the relationship among the three Asian stock
markets. The effect of interaction is statistically significant
for mainland China and Hong Kong stock market, and Hong
Kong and Japan stock market for all timescales. By contrast,
the influence between Hong Kong and Japan stock market
is higher than that between the mainland China and Hong
Kong stock markets. That is because Hong Kong and Japan
have long been considered the more mature stock markets,
while mainland China is a relatively new development.
The significant correlation between mainland China and
Hong Kong can be explained by the their close political
and economic relationships. It is worth noting that, despite
geographical and cultural closeness, the mainland China
and Japan stock markets just exhibit significant interaction
for s ∈ (31, 47), while the dependence is rejected for other
timescales. Most notably, the interaction starts about one
month later and lasts just approximately 2 weeks. The result
confirms that the interconnectedness between the mainland
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FIG. 10. β coefficients of bivariate DMA-based and the standard regression model. Panels (a)–(c) are for models of the N225, HSI, and
SSEC series, respectively. The solid line denotes β∗DMA

j (s) and the dashed line denotes β∗
j .
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FIG. 11. Elasticity coefficients of bivariate DMA and standard regression model. Panels (a)–(c) are for models of N225, HSI, and SSEC
series, respectively. The solid line denotes ηDMA

j (s) and the dashed line denotes η j .

China and Japan stock markets is time dependent and they
remain the least correlated pairs, although Japan is the biggest
capital market among all and mainland China has a large
market size and has experienced strikingly rapid growth since
the late 2000s. A plausible explanation can be that the two
markets are more alert to information and risk spillover from
external sources, especially neighbor markets. This finding is
also consistent with those reported in previous works [36,43].

C. Evaluation of DMA-based regression model

To evaluate our estimated DMA-based bivariate regression
model, we plot the scale-dependent determination coefficient
R2

DMA(s), and the β coefficient β∗DMA(s) and the average
elasticity coefficient ηDMA(s) in Figs. 9–11, respectively.

As seen from Fig. 9, R2
DMA(s) is superior to the standard

R2 at most timescales. The good performance illustrates that
one will gain richer information in explaining the response
variable when using our DMA-based regression model. Simi-
larly, it is observed (see Figs. 10 and 11) that β and elasticity
coefficients are scale dependent. We also draw the consis-
tent conclusion that the Hong Kong stock market has more
influence than the mainland China on Japan stock markets,
and the mainland China stock market is more sensitive to the
fluctuation of the Hong Kong stock market, while the Japan
stock market affects Hong Kong more than mainland China
does.

V. CONCLUSIONS

In this work, a detrending-moving-average-based bivariate
regression model is proposed. The performances of the DMA-
based bivariate regression algorithms is comparable to the
DFA-based method by extensive numerical experiments on
pairs of time series generated from ARFIMA process. In
all cases, the centered DMA algorithm performs best and
the estimated regression coefficients are very close to the

theoretical values. In addition, the estimated scale-dependent
coefficients describe the dependence between the response
variable and the two independent variables in different scales,
which can provide richer information than traditional linear
regression analysis.

We also applied the DMA-based bivariate regression
model to the returns series of three Asian stock market in-
dexes. The scale-dependent evaluation parameters also show
that the DMA-based bivariate regression model can provide
rich information across timescales. The empirical analysis
shows that the Hong Kong stock market has more influence
than the mainland China on Japan stock markets, and the
mainland China stock market is more sensitive to the fluctu-
ations of the Hong Kong stock market, while the Japan stock
market affects Hong Kong more than mainland China does.
These finding are potentially interesting for international in-
vestment and risk management to understand the transmission
mechanism among the stock markets.

In conclusion, we have introduced a framework of regres-
sion analysis by merging standard regression least squares
with detrending-moving-average analysis. However, there are
still some issues for further study. The effect of different
types of trend and filters need to be validated for different
artificial signals. In addition, we will employ our method to
investigate the desynchronized empirical series for detecting
some possible asymmetry in the information flow [9,11] in
future work.
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