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Anomalous climate dynamics induced by multiplicative and additive noises
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Anomalous behavior of a nonlinear climate-vegetation model governed by the multiplicative and additive
noises is revealed on the basis of stochastic sensitivity analysis. A specific feature of this model is the bistability
with the coexistence of “snowball” equilibrium and “warm” attractor in the form of equilibrium or cycle.
It is found that multiplicative and additive noises shift probabilistic distribution in opposite directions. The
multiplicative noise introduced into the death rate of vegetation changes the dispersion of random states and their
localization in the phase diagram. This type of noise cools down the system and is responsible for its transition
to the snowball state. On the contrary, the additive noise warms up the climate with increasing noise intensity.
A cumulative effect of multiplicative and additive noises occurs under their simultaneous influence. This effect
determining the evolutionary behavior of a climate-vegetation system depends on the ratio of intensities of these
noises.
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I. INTRODUCTION

It is well known that the vegetation of the Earth is an in-
dicator of climatic processes and gives a visual representation
of the ongoing changes [1–3]. On the other hand, vegetative
variations themselves have a major impact on climate change
[4,5]. There are a large number of experimental data indicat-
ing these interactions (desertification and deforestation exper-
iments [6–9], for example). Also, it is significant to note that
these interactions can be influenced by external factors such as
atmospheric CO2 concentration, global average temperature,
precipitation, or variety of vegetation. These factors, in turn,
can lead to a large diversity of evolutionary scenarios of
climate change [10–14]. In terms of nonlinear dynamics, this
is described by different deterministic and stochastic models
containing only several prognostic variables, where other vari-
ables are modeled by means of system coefficients. Therefore,
to take into account the possible variability of other physical
processes, we need to consider parametric and additive noises
showing the variability of dynamical scenarios. As this takes
place, the number of diverse evolutionary regimes increases
and their full analysis requires consideration of a huge num-
ber of phase portraits and bifurcation diagrams within each
climate-vegetation model. Therefore, to conduct a complete
parametric analysis of the system in practice, as a rule, is not
possible and the way out of this situation is the establishment
of new evolutionary scenarios in the presence of stochastic
forcing, as well as the determination of new effects caused
by noise. As known, random forcing in nonlinear systems can
cause significant changes in dynamical regimes and generate
a wide variety of stochastic phenomena (see, e.g., [15–23]).

This article is concerned with the effect of multiplicative
and additive noises introduced in a simple two-dimensional
climate-vegetation model. This effect is caused by nonlinear
interaction between two different noises that act in opposite
directions and throw the climate-vegetation system to differ-
ent (cold and warm) states.

This article is organized as follows. The deterministic
model, as well as the corresponding bifurcation and phase
diagrams, are given in Sec. II. A stochastic model is presented
in Sec. III in the presence of multiplicative and additive
noises. The effects of weak noise are analyzed in Sec. III A
on the basis of the stochastic sensitivity technique. How the
multiplicative and additive noises affect the system dynamics
is respectively discussed in Secs. III B and III C. Their cumu-
lative effect is given in Sec. III D. The main outcomes of our
analysis are summarized in Sec. IV.

II. DETERMINISTIC MODEL

Let us first consider the climate-vegetation model derived
by Rombouts and Ghil [24], which contains two prognostic
variables: the global average temperature T and the fraction
of land A covered by vegetation

CT
dT

dt
= [1 − α(T, A)]Q0 − Ro(T ),

dA

dt
= β(T )A(1 − A) − γ A. (1)

Here, CT and Q0 represent the heat capacity and the incoming
solar energy. The total surface albedo α(T, A) represents
three contributions connected with the ground albedo αg, the
vegetation albedo αv < αg, and the ocean albedo αo. Thus, the
total surface albedo reads as

α(T, A) = p[αvA + αg(1 − A)] + (1 − p)αo(T ),

where p and 1 − p are the fractions of land and ocean.
In addition, the last contribution to the total albedo can be
represented as [24–26]

αo(T ) =
⎧⎨
⎩

αmax, T � Tα,l

αmax + (αmin−αmax )(T −Tα,l )
Tα,u−Tα,l

, Tα,l < T � Tα,u

αmin, T > Tα,u
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TABLE I. Parameters used in calculations [24].

Symbol Value Units

CT 500 W yr K−1 m −2

Q0 342.5 W m−2

Tα,l 263 K
Tα,u 300 K
Topt 283 K
B0 200 W m−2

B1 2.5 W K−1 m−2

k 0.004 yr−1 K−2

p 0.3
αmax 0.85
αmin 0.25
αv 0.1
αg 0.4

where the ocean is ice covered below Tα,l and it is ice free
above Tα,u.

The flux Ro(T ) of energy leaving the planet’s surface is
written with allowance for the CO2 changes in the atmosphere
[24]

Ro(T ) = B0 + B1(T − Topt ),

where Topt stands for the temperature, which is optimal for
the evolution of vegetation, and B0 and B1 are the model
parameters estimated in [24].

The coefficient β(T ) describing the growth rate of vegeta-
tion also depends on the optimal temperature Topt,

β(T ) = max{0, 1 − k(T − Topt )
2},

where k is a constant. The mean death rate of the global
vegetation A is determined by the parameter γ entering in
the second equation (1). Taking into account the estimates
given in Ref. [24] and to demonstrate the main effects of
this study, we consider the following range of the death rate:
γ ∈ (0, 0.4). All other parameters are listed in Table I.

Let us briefly discuss the main features of deterministic
dynamics. System (1) is bistable (see the phase portraits
in Fig. 1). For any value of the parameter γ , there is a
stable equilibrium T̄0 = 242 K, Ā0 = 0 (black filled circle)
corresponding to the snowball case. Along with this “cold”
state, the system possesses a “warm” regime in two forms:
stable equilibrium for γ > γH [gray filled circle in Fig. 1(a)]
and self-oscillations [gray limit cycle in Fig. 1(b)] for γ <

γH , where γH ≈ 0.0257 is the Hopf bifurcation point. Note
that the basins of attraction of “cold” and “warm” regimes
are separated by the stable manifold (dashed green line) of
the saddle point (empty circle). In the bifurcation diagrams
in Fig. 2, extrema of system attractors for warm regime
are shown in T -γ coordinate plane (a), and A-γ coordinate
plane (b).

The limit cycles of system (1) are shown in Fig. 3 for
several values of the death rate γ . It should be noted that the
amplitude of oscillations for A coordinate essentially changes
and attains a maximum at γ ≈ 0.02.

The bifurcation diagrams plotted in Fig. 4 for γ = 0.01
illustrate that the variations of parameter k also cause some es-
sential changes in the system dynamics. Here, system (1) has

(a)

(b)

FIG. 1. Phase portrait of system (1) with k = 0.004 for (a) γ =
0.1, (b) γ = 0.02. To see the details, we use here a nonlinear scaling
Ar with r = 1

64 . The separatrix between basins of “cold” and “warm”
attractors is shown by the green dashed line.

two Hopf bifurcation points between which self-oscillations
exist. In the case of stochastic forcing, the system dynamics
changes drastically. How random disturbances of different
types influence the system behavior is detailed below.

III. NOISE-INDUCED PHENOMENA

To study some important effects in the evolutionary be-
havior of the temperature-vegetation model, let us introduce
the parametric and additive noises into the second equation
of system (1), which model fluctuations in the death rate of
vegetation and its growth rate

CT
dT

dt
= [1 − α(T, A)]Q0 − Ro(T ),

dA

dt
= β(T )A(1 − A) − [γ + εσ1ξ1(t )]A + εσ2ξ2(t ), (2)
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(a)

(b)

FIG. 2. Bifurcation diagram for k = 0.004 versus parameter γ .

where ξ1(t ) and ξ2(t ) are the standard uncorrelated white
Gaussian noises with properties 〈ξ1,2(t )〉 = 0, 〈ξ1,2(t )ξ1,2(t +
τ )〉 = δ(τ ), 〈ξ1(t )ξ2(t + τ )〉 = 0. Parameters ε, σ1,2 define
the noise intensities. The term εσ1ξ1(t ) characterizes the
random fluctuations of the parameter γ , so that the system
is driven by the multiplicative noise. The term εσ2ξ2(t ) corre-
sponds to the additive noise.

For numerical simulations of the stochastic system solu-
tions, we use the standard Euler-Maruyama scheme with the
time step 10−4. In order to provide the physical sense and keep
A(t ) ∈ [0, 1] in the presence of stochastic disturbances, we
use the natural truncation: if A > 1 then A = 1, and if A < 0
then A = 0.

A. Effects of weak noise

Under weak noise, a random trajectory leaves the deter-
ministic attractor (stable equilibrium or limit cycle) and forms
some random distribution localized around it. In Fig. 5(a), the
random states (gray dots) of system (2) around the determin-
istic equilibria (black dots) are plotted for σ1 = 1, σ2 = 0,
and ε = 0.02 for two values of parameter γ : γ = 0.1 (right)
and γ = 0.2 (left). As can be seen, the random noise of the
same intensity results in the different sizes of dispersion. It

FIG. 3. Deterministic cycles.

can be explained by the difference in stochastic sensitivity of
the equilibria for γ = 0.1 and 0.2. It is significant to note
that the random distribution around the equilibrium moves
to smaller temperatures with increasing the vegetation death

(a)

(b)

FIG. 4. Bifurcation diagram for γ = 0.01 versus parameter k.
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(a)

(b)

FIG. 5. Stochastic system with σ1 = 1, σ2 = 0: (a) random
states and confidence ellipses for γ = 0.1, γ = 0.2, and ε = 0.02;
(b) eigenvalues μ1,2(γ ) of the stochastic sensitivity matrix of
equilibria.

rate γ [Fig. 5(a)]. As this takes place, the dispersion of
random states decreases. A quantitative analysis of stochastic
sensitivity [27,28] of stable equilibria for the system (2) can
be carried out as follows (see a theoretical background in the
Appendix).

Here, the main characteristic is the stochastic sensitivity
matrix W which is a unique solution of the matrix equation
(A3), where F is a Jacobi matrix of the deterministic system
(1) at the equilibrium point (T̄ , Ā), and

Q =
[

0 0
0 σ 2

1 Ā2 + σ 2
2

]
.

Eigenvalues μ1 and μ2 of the matrix W are useful scalar
characteristics of the noise sensitivity. Eigenvalues μ1, μ2

and the corresponding normalized eigenvectors u1 and u2 of
W determine the size and axes of the confidence ellipse around

(a)

(b)

FIG. 6. Stochastic sensitivity of cycles in system (2) with σ1 =
1, σ2 = 0: (a) functions μ(t ) for different γ ; (b) stochastic sensitiv-
ity function (black) shown above the limit cycle (gray) for γ = 0.01.

(T̄ , Ā):

x2
1

μ1
+ x2

2

μ2
= −2ε2 ln(1 − P),

where x1, x2 are the coordinates of this ellipse in the basis u1,
u2 with the point (T̄ , Ā) as the origin, ε is the noise intensity,
and P is the fiducial probability. Here and further, we use the
fiducial probability value P = 0.99.

Plots of μ1(γ ) and μ2(γ ) for σ1 = 1, σ2 = 0 are shown
in Fig. 5(b). As one can see, the stochastic sensitivity of
equilibria essentially depends on γ and tends to infinity as
γ approaches the Hopf bifurcation value γH .

Using this theory of stochastic sensitivity, we have con-
structed the confidence ellipses [dashed lines, Fig. 5(a)] for the
noise intensity ε = 0.02, σ1 = 1, σ2 = 0 and two values of
the parameter γ . As can be seen, these confidence ellipses are
different in size and well agree with the spatial arrangement
of random states (gray dots) found by numerical simulations.
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(a)

(b)

(c)

FIG. 7. Multiplicative-noise-induced “freezing” in system (2) with σ1 = 1, σ2 = 0 and (a) γ = 0.3, (b) γ = 0.1, (c) γ = 0.02. Here the
T coordinate of the unstable equilibrium marking the separatrix is shown by the green dashed line.

A dispersion of random states around the stable limit
cycle can be also analytically described on the base of the
stochastic sensitivity analysis. Let (T̄ (t ), Ā(t )) is a temporal
parametrization of the points of the stable limit cycle of
system (1) with the period t̄ . In system (2), the stochastic
sensitivity function μ(t ) of this cycle is a unique solution of
the boundary value problem (A4) with coefficients F (t ) and

Q(t ) =
[

0 0
0 σ 2

1 Ā2(t ) + σ 2
2

]
.

Here, F (t ) is the Jacobi matrix at the current point (T̄ (t ), Ā(t ))
of the cycle, and p(t ) = (pT (t ), pA(t ))� is a normalized vec-
tor that is orthogonal to the cycle at the point (T̄ (t ), Ā(t )).

Plots of μ(t ) for different γ are shown in Fig. 6(a). As
can be seen, the function μ(t ) significantly changes along the

cycle. Some details of such a nonuniformity can be seen in
Fig. 6(b) for γ = 0.01.

An important point is that the stochastic system (2) exhibits
the nonlocal effects with increasing noise. These effects are
essentially different for the cases of multiplicative and addi-
tive noises.

B. How a multiplicative noise “freezes” the system

Let us consider how a multiplicative noise affects the
system in the absence of the additive noise. To do this, we fix
σ1 = 1, σ2 = 0 and increase the noise intensity ε. In Fig. 7,
we show the time series of system (2) starting from the
deterministic attractors (equilibria or cycles) for different γ

and ε.
For weak noise, the time series exhibit small-amplitude

stochastic oscillations near deterministic attractors [see

012217-5



ALEXANDROV, BASHKIRTSEVA, AND RYASHKO PHYSICAL REVIEW E 102, 012217 (2020)

FIG. 8. Multiplicative-noise-induced “freezing” in system (2) with σ1 = 1, σ2 = 0. The mean values of T and A coordinates are shown in
the vertical axes.

Figs. 7(a) and 7(b), gray]. As noise intensity ε exceeds some
threshold value, the T coordinate of the solution exhibits a
sharp decrease, crosses the separatrix (green dashed line), and
shows stabilization to the “cold” equilibrium. The A coor-
dinate vanishes correspondingly [see Figs. 7(a)–7(c), black].
Such a phenomenon can be interpreted as noise-induced
freezing with the transformation of the Earth climate to a
“snowball” state.

In addition, some details of such a transformation can
be seen in Fig. 8 where the mean values 〈T 〉 and 〈A〉 are
shown versus ε for different γ . The sharp falldown of these
plots localizes the ε interval corresponding to the onset of the

noise-induced “freezing.” As can be seen, with increasing γ ,
the threshold noise intensity decreases.

C. How an additive noise “warms up” the system

Now, consider how an additive noise affects the system
in the absence of multiplicative noise. In stochastic system
(2), we fix σ1 = 0, σ2 = 1 and increase the noise intensity
ε. In Fig. 9 (left), we show the time series of T coordinates
of system (2) again starting from the deterministic attractors
(equilibrium for γ = 0.1 and cycle for γ = 0.02) for different
ε. In Fig. 9, we plot the stochastic phase trajectories after

(a)

(b)

FIG. 9. Additive-noise-induced warming in system (2) with σ1 = 0, σ2 = 1 and (a) γ = 0.1, (b) γ = 0.02.
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FIG. 10. Additive-noise-induced warming in system (2) with σ1 = 0, σ2 = 1: mean values of T and A coordinates.

the transient process in the time interval [5 × 104 yr, 6 ×
104 yr].

As one can see, for small additive noise, the random
trajectories starting from the deterministic attractors fluc-
tuate nearby them. With increasing noise, the T coordi-
nate exhibits a shift to higher temperatures. Such a phe-
nomenon can be interpreted as a noise-induced warming
[Fig. 9(a)].

Here, in the case of stable cycles [Fig. 9(b)], an interesting
phenomenon is observed: first, the dispersion decreases, the
bundle of random trajectories contracts and localizes inside
the deterministic cycle (see blue trajectories for ε = 10−2 in
Fig. 9, right). Then, the dispersion grows and the bundle of

random trajectories shifts to higher temperatures. It means
that the fraction of land A that is covered by the vegetation
decreases first and then increases with increasing the additive
noise.

Some details of such a transformation are demonstrated in
Figs. 10 and 11. In Fig. 10, we show the mean values 〈T 〉 and
〈A〉 versus ε for different γ . In Fig. 11, the probability density
functions ρ(T ) and ρ(A) are plotted for γ = 0.1 and 0.02.

Note that these statistics show the steady growth of the
temperature under the increasing intensity of additive noise.
As this takes place, the mean value of A also increases in
the presence of intervals, where this parameter decreases in
a certain range of noise.

(a)

(b)

FIG. 11. Additive-noise-induced “warming” in system (2) with σ1 = 0, σ2 = 1: the probability density functions ρ(T ) (left) and ρ(A)
(right) for (a) γ = 0.1, (b) γ = 0.02.
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FIG. 12. Corporate effects of multiplicative and additive noises
for γ = 0.1. In the legend, the ratio of σ1/σ2 is shown.

D. Corporate effects of multiplicative and additive noises

Consider now a case when the system is driven by both
multiplicative and additive noises. In Fig. 12, mean values
of the temperature T are plotted versus the noise intensity ε

for different weights of multiplicative (σ1) and additive (σ2)
noises. Here, we use the following normalization: σ1 + σ2 =
1.

As can be seen, with the growth of ε, two variants of
behavior can be observed in the dependence of weights of
these noises. An important point is that an abrupt transition to
lower temperatures occurs in the case of multiplicative noise,
i.e., in the case of noise in the vegetation death rate.

IV. CONCLUSION

In summary, a simple climate-vegetation model that con-
tains two prognostic variables, the global average temperature
and the fraction of land covered by the vegetation, is analyzed
with allowance for two different types of noises. The main
outcomes of their cooperative occurrence are as follows.

Multiplicative noise. A small multiplicative noise (i.e., the
noise in the vegetation death rate) leads to different dispersion
of random states at different death rates. In addition, the
size of dispersion and average temperature decrease with
increasing the death rate. The reason is that the corresponding
equilibria of the deterministic model have different stochas-
tic sensitivity. The average temperature and the vegetation
fraction undergo a sharp decrease and stabilize at the cold
equilibrium with increasing the noise intensity. As this takes
place, this transition occurs at smaller noises with increasing
the death rate. Thus, the multiplicative noise freezes the
climate-vegetation system and transforms it into the snowball
state.

Additive noise. A small additive noise builds up the av-
erage temperature. As this takes place, the vegetation frac-
tion, which is oscillating within the basin of attraction of a
limit cycle or equilibrium at small noises, shifts to higher
temperatures. The amplitude of its fluctuations substantially
increases with increasing the noise intensity. In general, our
statistical analysis shows that the additive noise warms up the

climate-vegetation system, which fluctuates at greater values
of T and A.

Cumulative (multiplicative and additive) noise. First of all,
a cumulative noise comprises the effects of the multiplicative
and additive noises in cases of their corresponding weights. In
other words, the multiplicative noise cools down the system
and the additive one warms up its dynamics. The ratio of noise
weights determining the evolutionary tendency of a climate-
vegetation system is studied.

Let us especially emphasize in conclusion that we restrict
ourselves by the effects of white Gaussian noises with a
wide range of intensities. This type of noise is traditionally
used by researchers as a first step in studying the transition
from deterministic to stochastic dynamics. Of course, it is of
interest to study the impact of colored or Lévy noises. How-
ever, to demonstrate the discovered phenomena of stochastic
behavior, the use of white noises turned out to be sufficient.
The study of colored and Lévy noises represents the subject
of future research.
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APPENDIX: STOCHASTIC SENSITIVITY FUNCTION

Consider a general nonlinear n-dimensional deterministic
system

ẋ = f (x) (A1)

with an exponentially stable attractor � in the domain D.
To study an influence of random disturbances, we use the
following system of stochastic differential equations:

ẋ = f (x) + εσ (x)ξ (t ), (A2)

where σ (x) is an n × m matrix function, ξ (t ) is an m-
dimensional uncorrelated white Gaussian noise with param-
eters 〈ξ (t )〉 = 0, 〈ξ (t )ξ�(τ )〉 = δ(t − τ )I , and ε is the noise
intensity.

In the presence of noise, trajectories of system (A2) form
some random distribution around the deterministic attrac-
tor �. For weak noise, the stationary density ρ(x, ε) has
the asymptotics [29] based on the quasipotential v(x) =
− limε→0 ε2 log ρ(x, ε). The quasipotential is governed by the
Hamilton-Jacobi equation(

f (x),
∂v

∂x

)
+ 1

2

(
∂v

∂x
, σ (x)σ�(x)

∂v

∂x

)
= 0

with conditions v|� = 0, v|D\� > 0. In the vicinity of deter-
ministic attractors, quadratic approximations of the quasipo-
tential can be used [30].

1. Stochastic sensitivity of the equilibrium

Let the deterministic system (A1) has an exponentially
stable equilibrium x̄. In the vicinity of x̄, the quadratic ap-
proximation of the quasipotential is written as v(x) ≈ 1

2 (x −
x̄,W −1(x − x̄)). Here, the positive definite n × n matrix W is
the stochastic sensitivity matrix of the equilibrium [31]. This
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matrix is a unique solution of the equation

FW + W F� = −Q,

F = ∂ f

∂x
(x̄), Q = GG�, G = σ (x̄). (A3)

Using the stochastic sensitivity matrix W , one can find the
asymptotics of the stationary distribution ρ(x, ε) in the Gaus-
sian form

ρ(x, ε) ≈ K exp

(
− (x − x̄,W −1(x − x̄))

2ε2

)
.

The stochastic sensitivity matrix characterizes a form and size
of the stationary distribution of random states of system (A2)
around the deterministic equilibrium x̄.

2. Stochastic sensitivity of the cycle

Let the deterministic system (A1) has an exponentially
stable limit cycle x̄(t ) corresponding to the T -periodic solu-
tion x = x̄(t ). Denote by t a hyperplane that is orthogonal
to the cycle at the point x̄(t ) (0 � t < T ). For the Poincare
section t in the neighborhood of the point x̄(t ), one can write
the quadratic approximation of the quasipotential: v(x) ≈
1
2 (x − x̄(t ),W +(t )[x − x̄(t )]) (the sign “+” means a pseu-
doinversion). A corresponding Gaussian approximation of the

stationary probabilistic distribution can be written as

ρt (x, ε) ≈ K exp

(
− [x − x̄(t )]�W +(t )[x − x̄(t )]

2ε2

)
.

The matrix W (t ) is the stochastic sensitivity matrix of the
cycle [27,32]. This matrix is a unique solution of the boundary
problem

Ẇ = F (t )W + W F�(t ) + P(t )Q(t )P(t ),
W (0) = W (T ), W (t )r(t ) ≡ 0.

Here, F (t ) = ∂ f
∂x (x̄(t )), Q(t ) = σ (x̄(t ))σ�(x̄(t )), r(t ) =

f (x̄(t )), and P(t ) = I − r(t )r�(t )/(r�(t )r(t )).
In the two-dimensional case, the stochastic sensitivity of

the cycle is defined by a scalar T -periodic function μ(t ):
W (t ) = μ(t )p(t )p�(t ). Here, p(t ) is a normalized vector that
is orthogonal to the cycle at the point x̄(t ). The function μ(t )
is a unique solution of the boundary value problem

μ̇ = a(t )μ + b(t ), μ(0) = μ(T ) (A4)

with coefficients a(t ) = p�(t )[F�(t ) + F (t )]p(t ), b(t ) =
p�(t )Q(t )p(t ). The function μ(t ) has an explicit representa-
tion μ(t ) = u(t )[c + s(t )], where

u(t ) = exp

(∫ t

0
a(τ )dτ

)
, s(t ) =

∫ t

0

b(τ )

u(τ )
dτ,

c = u(T )s(T )

1 − u(T )
.
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