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Phase space analysis of the dynamics on a potential energy surface
with an entrance channel and two potential wells
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In this paper, we unveil the geometrical template of phase space structures that governs transport in a
Hamiltonian system described by a potential energy surface with an entrance/exit channel and two wells
separated by an index-1 saddle. For the analysis of the nonlinear dynamics mechanisms, we apply the method
of Lagrangian descriptors, a trajectory-based scalar diagnostic tool that is capable of providing a detailed phase
space tomography of the interplay between the invariant manifolds of the system. Our analysis reveals that the
stable and unstable manifolds of the two families of unstable periodic orbits (UPOs) that exist in the regions
of the wells are responsible for controlling access to the potential wells of the trajectories that enter the system
through the entrance/exit channel. We demonstrate that the heteroclinic and homoclinic connections that arise
in the system between the manifolds of the families of UPOs characterize the branching ratio, a relevant quantity
used to measure product distributions in chemical reaction dynamics.
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I. INTRODUCTION

One of the biggest challenges in the study of organic
chemical reactions is that of providing a sound theoretical
understanding of the underlying mechanisms that govern se-
lectivity, i.e., product distributions, in potential energy sur-
faces (PESs) that display valley-ridge inflection (VRI) points
in their topography [1,2]. These VRI points, which occur at
locations of the PES characterized by two sequential index-1
saddles with no intervening energy minimum (a potential
well), are ubiquitous in the chemistry literature and have
attracted the attention of both chemists and mathematicians in
the past few decades [3–5]. In the vicinity of these points, the
intrinsic reaction coordinate bifurcates due to the shape of the
PES, and this gives rise to a reaction mechanism known as a
two-step-no-intermediate mechanism [6]. Mathematically, at
a VRI point two conditions are met: the Gaussian curvature
of the PES is zero, which implies that the Hessian matrix
has a zero eigenvalue, and also the gradient of the potential
is perpendicular to the eigenvector corresponding to the zero
eigenvalue. Geometrically, this means that the landscape of
the PES in the neighborhood of the VRI changes its shape
from a valley to a ridge.

The goal of this paper is to study reaction dynamics on a
symmetric PES exhibiting post-transition state bifurcation in
the vicinity of a valley-ridge inflection point. Our work can
be viewed as a continuation and extension of the work in [7].
The model PES that we consider has a high-energy index-1
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saddle point, and a lower-energy index-1 saddle that separates
two potential wells. In between the two saddle points there is
a VRI point. A schematic geometrical representation of the
landscape of such a PES in the neighborhood of the VRI point
is shown in Fig. 1 and discussed in more detail in Sec. II.
In the work carried out in [7], trajectories were initiated on
a dividing surface located in the region of the higher-energy
saddle (the upper index-1) at a fixed total energy slightly
above that of the saddle, with a value of momentum such that
they approached the region of the lower saddle. In the process
of evolution, the trajectories crossed the region of the VRI
and entered one of the potential wells. The trajectory-based
quantity of particular interest in this analysis was the relative
number of trajectories entering each well, i.e., the branching
ratio. The nature of the branching ratio is determined by the
selectivity, as it is referred to in the chemistry literature. The
PES considered in [7] was not symmetric and parameters in
the PES model could be varied in order to change the location
and depth of the wells. It was observed that the branching ratio
was sensitive to this change of parameters.

It was argued in [7] that an understanding of the dynamics
underlying the branching ratio in such a PES and the mech-
anism underlying the nature of selectivity required a phase
space analysis, i.e., an analysis that explicitly considered the
influence of the momentum of the trajectories. This is par-
ticularly true when the underlying dynamics is nonstatistical,
and the number of observations of organic reactions exhibiting
nonstatistical behavior is increasing yearly. An overview of
many of these, as well as a guide to several reviews discussing
the subject, is given in [7]. The importance of understanding
the dynamical mechanisms of selectivity was underlined by
noting that control of selectivity is of essential importance for
synthesis, especially if existing models used for analyzing the
problem are incomplete or inapplicable.
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FIG. 1. Potential energy landscape for a physical system exhibit-
ing post-transition state bifurcation.

In this paper, we consider a symmetric version of the po-
tential energy surface studied in [7]. This symmetric version
allows us to uncover the dynamical origin of the mecha-
nism underlying selectivity in an unambiguous manner. This
again highlights the necessity of a phase space perspective
for understanding the dynamics. The phase space approach
for analyzing chemical dynamics is reviewed in [8], which
contains an extensive guide to the literature. In this work, we
will use three particular techniques of phase space nonlinear
dynamics—Poincaré maps, Lagrangian descriptors, and lobe
dynamics.

Poincaré maps [9,10] allow us to reveal and analyze the
Kolmogorov-Arnold-Moser (KAM) tori associated with the
regular behavior displayed by the system. KAM tori are
significant because they lead to trapping of trajectories. How-
ever, Poincaré maps provide an incomplete dynamical picture,
since the regions where trajectories are chaotic appear in
the Poincaré surfaces of section (PSOS) as a chaotic sea
of random points, which are extremely difficult to interpret
and completely obscure the intricate interactions (tangles)
between the invariant stable and unstable manifolds. For this
reason, we complement the analysis with Lagrangian descrip-
tors (LDs) [11–13], which are a scalar trajectory diagnostic
technique with the capability of revealing the stable and
unstable manifolds and their intricate interactions through the
formation of lobes. The resulting lobe dynamics provide us
with a way to quantify phase space [14,15] and form the basis
of our understanding of selectivity.

The method of Lagrangian descriptors is a nonlinear dy-
namics technique that was first introduced a decade ago to
analyze Lagrangian transport and mixing processes in geo-
physical flows [11,16]. The first definition of LDs relied on
the computation of the arclength of trajectories of initial con-
ditions as they evolve forward and backward in time [12,16].
Since its proposal, this methodology has found a myriad of
applications in different scientific areas. For instance, in the
context of geophysics, it has been used in oceanography to
plan transoceanic autonomous underwater vehicle missions
by taking advantage of the underlying dynamical structure
of ocean currents [17]. Also, it has been shown to provide
relevant information for the effective management of marine
oil spills [18]. Recently, this tool has also received recognition
in the field of chemistry, for instance in transition state theory
[19–22], where the computation of chemical reaction rates

relies on the knowledge of the phase space structures that
separate reactants from products. Other applications of this
tool to chemical problems include the analysis of isomer-
ization reactions [23] and roaming [24,25], the study of the
influence of bifurcations on the manifolds that control chem-
ical reactions [26], and also the explanation of the dynamical
matching mechanism in terms of the existence of heteroclinic
connections in a Hamiltonian system defined by a Caldera-
type PES [27].

The work discussed in this paper is an extended and
more detailed study of the analysis we started in [28]. The
contents of this paper are organized as follows. In Sec. II
we describe the fundamental landscape characteristics of
the PES, which defines the two degrees-of-freedom (DOF)
Hamiltonian model used in this work for the analysis of
the phase space transport processes, including the selectivity
mechanism. Section III is devoted to providing a detailed
description of the results obtained from the analysis of the
nonlinear dynamics of the system. Finally, Sec. IV summa-
rizes the conclusions of this paper. The reader can find in the
Appendix a brief explanation of the method of Lagrangian
descriptors, and how this technique can be applied to easily
reveal the geometrical template of invariant manifolds and
their intricate heteroclinic and homoclinic connections in the
high-dimensional phase space of Hamiltonian systems.

II. THE HAMILTONIAN MODEL FOR THE
BRANCHING MECHANISM

In this section, we present the fundamental characteris-
tics of the Hamiltonian model with two degrees of freedom
that we study in this work. The potential energy surface
that defines our Hamiltonian model is inspired in the anal-
ysis carried out in [7], where the influence of valley-ridge
inflection points of the PES on the selectivity (branching)
mechanism observed in many organic chemical reactions is
addressed. The topography of the PES introduced in [7]
has an entrance/exit channel characterized by an index-1
saddle and two potential wells separated by an energy bar-
rier determined by another index-1 saddle. The PES also
has a VRI point between both saddles, where the intrinsic
reaction coordinate of the system, i.e., the minimum energy
path, bifurcates (or branches). It is thought in the chemistry
literature that this geometrical phenomenon observed in the
vicinity of VRI points might play a relevant role in the deter-
mination of selectivity mechanisms, “guiding” the trajectories
that enter the system through the channel toward any of the
potential wells.

In this paper, we use a simplified version of the PES
from the one discussed in [7], where we assume that the
energy landscape is symmetric with respect to the x-axis. Our
Hamiltonian model has the classical structure of kinetic plus
potential energy in the form

H (x, y, px, py) = p2
x

2mx
+ p2

y

2my
+ V (x, y), (1)
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FIG. 2. Potential energy surface given in Eq. (2). We have marked the relevant dynamical features of the energy landscape.

where we assume that the mass in each DOF is mx = my = 1,
and the PES is described by

V (x, y) = 8

3
x3 − 4x2 + 1

2
y2 + x(y4 − 2y2). (2)

The PES is symmetric with respect to the y coordinate and it
has two wells separated by an index-1 saddle located at the
point (1,0). We label this saddle as the lower index-1 saddle.
Moreover, the energy landscape has an entrance/exit channel
determined by an index-1 saddle located at the origin, which
we call the upper saddle, and it has the highest energy among
all the critical points on the PES. An illustration of the geom-
etry of the PES described above is included in Fig. 2, and the
location and energies of all the critical points are summarized
in Table I. Recall that, for a two-DOF Hamiltonian, potential
wells are local minima of the PES, and the Hessian matrix
evaluated at these critical points has two positive eigenvalues.
On the other hand, index-1 saddles of the PES are critical
points of saddle type, that is, the Hessian matrix evaluated at
them has a positive and a negative eigenvalue. Regarding the
VRI point, although it is not a critical point of the PES, we
point out that it lies on the x axis at the location (1/4, 0), and
its energy is given by VI = V (1/4, 0) = −5/24.

The evolution of the Hamiltonian system in Eq. (1) takes
place in a four-dimensional phase space, and it is determined
by Hamilton’s equations of motion:

ẋ = ∂H

∂ px
= px,

ẏ = ∂H

∂ py
= py,

ṗx = −∂H

∂x
= 8x(1 − x) + y2(2 − y2),

ṗy = −∂H

∂y
= y[4x(1 − y2) − 1]. (3)

Since energy is conserved, the dynamics of trajectories is
constrained to a three-dimensional energy hypersurface. It is
important to remark here that, due to the symmetry of the PES
in Eq. (2) with respect to the x axis, which is a consequence
of the PES being an even function of the y coordinate, i.e.,
V (x, y) = V (x,−y), the structures in the phase space of the
system are symmetric under a 180◦ rotation about the origin
in the y-py plane. This symmetry plays, as we will show, a
fundamental role for the explanation that the branching ratio
for systems with this type of symmetric PES is unity. This
means that if we consider all the trajectories entering the sys-
tem through the channel of the upper index-1 saddle, and that
visit either well for the first time along their evolution, half of
them visit the top well and the other half go to the bottom well.

III. RESULTS

In this section, we describe the results obtained in our
analysis of the phase space transport and trapping mechanisms
that take place in the model Hamiltonian system. We divide
this discussion into three different cases, depending on the
energy levels of the system:

(A) First case: The energy is below that of the lower index-
1 saddle and above that of the potential wells.

(B) Second case: The energy is below that of the upper
index-1 saddle and above that of the lower index-1 saddle.

(C) Third case: The energy is above that of the upper index-
1 saddle.

TABLE I. Location of the critical points of the potential energy surface.

Critical point x y Potential energy (V ) Stability

index-1 saddle (upper) 0 0 0 saddle × center
index-1 saddle (lower) 1 0 −4/3 saddle × center
Potential well (top) 1.107146 0.879883 −1.94773 center
Potential well (bottom) 1.107146 −0.879883 −1.94773 center
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FIG. 3. Poincaré map calculated on the surface of section �4(H0 ) for the system’s energy: (a) H0 = −1.4; (b) H0 = −1.1.

The study of the dynamics is carried out by applying
LDs in order to determine the geometry of the invariant
stable and unstable manifolds of the unstable periodic or-
bits present in the system, and we also make use of the

method of Poincaré maps for the analysis of the KAM
tori that characterize the regular dynamics. All this analysis
is done in the Poincaré surfaces of section (PSOS) given
below:

�1(H0) = {(x, y, px, py) ∈ R4 | x = 0.05 , px(x, y, py; H0) > 0},
�2(H0) = {(x, y, px, py) ∈ R4 | x = 1 , px(x, y, py; H0) > 0},
�3(H0) = {(x, y, px, py) ∈ R4 | y = 0 , py(x, y, px; H0) > 0},
�4(H0) = {(x, y, px, py) ∈ R4 | x = xwell , px(x, y, py; H0) > 0},

(4)

where xwell is the x coordinate of the potential wells, as shown
in Table I. We briefly explain next the reasons for choosing
the PSOS defined above. The first section, �1(H0), is taken
at the entrance/exit channel and is used to understand the
dynamical behavior and fate of the trajectories that enter
the system coming from infinity through the phase space
bottleneck associated with the upper index-1 saddle. On the
other hand, sections �2(H0) and �3(H0) are used in order
to analyze the regular dynamics governed by the KAM tori
in the system and address well-to-well transport. Finally, the
purpose of �4(H0) is to illustrate the bifurcation of the family
of KAM tori corresponding to the potential wells at a certain
value of the energy of the system.

A. First case

The first case corresponds to an energy range for the
system that goes from the energy of the potential wells (stable
equilibrium points of Hamilton’s equations) to that of the
lower index-1 saddle that separates both wells. For this energy
regime, the well regions are not connected in the phase space,
since the bottleneck associated with the lower index-1 saddle
that sits between them is closed. Therefore, trajectories are
forbidden to evolve from well to well, and hence they are
forever trapped in either well. Moreover, in this situation, each
stable equilibrium point has at least two families of periodic
orbits according to the Lyapunov subcenter theorem [29–31].

In Fig. 3(a) we observe the KAM tori [32–34] associated with
the family of stable periodic orbits that exist in the region of
the top well. We do so by computing the Poincaré map in the
section �4(H0) for the energy value H0 = −1.4. Notice that,
although we only show in the figure the region of the top well,
the same structures would appear in the bottom well due to the
symmetry property of the PES with respect to the y coordinate
that we discussed in the previous section. This will induce a
180◦ rotational symmetry about the origin for the coordinates
y and its canonically conjugate momentum py.

B. Second case

We turn our attention next to the case in which the energy
of the system is above that of the lower index-1 saddle be-
tween both wells, but below that of the upper index-1 saddle.
In this energy interval, the entrance/exit channel associated
with the upper index-1 is still closed so that no trajectories can
escape the system. Moreover, for these energy values, a phase
space bottleneck connects both wells and therefore many
trajectories can move back and forth between them, crossing
along their evolution the index-1 saddle region. These types of
trajectories are known as “reactive,” as opposed to those that
stay forever in either well, which are labeled as “trapped” or
“nonreactive.”

In this setup, we analyze the phase space structures that
determine transport in the phase space of the system from
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FIG. 4. Poincaré map superimposed with the stable (blue) and unstable (red) manifolds extracted from Lagrangian descriptors using τ = 8.
Panels (a) and (c) correspond to the surface of section �3(H0); panels (b) and (d) are for the surface of section �2(H0 ). The energy of the
system is H0 = −0.2 and H0 = −0.1 for the panels in the first and second rows, respectively. The energy boundary is depicted as a magenta
curve.

one well to the other. According to the Lyapunov subcenter
theorem [29–31], we know that there exists at least one
family of unstable periodic orbits (UPOs) associated with the
index-1 saddle separating the wells. This UPO, which has the
topology of a circle, characterizes the bottleneck region that
reactive trajectories have to cross in order to evolve between
wells. Attached to the UPO we have two-dimensional stable
and unstable manifolds, known in the literature as spherical
cylinders, with the form of tubes. These structures are respon-
sible for controlling transport across the index-1 region in the
phase space. Initial conditions lying inside the stable/unstable
manifold tube will cross the bottleneck in forward/backward
time, respectively, and the fate of those trajectories outside
the tubes is to remain trapped forever in the well region where
they started.

We probe the system dynamics by taking first an energy
H0 = −1.1. If we compute a Poincaré map in the section
�4(H0), we can see in Fig. 3(b) that the phase space region
where chaotic dynamics occurs has grown in size with respect
to what we observed in Fig. 3(a). Moreover, notice the appear-
ance of another stable periodic orbit with KAM tori (islands
of regularity) around it at the top of the energy boundary

displayed in magenta. This periodic orbit is associated with
the wells and belongs to a family with period 2, that is, it has
two branches. One branch is close to the top well, and the
other to the bottom well. If we select an initial condition in
one of these tori, the resulting trajectory will display regular
quasiperiodic motion and it will move back and forth between
both wells of the PES. On the other hand, a trajectory that
starts from the regular region located at the lower-right part
of Fig. 3(b) will be trapped in the well. Other trajectories
initialized in the chaotic sea of Fig. 3(b) will cross the index-1
saddle and move from well to well.

To explore the dynamics of the system further, we consider
also the Poincaré sections �2(H0) and �3(H0), which are
very useful for the analysis of the trapping of trajectories in
one of the well regions of the PES, and also to study the
transport of trajectories from the region of the index-1 saddle
that separates both wells to the region of either well. First, we
take a look at the phase space structures and trapping close
to the family of UPOs associated with the index-1 saddle. We
do so for an energy of the system H0 = −0.2. In Fig. 4(a) we
display the Poincaré map computed on the surface of section
�3(H0), superimposed with the stable (blue) and unstable
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(red) manifolds extracted from the gradient of the scalar field
generated by LDs. Around the families of stable periodic
orbits of the wells, we see invariant curves that represent the
KAM tori [32–34]. Trajectories lying on these tori are reactive
trajectories, since they are located inside the homoclinic lobes
formed by the stable and unstable manifolds of the UPO
associated with the index-1 saddle. Therefore, they move from
well to well crossing the phase space bottleneck region around
the index-1 saddle, and for this reason we label these invariant
curves as “reactive tori.”

Now we want to explore in detail the transport mecha-
nism of trajectories between the two wells. We compute the
Poincaré map and LDs on the surface of section �2(H0),
and we show the results in Fig. 4(b). In the upper right and
lower left corners of this figure, we can still see the islands
of regularity around the stable periodic orbit with period 2
associated with the family of the wells. These “reactive tori”
coincide with those we revealed in Fig. 4(a). Notice also
that we can clearly observe the symmetry in the phase space
structures of the system, which is induced by the symmetry of
the PES with respect to the y variable. On the other hand, those
tori that we label as “trapped tori” correspond to trajectories
that display regular motion and that do not cross the index-1
saddle region. Therefore, these KAM tori cannot appear in the
surface of section �3(H0) (that corresponds to y = 0) shown
in Fig. 4(a). In Fig. 4(b) we can also observe the stable and
unstable manifolds of the UPO associated with the index-1
saddle that separates both wells. Transport between both wells
is explained by the homoclinic intersections between the sta-
ble and unstable manifolds of the UPO of the index-1 saddle.
It is important to note the 180◦ rotational symmetry displayed
by the manifolds about the origin, which is a consequence of
the symmetry of the PES. This implies a symmetric transport
mechanism in the system. What we mean by this is that
trajectories that are transported from well to well are guided
equally from the unstable manifolds of the UPO of the index-1
saddle to each region of two wells (50% of the trajectories to
one well and 50% to the other).

We increase next the energy of the system to H0 = −0.1
in order to study the trapping and transport mechanisms
for higher values of the energy. We present these results
in Figs. 4(c) and 4(d) for the sections �3(H0) and �2(H0),
respectively. In (c) we observe the appearance of a new regu-
larity region (KAM tori), besides the other tori that we already
had in (a). These invariant curves are organized around a
stable periodic orbit family that is born in the system for an
energy H0 = −0.152, which is surprisingly very close to that
of the VRI point. Interwell transport in this situation is also
controlled by the homoclinic intersections that occur between
the stable and unstable manifolds of the UPO.

To finish this case, we would like to point out that the
family of UPOs associated with the index-1 saddle that sits
between both wells undergoes a pitchfork bifurcation just
before the energy of the system reaches that of the upper
index-1 saddle (H0 = 0), giving rise to two new families of
UPOs that we call the top and bottom UPOs because they are
located in the well regions of the PES. For more details on
the nature of this type of bifurcation of periodic orbits, see the
Appendix of [35]. This means that for energy values above
those of the bifurcation, two new families of UPOs are born

FIG. 5. Dynamical evolution in forward time of four different
initial conditions chosen on the surface of section �1(H0), where
the system’s energy is set to H0 = 0.1. The boundary of the three-
dimensional energy hypersurface is shown in blue, and the unstable
periodic orbits that control the access of trajectories to the phase
space regions corresponding to the potential wells of the PES are
depicted in black.

in the system, and as we will see in the next subsection, these
periodic orbits are responsible for governing the selectivity
mechanism in the phase space of the system.

C. Third case

In this case, we will focus on describing the system dy-
namics for an energy range that is above that of the upper
index-1 saddle. In particular, we will take a look at the energy
value H0 = 0.1. This means that the phase space bottleneck
in the vicinity of the upper index-1 saddle is now open, and
therefore transport of trajectories between the region of the
upper index-1 saddle, the wells, and the lower index-1 saddle
is allowed.

Our goal is to describe in detail the mechanisms of trans-
port and trapping of the trajectories that take place in the
system, and also the phase space structures responsible for
controlling those mechanisms. In Fig. 5 we illustrate the
energy hypersurface of the system for H0 = 0.1, and we select
four different initial conditions (marked with yellow dots) at
the entrance channel. We also show the forward evolution of
their trajectories in red, green, magenta, and blue, with the
two black curves representing the unstable periodic orbits that
exist in the system in the regions of the wells. In our discus-
sion, we will label these UPOs as top and bottom, depending
on the well region in which they are located. Looking at the
behavior of the trajectories in Fig. 5, we can easily come to
the conclusion that the dynamics of the system is very rich. In
this situation, the method of Lagrangian descriptors is very
useful, because it provides us with the advantage of easily
unveiling the phase space structures that govern the transport
mechanisms, and it allows us to locate the lobes formed by
the different stable and unstable manifolds in the system that
explain how transport takes place in phase space between
different regions of the energy manifold.

We take a look first at the system’s dynamics and the phase
space structures that characterize transport on the surface
of section �2(H0). We observe in Fig. 6(a) the invariant
curves, labeled as 2, that represent KAM tori around the stable
periodic orbits of the families of the top and bottom wells in
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FIG. 6. Regularity behavior displayed by the Hamiltonian system through the KAM tori structures present in its phase space. The energy
of the system is chosen as H0 = 0.1. In panels (a) and (c) we show Poincaré maps superimposed with the stable (blue) and unstable (red)
manifolds extracted from LDs using τ = 8, and the sections used for the analysis of the dynamics are �2(H0) for (a) and �3(H0) for (c). In
panels (b) and (d), we depict the forward time evolution projected onto configuration space of three different trajectories corresponding to
initial conditions labeled in panels (a) and (c). Black curves represent the projections of the UPOs of the system. We also provide a detailed
zoom of the regularity regions to illustrate the arrangement of the KAM islands, and for promoting a visual understanding of the tori we include
a three-dimensional representation of one torus.

the central area of the figure. The motion of the trajectories
lying on these tori is restricted to a specific region of the PES,
which explains why these trajectories are trapped forever in
either the top or the bottom well. We illustrate this dynamical
behavior in the lower right part of Fig. 6(b). Tori that are
represented by the invariant curves, labeled by 1, surround the
stable periodic orbits of the family of the wells with period
2, and they are inside the lobes formed by the stable and
unstable manifolds of the top and bottom UPOs. Trajectories
on these tori visit both wells. We display this behavior in the
upper right part of Fig. 6(b). In Fig. 6(c) we see, besides the
KAM tori around the stable periodic orbits of the families

of the wells [as in (a)], other invariant curves, marked as 3,
around the stable periodic orbits of the family that is born in
the system close to the energy of the VRI point. Trajectories
on these tori visit both wells; see the left part of Fig. 6(d).

We move on to investigate the mechanisms of transport of
the trajectories in the phase space of the system. To do so, we
calculate LDs on the slice �1(H0). In Fig. 7(a) we depict the
scalar field obtained from LDs, and in Fig. 7(b) we show the
location of the unstable (red) and stable (blue) manifolds of
the different UPOs in the system. We can see that the man-
ifolds of the UPO associated with the upper index-1 saddle,
which control the entrance and exit of trajectories in and out
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FIG. 7. (a) Lagrangian descriptors calculated on the surface of section �1(H0) using τ = 6 for the system’s energy H0 = 0.1. (b) Stable
(blue) and unstable (red) invariant manifolds extracted from the gradient of the LD scalar field. Three different types of initial conditions,
labeled as A, B, and B′, are selected in order to illustrate the symmetry of the lobes in the phase space of the system, and also the basic transport
mechanisms governed by the heteroclinic and homoclinic connections. (c) Forward time evolution of the trajectories corresponding to the
initial conditions chosen in (b), projected onto configuration space.

of the PES through the channel, interact with the manifolds
of the bottom and top UPOs forming lobes. To illustrate the
dynamical evolution of trajectories in the regions defined by
the lobes, we select three initial conditions, which we label
A, B, and B′. We evolve them forward in time and represent
their projections onto configuration space in Fig. 7(c). The
initial condition that corresponds to label A is inside a lobe
that is associated with the homoclinic intersections of the
invariant manifolds of the UPO corresponding to the upper
index-1 saddle [see panel (b) of Fig. 7]. This means that
the trajectory follows initially the unstable manifold, getting
away from the entrance channel, and then it is guided through
the homoclinic intersections evolving in the region that lies
between both wells until it bounces off the PES wall opposite
to the entrance channel and exits the system through the
channel without entering any of the well regions. Another
example of this type of trajectory behavior is illustrated by the
initial condition labeled as 1 in Fig. 8. On the other hand, the

initial conditions B and B′ correspond to trajectories located
in the lobe that is associated with a heteroclinic intersection
between the unstable manifold of the UPO of the upper
index-1 saddle with the stable manifold of the top UPO (or
the stable manifold of the bottom UPO in the case of B′).
This means that the trajectories begin from the region of
the upper index-1 saddle and they evolve along the unstable
manifold of the upper index-1 saddle until they start to follow,
through a heteroclinic intersection, the stable manifold of
the top or bottom UPOs, entering the region of the top or
bottom well, respectively. We show this behavior in Fig. 7(c).
The symmetric transport of trajectories that we observe is a
consequence of the symmetry of the PES with respect to the y
coordinate. This property induces a 180◦ rotational symmetry
about the origin in the phase space that affects the y variable
and its canonically conjugate momentum py. This symmetry
is clearly visible in Fig. 7(b), where the arrangement of the
phase space structures and the lobes formed by the stable and
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FIG. 8. Lobe dynamics and evolution of trajectories analyzed from the interaction of the stable (blue) and unstable (red) manifolds of the
system in a phase space region that corresponds to a zoom of Fig. 7(b). (a) Invariant manifolds have been extracted from the gradient of LDs
calculated on the PSOS �1(H0 ) using τ = 8 for the system’s energy H0 = 0.1. We have selected different initial conditions, marked as yellow
dots and labeled from 1 to 5 in order to probe the dynamical behavior of lobes. (b) Trajectory evolution of the initial conditions in forward
(blue) and backward (red) time, projected onto configuration space. The UPOs of the system are also depicted as black curves.

unstable manifolds of the UPOs in the system nicely displays
this feature. Consequently, the transport mechanism that is
responsible for the evolution of trajectories from the entrance
channel region of the PES to the region of the top well (or the
bottom well) is symmetric, which explains why the branching
ratio in this system is 1 : 1. What we mean by this is that,
from all the trajectories that enter the system through the
region of the upper index-1 and visit any of the wells along
their evolution, half of them enter first the top well and the
other half does the same for the bottom well. We illustrate in
Fig. 7(c) this result and the symmetry property of the phase
space structures we discussed above by means of the initial
conditions B and B′.

We turn our attention next to secondary transport mech-
anisms that take place in the phase space of the system.
We illustrate them by selecting initial conditions in different
regions of the phase space characterized by the lobes formed
by the interactions of the stable and unstable manifolds of the
UPOs. In particular, we focus on the initial conditions labeled
2, 3, and 5 in Fig. 8(a), which correspond to three qualitatively
distinct mechanisms of transport:

(i) First mechanism: This mechanism is responsible for the
transport of trajectories from the region of the bottom or top
well to the region of the exit channel. In this mechanism, the
trajectories that are located in the region of the top or bottom
well follow the unstable manifolds of the top or bottom UPOs,
which have heteroclinic intersections with the stable manifold
of the UPO associated with the upper index-1 saddle. Then,
the trajectories are guided through these heteroclinic intersec-
tions and evolve from the region of the wells to the region
of the exit channel of the PES. The trajectory that starts from
the initial condition 2 in Fig. 8(a) is a representative example
of this mechanism. This initial condition is located inside
a lobe that is associated with the heteroclinic intersection
between the unstable manifold of the bottom UPO with the
stable manifold of the UPO of the upper index-1 saddle. The
trajectory is coming from the region of the bottom well, and
it moves toward the exit channel where it escapes the system.
This dynamical behavior is depicted in the second panel of
Fig. 8(b).

(ii) Second mechanism: This mechanism is character-
ized by the homoclinic intersections between the stable and
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FIG. 9. Analysis of lobe dynamics, escape times, and forward time evolution of trajectories for the system with energy H0 = 0.1 on the
surface of section �1(H0). (a) Stable (blue) and unstable (red) manifolds extracted from the LD scalar field calculated using τ = 8. We have
marked initial conditions with circles of different colors in order to probe the system’s dynamics. The evolution of their trajectories, using
the same color scheme, is shown in panel (d). An explanation of the labels (T)-(B)-(TB)-(BT)-(None) is given in the main text of the paper.
(b) Forward escape time plot. (c) Backward escape time plot. (d) Trajectory evolution of the initial conditions selected in panel (a), projected
onto configuration space. We have also depicted with black curves the projections of the UPOs of the system.

unstable manifolds of the top UPO (or the bottom UPO).
We explain it for the bottom UPO, because the mechanism
is exactly the same for the top UPO due to the symmetry in
the system. In this situation, trajectories follow initially the
unstable manifold of the bottom UPO, moving away from
the bottom well region, and through homoclinic intersections
with the stable manifold of the bottom UPO they come back
to the bottom well. An example of a trajectory that displays
this behavior is given by the initial condition 3 in Fig. 8(a).
This trajectory is located inside a lobe that is associated with
the homoclinic intersection of the invariant manifolds of the
bottom UPO. The trajectory starts from the region of the
bottom well, moves to the region between both wells without
visiting the top well, and then it returns to the region of the
bottom well. This is depicted in the third panel of Fig. 8(b).

(iii) Third mechanism: This mechanism is responsible for
the transport of trajectories between the regions of the two
wells (interwell transport). In this situation, trajectories that
are located initially in the region of one of the two wells, for
example the top well, follow the unstable manifolds of the top
UPO, and through heteroclinic intersections with the stable
manifolds of the bottom UPO they visit the bottom well. An
example of such behavior is given by the trajectory starting
from the initial condition 5; see Fig. 8(a). This trajectory has
an initial condition inside a lobe associated with the hetero-

clinic intersection of the unstable manifold of the bottom UPO
with the stable manifold of the top UPO. The trajectory starts
from the region of the bottom well, and it evolves in a way
that it enters the top well; see the last panel in Fig. 8(b).

At this point, it is important to highlight that due to the
symmetry of the PES with respect to the y coordinate, phase
space transport displays a 180◦ rotational symmetry about the
origin that involves both y and its conjugate momentum py.
This property determines the dynamical fate of trajectories
in secondary lobes that are related by this symmetry in the
system. This means that if we choose one initial condition
in a lobe that visits the top well, the symmetric initial con-
dition will visit the bottom well. To confirm the symmetric
dynamical behavior of the system we have chosen seven dif-
ferent initial conditions in the surface of section �1(H0); see
Fig. 9(a). We have integrated these trajectories in forward time
[see Fig. 9(d) for their projections onto configuration space],
and we labeled them according to their dynamical behavior.
The label TB stands for trajectories that move from the top
well to the bottom well, BT stands for trajectories that move
from the bottom well to the top well, T indicates trajectories
that visit only the top well, B mark those trajectories that visit
only the bottom well, and None stands for the trajectories
that do not visit any of the wells. Notice that due to the
symmetry in the PES, we only need to focus on positive values
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of the y coordinate, which corresponds to the top well region.
It is important to remark here that if we choose an initial
condition in a lobe that visits the top well, the symmetric
initial condition will be in a lobe associated with trajectories
that visit the bottom well. An example of this behavior is
provided by the red initial conditions labeled TB and BT. In
this case, the trajectory with the red initial condition TB visits
the top and then the bottom well. If we choose the symmetric
initial condition, marked as BT, this initial condition will be
located in a lobe in which all trajectories will visit the bottom
and then the top well. Other examples of the effect that the
symmetry has on the transport mechanism in the system are
displayed by the green and blue initial conditions. The trajec-
tory followed by the green initial condition visits the top well
and then it exits the system. On the other hand, the trajectory
corresponding to blue initial condition visits the bottom well
and then it escapes to infinity through the entrance channel
of the PES. For the magenta initial condition, we have an
example of a trajectory that does not visit either of the two
wells. This type of trajectory bounces off the wall of the
PES that is opposite to the entrance channel and exits the
system.

We would like to underline the fact that the size of the
lobes is very important for the transport. An example of the
influence of the size of the lobes is provided by the initial
condition 4; see Fig. 8(a). This initial condition is inside a
very thin lobe associated with the heteroclinic intersection
between the unstable manifold of the bottom UPO and the
stable manifold of the top UPO. Moreover, it is also located
in a large lobe formed by the unstable manifold of the bottom
UPO and the stable manifold of the UPO corresponding to
the upper index-1 saddle. Therefore, the trajectory will evolve
initially from the bottom well region towards the top well, but
it will not have enough time to enter the region of the top
well, since the larger lobe will dominate the lobe dynamics,
making the trajectory escape through the exit channel. On the
other hand, the trajectory associated with the initial condition
5 is located in a large lobe; see Fig. 8. We discussed this
case above as an example of the third type of secondary
mechanism.

Now we will discuss the escape time of the trajectories
and the influence of the size of the lobes on this property. In
Fig. 9(b) we illustrate the forward escape times. It is evident
that the trajectories that escape faster belong to the lobes that
do not interact with any of the wells. Moreover, the trajectories
that escape slower belong to the lobes that visit both wells.
This happens because these lobes are larger than the others
and the trajectories are trapped for longer times inside them.
In Fig. 9(c) we present the backward escape times, where it is
clear that the trajectories that escape faster are those that are
inside the unstable manifold of the UPO of the upper index-1
saddle.

IV. CONCLUSIONS

In this work we have studied, by means of combining the
method of Lagrangian descriptors with the classical approach
of Poincaré maps, the phase space dynamics of a Hamiltonian
system with two DOFs defined by a symmetric PES with an
entrance/exit channel determined by a high-energy index-1

saddle and two potential wells separated by a low-energy
saddle. This benchmark model has provided us with a testbed
to explain how selectivity arises naturally as a dynamical
mechanism in the phase space of the system. This is important
because it allows us to develop a fundamental understanding
of this phenomenon, which is relevant for the analysis of
product distributions in chemical reaction dynamics.

Our analysis has revealed that the branching of trajectories
that enter the system through the phase space bottleneck of
the entrance/exit channel is controlled by the heteroclinic
intersections established between the unstable manifold of
the UPO associated with the upper index-1 saddle, and the
stable manifolds of the two families of UPOs that exist in
the regions of the wells. These heteroclinic connections are
responsible for guiding the trajectories toward either well in
the system. Moreover, by means of a stability analysis we
have found that the top and bottom UPOs in the regions of the
wells are generated through a pitchfork bifurcation that occurs
in the family of UPOs associated with the lower index-1
saddle, and this happens for an energy level just below that
of the upper index-1 saddle. This means that when the phase
space bottleneck of the entrance channel opens, these two
families of UPOs are born, and the heteroclinic interactions
of their stable manifolds with the unstable manifolds of the
UPO corresponding to the upper index-1 saddle govern the
branching mechanism in the system.

Interestingly, in this setup the expected branching ratio
would be 1 : 1 due to two factors: the symmetry of the PES
with respect to the y coordinate, and the symmetric locations
of the wells, both of them having the same energy. The
computations we have carried out show that the symmetry
in the PES induces a rotational symmetry of 180◦ about the
origin in the phase space that involves the y coordinate and
its canonically conjugate momentum py. This property makes
the phase space structures present in the top and bottom
well regions of the PES symmetric, and hence this condition
enforces the equal branching obtained, since the interactions
through lobes occur in exactly the same way.

In addition to studying the selectivity mechanism, we have
also investigated well to well transport in the system. For
this case, the dynamical mechanism that governs transport
is the heteroclinic connections that exist between the un-
stable invariant manifolds of the top/bottom UPO with the
stable invariant manifolds of the bottom/top UPO. Finally,
another important transport mechanism that we have explored
in this work is that followed by trajectories that enter the
system through the entrance channel, bounce off the PES
wall opposite to the channel, and escape the system without
interacting with either well. The trajectories that display this
dynamical behavior are located inside the lobes formed by
the homoclinic connections between the unstable and stable
invariant manifolds of the unstable periodic orbit associated
with the upper index-1 saddle.
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APPENDIX: LAGRANGIAN DESCRIPTORS

Consider a dynamical system with a general time
dependence:

dx
dt

= v(x, t ), x ∈ Rn, t ∈ R, (A1)

where the vector field satisfies v(x, t ) ∈ Cr (r � 1) in x and is
continuous in time. The natural way to explore phase space
structure is to use trajectories, since these objects are its
building blocks and the geometry of the underlying phase
space is encoded in the initial conditions themselves. The
simple and elegant idea behind LDs in order to provide a
qualitative description of the system’s dynamics is to seed a
given phase space region with initial conditions and integrate
a bounded and positive quantity (an intrinsic geometrical
and/or physical property of the dynamical system under
study) along trajectories for a finite time. The definition of
LDs that we use in this work follows the one presented in
[13], which relies on integrating along trajectories the p-norm
of the vector field of the dynamical system, where p ∈ (0, 1]
is a parameter chosen in advance. In this work, we will use
for the simulations the value p = 1/2. In [36,37], a rigorous
theoretical foundation for this methodology is established,
and a mathematical connection is found between normally
hyperbolic invariant manifolds (NHIMs) and their stable and
unstable manifolds, and the “singular structures” that appear
in the LD scalar field.

Given a fixed integration time, τ > 0 and let x0 = x(t0) be
any initial condition of the system. We define the fixed-time
integration LDs diagnostic calculated at time t0 as

Mp(x0, t0, τ ) =
n∑

k=1

[ ∫ t0+τ

t0−τ

|vk (x(t ; x0), t )|p dt

]
, (A2)

where vk is the k-th component of the vector field that
defines the dynamical system in Eq. (A1). Notice that this
definition can be decomposed into its forward and backward
integration parts:

M (b)
p (x0, t0, τ ) =

n∑
k=1

[ ∫ t0

t0−τ

|vk (x(t ; x0), t )|p dt

]
,

M ( f )
p (x0, t0, τ ) =

n∑
k=1

[ ∫ t0+τ

t0

|vk (x(t ; x0), t )|p dt

]
.

(A3)

The advantage of splitting function Mp into its forward and
backward components is that forward integration highlights
the stable manifolds of the dynamical system, while back-
ward evolution recovers the unstable manifolds. Moreover, the
combination of both forward and backward detects all the in-
variant manifolds simultaneously. This detection of invariant
manifolds by means of locations at which the LD scalar field
becomes nondifferentiable has been mathematically quanti-
fied in terms of the notion of “singular structures” in the
LD plots, which are easy to recognize visually [12,13,36,37].
Therefore, this approach allows us to easily extract the mani-
folds from the high values (ridges) attained by the gradient of
the scalar function itself.

The methodology offered by LDs has thus the capability of
producing a complete and detailed geometrical phase space

tomography in high dimensions by means of using low-
dimensional phase space probes to extract the intersections of
the phase space invariant manifolds with these slices [36–38].
Any phase space slice can be selected and sampled with a
high-resolution grid of initial conditions, and no information
regarding the dynamical skeleton of invariant manifolds at
the given slice is lost as the trajectories evolve in time.
Moreover, this analysis does not rely on trajectories coming
back to the chosen slice, as is required for Poincaré maps
to work. In this respect, there is also another key point that
needs to be highlighted that demonstrates the real potential
of LDs with respect to other classical nonlinear dynamics
techniques. Using LDs one can obtain all the invariant mani-
folds of the dynamical system simultaneously, and this comes
with a tremendous amount of savings in the computational
cost, since LDs are extremely simple and straightforward to
implement.

When applying LDs to reveal the invariant manifolds in
phase space, it is very important to note the crucial role played
by the integration time τ in the definition of the method. The
consequence of increasing the value for τ is that richer and
more intricate details of the underlying geometrical template
of phase space structures are unveiled. This is the expected
behavior, since an increase of the integration time would
imply incorporating more information about the past and
future dynamical history of trajectories in the computation of
LDs. This means that τ is intimately related to the time scales
of the dynamical phenomena that occur in the model under
consideration. This connection makes the integration time a
problem-dependent parameter, and hence there is no general
“golden rule” for selecting its value for exploring phase space.
One needs to bear in mind in this context that there exists
a compromise between the complexity of the structures one
would like to reveal from the application of the method in
order to explain a certain dynamical mechanism, and the
interpretation of the intricate manifolds displayed in the LD
scalar output after the simulation is carried out.

Since the Hamiltonian system we are dealing with in this
work has an unbounded phase space, we need to be careful
when applying LDs to reveal its invariant manifolds as trajec-
tories can escape to infinity at a very fast rate or even in finite
time. This issue is related to the fact that all initial conditions
in the definition of LDs in Eq. (A2) are integrated for the same
time τ . Recent studies have revealed [26,38–40] that this type
of trajectory behavior can obscure the detection of invariant
manifolds. To circumvent this problem, we adapt Eq. (A2) by
adopting here the approach known as variable integration time
Lagrangian descriptors. In this methodology, LDs are calcu-
lated, at any initial condition, for a fixed initial integration
time τ0 or until the trajectory of that initial condition leaves
a certain phase space region R, which we call the interaction
region. Therefore, the total integration time in this strategy
depends on the initial conditions themselves, that is, τ (x0). In
this variable-time formulation, given a fixed integration time
τ0 > 0, the p-norm definition of LDs with p ∈ (0, 1] has the
form

Mp(x0, t0, τ ) =
n∑

k=1

[∫ t0+τ+
x0

t0−τ−
x0

|vk (x(t ; x0), t )|p dt

]
, (A4)
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FIG. 10. Lagrangian descriptors calculated on the surface of section �2(H0), where the system’s energy is H0 = 0.1, for three different
values of the integration time. Panels (a) and (b) correspond to τ = 4; (c) and (d) use τ = 8; (e) and (f) are for τ = 16. In the right column, we
display the stable (blue) and unstable (red) manifolds extracted from the gradient of the LD scalar field.

and the total integration time is defined as

τ±
x0

= min
{
τ0 , |t±|x(t±; x0 )/∈R

}
, (A5)

where t+ and t− are the times for which the trajectory leaves
the interaction region R in forward and backward time,
respectively. For this work, we will define the interaction
region as

R = {(x, y, px, py) ∈ R4 | x > −0.1}, (A6)

which reflects the physical assumption that trajectories of
the system escaping through the entrance/exit channel of the
PES, characterized by the index-1 saddle at the origin, will
never return.

We finish this Appendix by illustrating how LDs can
reveal the geometry of invariant manifolds with increasing
complexity as the integration time parameter τ is increased.
We do so by calculating LDs on the section �2(H0) for the
system with energy H0 = 0.1, which is, above that of the
index-1 saddle at the origin. We carry out the computation
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by using the values τ = 4, 8, 16, and the results obtained are
shown in Fig. 10. On the left column we display the scalar
field given by the LD diagnostic, and on the right column

we demonstrate how the stable (blue) and the unstable (red)
manifolds can be extracted from the gradient of the scalar
field.
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