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Numerical analysis of subcritical Hopf bifurcations in the two-dimensional FitzHugh-Nagumo model
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It had been shown that the transition from a rigidly rotating spiral wave to a meandering spiral wave is via a
Hopf bifurcation. Many studies have shown that these bifurcations are supercritical, but, by using simulations in
a comoving frame of reference, we present numerical results which show that subcritical bifurcations are also
present within FitzHugh-Nagumo. We show that a hysteresis region is present at the boundary of the rigidly
rotating spiral waves and the meandering spiral waves for a particular set of parameters, a feature of FitzHugh-
Nagumo that has previously not been reported. Furthermore, we present a evidence that this bifurcation is highly
sensitive to initial conditions, and it is possible to convert one solution in the hysteresis loop to the other.
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I. INTRODUCTION

Spiral waves occur naturally in many physical, chemical,
and biological systems [1–10]. The motion and behavior
of such waves can enlighten certain characteristics of the
systems in which they occur. For instance, in cardiac tissue,
the presence of these rotating spiral waves (also known as
autowaves and rotors) indicates that there is an abnormality
in the hearts natural rhythm (an arrhythmia) [11–15]. In most
electrochemical systems, such as cardiac tissue or neuro-
logical systems, excitable properties are an essential part of
creating and sustaining spiral waves. The cells ability to be
stimulated in response to external energy is critical in the life
cycle of spiral waves [16].

Excitable systems, such as the propagation of electrical
energy along nerves, have been studied mathematically since
1940 using parameter-dependent mathematical models. Spiral
waves were first observed by Wiener and Rossenblueth, who
created the first finite automata model to simulate spiral wave
activity [2]. Since then, many models of cell excitation have
been developed and studied. A classic system in modeling
cellular excitation is the Hodgkin-Huxley model of nerve
excitation developed in the early 1950s [17]. This model
simulates the electrical energy passing through a single cell
[18]. It does not however simulate how each cell reacts with
other cells that are part of the whole excitable medium. To
explore this, spatial variables must be implemented and this
is usually done using reaction-diffusion models. Although the
development of this type of model was initiated in the early
part of the 20th Century [19], it was Turing in 1952 that used
them to study interactions between chemical compounds [1].
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Around the same time, Richard FitzHugh was developing a
mathematical model to mimic threshold phenomena in the
nerve membrane [20]. In 1961, FitzHugh published a paper
suggesting a model of nerve cell excitation, a simplified
version of the Hodgkin-Huxley model, influenced by the Van
der Pol oscillator equations [7]. In 1962, an equivalent model
was published by Nagumo et al. [7]. The system of equations
is now known as the FitzHugh-Nagumo model (FHN). To this
day, many new models are developed using FHN as a base
[21].

Mathematically, spiral waves are parameter-dependent,
spatiotemporal solutions to reaction-diffusion equations. The
motion of spiral waves is extremely important in understand-
ing the dynamical behavior of the wave, with differing types
of motion of the waves representing differing types of physical
phenomena. There are several main categories of motion of
spiral waves, which are classified by considering how the tip
of the spiral wave behaves and moves around the medium. The
tip of the spiral wave can be defined as the intersection of two
isolines in the excitation and inhibitor fields. If the tip traces
out a perfect circle around a fixed center of rotation, then it
is known as rigidly rotating. A property of rigid rotation is
that the shape of the arm of the spiral is fixed and the motion
is periodic. Another type of motion is known as meander.
This is quasiperiodic with the arm of the spiral periodically
changing shape and the tip of the spiral tracing out epicycloid
type patterns [22–25].

Other types of motion include hypermeander (chaotic mo-
tion) and drift (motion around a moving center of rotation)
[26–29]. We are not considering these types of motion in this
publication.

The transition between one type of motion to another via
a parameter change has been of great interest since the study
of spiral waves began. In particular, the transition from rigid
rotation to meander has been shown numerically to be via a
Hopf bifurcation [30–32]. In particular, several authors have
noted that this transition is via a supercritical Hopf bifurca-
tion, in which a stable fixed point changes to unstable and a
stable limit cycle is formed. A key feature of this transition is
that the growth of the limit cycle from the bifurcation point
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is proportional to the square root of the varying parameter. It
must be noted that a rigidly rotating spiral wave in the fixed
(laboratory) frame of reference, is represented as a stationary
wave in the comoving frame of reference. In the quotient
space, a rigidly rotating spiral wave is simply a fixed point.

Here we present work on a numerical approach to study the
transition from rigid rotation (RW) to meander (MRW), and
show that in the FHN system of equations, there are regions
within the parameter space in which the Hopf bifurcations are
in fact subcritical. We analyze these results to confirm their
validity and show that within the hysteresis regions where
there are two solutions relating to the same set of parameters,
it is possible to convert one of these solutions to the other.

II. NUMERICAL SIMULATIONS OF SPIRAL WAVES
IN A COMOVING FRAME OF REFERENCE

A. Theoretical review

Our approach to studying the transition from RW to MRW
is motivated by the restrictions of earlier numerical studies
in studying large core spirals [30]. The problems with large
core spirals is that if we study them in a numerical box
that is fixed in space, then that box will need to be very
large for spiral waves with large cores. This will result in
very computationally expensive simulations which will take
a relatively long time to complete.

The solution to this is to use the technique of simulating
spiral waves in a frame of reference (FOR) that is moving
with the tip of the wave. Foulkes and Biktashev [33] published
a method that could achieve not only simulations for RW
but also MRW, something that other authors were not able
to achieve [34,35]. This means that we could afford a much
smaller numerical box in which to conduct the simulations as
the tip of the wave never reaches the boundaries of the box
and, given a large enough box, the boundaries will not have
an influence on the resulting spiral wave.

We review below the main results from Foulkes and Bikta-
shev. Further details relating to these methods can be found in
Foulkes and Biktashev [33].

Let us consider the reaction-diffusion system (RDS) of
equations,

∂u
∂t

= D∇2u + f (u), (1)

where u=u(r, t )=(u1, u2, . . . , ul )� ∈ Rl , l � 2, r=(x, y)�
∈ R2, f ∈ Rl , and D ∈ Rl×l is the matrix of diffusion coef-
ficients. Foulkes and Biktashev considered a RDS that con-
tained symmetry breaking perturbations, which forced the
spiral wave solution to drift. Since drift is of no concern in
this work, we consider the unperturbed RDS.

This system is invariant under the Euclidean group SE (2),
the group of the isometric transformations of the plane
R2 → R2. This means that if u(r, t ) is a solution to Eq. (1),
then ũ(r, t ) is another solution to Eq. (1) which is given by

ũ(r, t ) = T (g)u(r, t ), ∀g ∈ SE (2),

where action T (g) of g ∈ SE (2) on the function u is defined
as

T (g)u(r, t ) = u(g−1r, t ).

The action of the group element, g ∈ SE (2), on a spiral
wave solution is such that it translates and rotates the spiral
wave. It has been shown that spiral waves are equivariant
under Euclidean symmetry, and that if we apply group action
to a spiral wave solution, then we still have that same solution
only it is now in a different position and has a different
orientation [23,33]. We can therefore choose group elements,
g, such that the tip of the spiral wave is always in a fixed
position and has a fixed orientation. Hence, for each rigidly
rotating spiral wave there is a corresponding g such that it will
be stationary in the FOR; i.e., they are independent of time.
Hence the isotropy group will be trivial. For meandering spiral
waves, the shape of the wave changes periodically over time
and therefore, we seek the set of group elements preserve the
position and orientation of the tip of the meandering spiral
wave, and this set of elements will be used to create the
quotient data.

By considering the spiral wave solution to Eq. (1) in an
appropriate Banach space, and splitting out the motion of
the spiral wave across and perpendicular to an appropriate
representative manifold, defined such that the tip of the spiral
wave always remains on it, then we obtain the following
system:

∂v
∂t

= D∇2v + f (v) + (c,∇)v + ω∂θv, (2)

vl1 (0, t ) = u∗, vl2 (0, t ) = v∗, (3)

∂vl3

∂x
(0, t ) = 0,

∂vl3

∂y
(0, t ) > 0, (4)

dθ

dt
= ω,

dR
dt

= eτθc, (5)

where l1, l2, l3 ∈ {1, 2, . . . , n} with l1 �= l2, v = v(r, t ) =
(v1, v2, . . . , vl )T ∈ Rl is the spiral wave solution in a frame
of reference that is moving with the tip of the spiral wave,
c(t ) = (cx(t ), cy(t )) is the translational velocity of the spiral
wave and ω(t ) is its rotational velocity. The position and
orientation of the tip are given by R and θ respectively, hence
Eqs. (5) are equations of motion of the tip of the spiral wave.
The fixed parameter, τ , is the matrix τ = [0 −1

1 0 ], meaning
that exp(τθ ) is the rotation matrix where the rotation is by
angle θ .

We note that Eq. (2) is a reaction-diffusion-advection sys-
tem of equations [33,36], whose spiral wave solutions v(r, t )
are such that their tip remains on the manifold. The conditions
Eqs. (3) and (4) are the tip-pinning conditions. The tip can
be pinned at any point within the numerical box, but the
definition here is such that they are pinned at the origin, which
we place at the center of the numerical box, at an orientation
determined by Eq. (4).

B. Reaction kinetics

We will be using the FitzHugh-Nagumo (FHN) model for
the simulations within the work presented here. This is a two-
variable, parameter-dependent reaction-diffusion type model.
Since this means that l = 2, then we let ul1 = ul3 = u1 and
ul2 = u2. In Eq. (1), f (u) defines the model kinetics, which,
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for the FHN model, are given by,

f (u) :

[
u1

u2

]
	→

[
1
ε

(
u1 − u3

1
3 − u2

)
ε(u1 + β − γ u2)

]
. (6)

We see that there are two variables—u1(r, t ), the excitation
variable, and u2(r, t ), the inhibitory variable—together with
three parameter, β, γ , and ε.

The parameters are varied to give a variety of solutions.
Winfree [22] illustrated the spiral wave solutions in a paramet-
ric portrait, based on fixing the parameter γ = 0.5, and vary-
ing the remaining two parameters, β and ε, to get a plethora
of solutions within a section of the parameter space, including
regions of hypermeander and plane waves. In general, we
usually have |ε| 
 1.

C. Numerical implementation

Numerical implementation of this system is also detailed in
Ref. [33] and resulted in software called EZRIDE [37]. Opera-
tor splitting was utilized to simplify the otherwise complicated
equations. We can rewrite Eq. (2) as

∂v
∂t

= F[v] + A[v; c, ω],

such that

F[v] = D∇2v + f (v),

A[v; c, ω] = (c,∇)v + ω
∂v
∂θ

= (cx − ωy)
∂v
∂x

+ (cy + ωx)
∂v
∂y

.

For discretization, we have a constant time step, 	t , and
space step, 	x, covering the square spatial domain (x, y) ∈
[−L/2, L/2]2, where L is the length of the box in space units.
The domain is divided into smaller squares by dividing the
x and y axes into Nx and Ny intervals respectively. For our
purposes, we let

Nx = Ny = N = L/	x.

This means that there will be N + 1 points along each axis.
Let F̂ and Â be discretizations of F and A, respectively.

Our numerical computations are as follows:

V̂ k+ 1
2 = V̂ k + 	t F̂ (V̂ k ),

V̂ k+1 = V̂ k+ 1
2 + 	tÂ(V̂ k+ 1

2 , ĉk+1, ω̂k+1),

θ̂ k+1 = θ̂ k + 	t ω̂
k+1,

R̂k+1 = R̂k + 	t e
γ̂ θ̂ k+1

ĉk+1.

The time step, 	t , is given by

	t = ts	2
x

4
,

where ts is the ratio of the time step to the diffusion stability
limit, usually taken to be ts = 0.1 [38].

D. Reaction-diffusion step

Foulkes et al. [33] and Barkley [21] used the initial steps
for computation just as the same as used in the Barkley’s

EZ-SPIRAL software. Further, they added more numerical com-
putational steps to it. So, for the reaction diffusion part, a first
order accurate forward Euler method was used to calculate the
temporal derivatives, and the Five Point Laplacian method for
the Laplacian.

E. Advection step to calculate cx, cy, and ω

An upwind second-order accurate approximation of the
spatial derivatives is used in Â. In this step, the discretization
of V̂ k+1 at the tip-pinning points is used to calculate ĉk+1

x , ĉk+1
y

and ω̂k+1 so that after every step, the tip-pinning conditions
are correctly satisfied.

F. Tip-pinning conditions

Pinning the tip of a meandering spiral wave was achieved
by choosing two isolines, one for excitation and one for
inhibitory, whose values are located within the range of values
of both excitation and inhibitory variables. The values can be
determined by considering the phase portrait relating to the
kinetics used. The full details of the choice of tip-pinning
conditions are given in Foulkes and Biktashev [33], and the
reader should refer to these full explanations.

In summary, discretization of the tip-pinning conditions
leads to

v
(i0, j0 );k
l1

= u∗,

v
(i0, j0 );k
l2

= v∗,

v
(i0+iinc, j0+ jinc );k
l1

= u∗,

v
(i0+iinc, j0+ jinc );k
l1

< v∗,

where the subscripts are the variable identifier, and the super-
scripts represent the spatial and temporal variables, respec-
tively. The choice of tip-pinning condition ensures that the tip
of the spiral wave is fixed at a certain orientation and position
regardless of whether the spiral wave is rigidly rotating or
meandering.

G. Reconstruction of tip trajectory

The EZRIDE software has an in-built algorithm for recon-
structing a tip in the comoving FOR [33]. Further, to check
our calculations and draw the tip trajectories, we considered
Eq. (5) and solved it using the numerical scheme which is
given as

θk+1 = θk + 	tωk, (7)

xk+1 = xk + 	t[(cx )k cos θk − (cy)k sin θk], (8)

yk+1 = yk + 	t[(cx )k sin θk + (cy)k cos θk]. (9)

Therefore, the Eqs. (7), (8), and (9) represents the recon-
structed tip trajectory.

H. Other details

Throughout the studies conducted here, we used Neumann
boundary conditions. Several authors have noted the effect
of the boundaries upon the behavior of the spiral waves, and
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different boundary conditions can lead to different solutions.
However, it has been noted [39–41] that provided the tip of the
spiral is sufficiently far from the boundary, the boundary will
not affect the overall dynamics of the spiral wave determined
by its tip. This in turn is related to the response functions of
the spiral wave, which are localized at the tip [39]. Therefore,
we can use either Neumann or Dirichlet boundary conditions,
or a mixture of both, within our simulations.

As a guide to what sufficiently far from the boundary
means, we usually take this to mean that there is a full
wavelength between the tip and the boundary, i.e., the distance
measured from the tip of the wave to the part of the arm of
spiral that has the same u1 and u2 values as at the tip and has
rotated around by 2π .

Another consideration of the numerical implementation of
the system Eqs. (2)–(4) and (6) is that of stability. It was
shown [33] via a von Neumann analysis that we require,

|cx| <
	2

x

2	t
, |cy| <

	2
y

2	t
, |ω| <

1

Nx	t
,

for stability in the calculation of cx, cy, and ω. If, for a partic-
ular timestep, the values of cx and cy went beyond these limits,
then their values were restricted to these limits, i.e., they were
not allowed to go any higher than those calculated in the sta-
bility limits above. One of the techniques employed to reduce
instability was that as the advection terms are “switched on,”
then the tip of the spiral was moved immediately to the tip
fixation point. It is also important to note that here ω was not
calculated initially until the orientation of the spiral wave was
met, at which point ω was given an initial value of zero, and
then calculated using the method described earlier. Allocating
ω its limiting value eventually led to instabilities within the
system. Therefore, unlike cx and cy, if ω went beyond its
limiting value, then it was allocated a value of zero rather than
its limiting value.

III. NUMERICAL BIFURCATION APPROACH

We aim to show the nature of the bifurcation responsible
for the transition of spiral waves from rigid rotation to me-
ander by generating solutions in a frame of reference that is
comoving with the tip of the spiral wave. This means that
even for large core spiral waves, we can still afford a relatively
small computational space. Furthermore, Foulkes and Bikta-
shev [33] showed that within the solutions to Eqs. (2)–(4) and
(6), the quotient data, consisting of the dynamic variables
c, ω, form limit cycle solutions. We therefore study the
growth of these limit cycle solution from the onset of meander,
and the nature of the growth of this data will indicate the type
of bifurcation taking place.

A. Methodology: General overview

Consider the parameter portrait from Winfree for FHN, as
shown in Fig. 1. We see that there are different regimes of
types of motion of spiral waves, according to values of β and
ε. We decided to study the growth of the limit cycles relating
to meandering spiral waves, by analyzing the quotient data for
a range of spirals which, on varying one of the parameters, go
from rigid rotation to meander and then back to rigid rotation.

FIG. 1. Parametric Portrait for FHN for γ = 0.5 [22]. The
boundaries labeled with a preceding ∂ are boundaries between
the following types of waves: ∂P, no wave–propagating wave;
∂R, propagating wave–rigidly rotating spiral; ∂M, rigidly rotat-
ing spiral–meandering spiral; ∂C, meandering spiral–hypermeander
spiral (chaotic region). The vertical red line represents the set of
parameters that was taken in the main study of this publication. The
parameter, λ0, is the scaling factor used to draw the tip trajectories
on the parametric portrait (see Winfree, 1991, for further details).

From Fig. 1, we decided to fix ε = 0.2, and starting at β =
0.570 within the upper rigidly rotation space, we varied the β

parameter in steps of 	β = 0.001 to get a spiral wave solution
for each value of β. Our initial thoughts were that this choice
of 	β was sufficient to generate a range of solutions which
show the nature of the bifurcation. As we will see in later
sections, the choice of 	β will lead to qualitatively similar
results, but quantitatively different ones, showing sensitive
dependence on initial conditions.

Each simulation records not only the quotient data, but
also the final conditions from the end of the simulation. The
initial conditions for each new simulation is taken as the
same as the final conditions of the previous simulation. When
we do this, there is always a “settling down” period from
the initial conditions to the current solution. Therefore, this
initial transient period needs to be eliminated. Although this
transient period can sometimes vary in length, only the data
taken after at least five complete periods had occurred. In
some, but not many, cases, it was obvious that the transient
period occurred for more than five periods and therefore the
data for those simulations was analyzed to see where the
transient period had ceased. The remaining data was then
analyzed in the usual way.
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FIG. 2. Quotient data for a meandering spiral wave with β =
0.751. Time (t) vs (a) cx , (b) cy, and (c) ω. The full limit cycle is
shown (d).

Once all the simulations were completed, the quotient data
was then analyzed and the “size” of the limit cycles were then
plotted against the parameter, β, which we shall also call the
bifurcation parameter. To do this, we need to define this size
and so introduce below the quotient size, Qs, of the limit cycle
of a spiral wave.

Furthermore, we shall consider the bifurcation points
which are the values of the β parameter at which the bifur-
cation takes place, and relate directly to the last simulation for
which there is no limit cycle.

B. Quotient size

The shape of the limit cycle in Fig. 2 is irregular. In
previous studies [24], the radius of the limit cycles were
measured, but this technique cannot be applied here, due to
the irregularity of the shape of the limit cycle. We therefore
calculated the “distance” around the limit cycle from one
point on the cycle all the way around back to that point by
calculating the arc length.

We know that arc length of a function q(t ) in the interval
t ∈ [t1, t2] is given by

Qs =
∫ t2

t1

||q̇(t )|| dt .

For the spiral wave limit cycles, we let q(t ) =
[cx(t ), cy(t ), ω(t )], and if we take the integral over one
whole period of the spiral wave, T , then

Qs =
∫ t+T

t

√
ċ2

x + ċ2
y + ω̇2 dt .

Since we do not know the exact form of cx, cy, and ω, then we
need to use the discretized form of the arc length formula,

Qs ≈
j+N−1∑

i= j

√(
ĉi+1

x − ĉi
x

)2 + (
ĉi+1

y − ĉi
y

)2 + (ω̂i+1 − ω̂i )2,

(10)

FIG. 3. The β-Qs plot. Each dot represents a single simulation.
Shown are reconstructed tip trajectory from the quotient data. Sim-
ulations A and F are RW; B and C are MRW with outward facing
“petals”; D is near the 1:1 resonance line and has an extremely large
core radius; and E is MRW with inward facing “petals.”

where N = T/	t , j is a starting point on the limit cycle, and
ĉi

x is the discretized value of cx at the ith step, with similar
notations for cy and ω.

As noted earlier, due to the transient period of the spiral
wave when the simulation first starts, we neglect the first five
periods of the simulation. If there are n full periods left of
the simulation, then the quotient size of those n periods were
calculated separately using Eq. (10), and then Qs will be the
average of those n quotient sizes.

In the case where there is rigid rotation, then Qs = 0 since
once the transient period has passed, the values of cx(t ), cy(t ),
and ω(t ) all remain constant. Constant quotient is indeed
an indication of rigid rotation, and once this constancy is
detected, then the next simulation is started after 50 time steps.
This ensured that the simulation had settled to a solution that
was rigidly rotating.

IV. RESULTS

For all the initial simulations, we have used L = 30, 	x =
1
5 , 	t = 0.001, and ts = 0.1. These numerical parameter val-
ues were carefully taken from Foulkes et al. (2009), so that
we get not only accurate simulations but computational fast
generation of these simulations [33]. In the comoving FOR,
we observed that for rigidly rotating spiral waves, our solution
becomes stationary and that the quotient data stabilizes to
constant values for cx, cy, and ω. As β varies, quotient system
is no longer constant and is in fact periodic. This corresponds
to meandering spiral wave solutions, exhibiting complicated
quasiperiodic motion.

The initial results are shown in Fig. 3, where the parameter,
β, is plotted against the quotient size, Qs. The simulations
started from β = 0.570 and β increased with a step size 	β =
0.001. The quotient size was zero for 0.570 � β � 0.601, in-
dicating rigid rotation. For 0.602 � β � 0.967, we had Qs >

0, meaning that the limit cycles were present and solutions are
classed as meandering spiral waves. Increasing β further, we
found that for 0.968 � β � 0.990, Qs = 0 meaning rigidly
rotating spiral waves were present.
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FIG. 4. Bifurcation diagram: the β-Qs plots depicting the hysteresis region. The black curve represents forward run whereas red curve
represents reverse run across the chosen β-range. Both figures are from the same set of data with the full set of data shown (a) and the data
around the hysteresis region shown (b). Black dots and red pluses were used (a) to illustrate the coinciding of the solutions for most of the
data, and red circles and black dots for the smaller data region (b).

The change in the dynamic behavior from RW to MRW is
due to the Hopf bifurcations arising from the stable steady
states, RW [24]. These Hopf bifurcation take place at β =
0.601 and β = 0.968. Furthermore, as we increase β from
the critical point β = 0.601, there is a sudden change in the
qualitative behavior of the system from a stable steady state
(RW) to an oscillatory state (MRW).

It is clear that as we vary β within the MRW region, i.e.,
for 0.602 � β � 0.967, then the growth of the limit cycles,
as measured by Qs, initially increases from zero up to a
maximum, and then decreases again to zero. To see whether
the arc formed by plotting β against Qs contained any special
features, such as the maximum of the arc relating to a specific
type of meander, we chose some values of β and plotted
their reconstructed tip trajectories from the quotient data. We
illustrate the various types of solutions in Fig. 3. There were
no particular surprises in this analysis and the results tied in
with what Winfree observed in his parametric portrait of FHN
that we reproduce in Fig. 1.

A feature of this plot is that as we increase β from the left
hand Hopf bifurcation point, there is a significant gap between
values of Qs which is not in line with the rest of the plot. We
see that once β has increased beyond 0.601, Qs grows slowly
and then growth suddenly accelerates very quickly, before
decelerating near the peak of the plot. It then accelerates (this
time in the negative direction of Qs) down to the right hand
bifurcation point. We therefore decided to look closer at this
gap near the left-hand bifurcation point.

According to the previous studies which were conducted
using Barkley’s model [24] or the Belousov-Zhabotinksy
reaction [42], it was observed that a supercritical Hopf bi-
furcation is responsible for the transition from rigid rotation
to meander. However, we observed a discontinuous jump
in the growth of quotient size near the bifurcation points,
being more prominent on the left-hand side. Thus, the initial
observation is that the result does not tie with the analysis of
supercritical Hopf bifurcations due to the absence of square-
root characteristic.

However, the discontinuous jump observed in the bifur-
cation diagram depicted in the Fig. 3, signals a subcritical

Hopf bifurcation [43]. It is also known that if we vary our
bifurcation parameter back and forth across the Hopf bifur-
cation point, we would not expect to jump back to the same
value of β, where it lost its stability. We therefore decided
to run the simulations again, but this time starting at β =
0.990. If there is a subcritical Hopf bifurcation present, then
we should observe hysteresis, which is associated with the
bistable region [43].

V. HYSTERESIS

The simulations were now run backwards from β starting
from 0.990 and decreasing in step of 	β = 0.001 again to
0.570. We performed the same calculations as in the previous
section to calculate Qs for all the values of β and observed its
growth against β, as shown in Fig. 4. We note that the bifur-
cation diagram for the simulations run across backward looks
similar to the one in Fig. 3. However, for these simulations,
the Hopf bifurcation point on the left-hand side in the reverse
case has now shifted to β = 0.592, whereas on the right-hand
side the Hopf bifurcation point shifts very slightly to left at
β = 0.967.

If we combine the data for the forward and backward
runs, we see that the data coincide exactly except for only a
small range of values. We show this in Fig. 4. This depicts
the presence of the hysteresis region in which steady and
oscillating states coexist. Hence, this region is associated with
bistability. The presence of the hysteresis zone is an important
characteristic for subcritical Hopf bifurcations, where the
system can be in more than one state [43–45]. In our study, the
hysteresis region exhibits both RW and MRW solutions for a
small range of β. Therefore, the existence of both the solutions
and change in the β-value corresponding to the equilibrium
clearly corresponds to the case of subcritical Hopf bifurcation.

Consider only the hysteresis region on the left hand side
of the Fig. 4. We note that as the lower branch “jumps” to
the higher branch, there are only a few data points on this
right hand jump. These data points represents simulations in
which both the solutions are meandering spiral waves. As
these data points are of low magnitude, i.e they are very few,
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FIG. 5. Variation in 	β : (a) 0.0005, (b) 0.0002.

then we decided to see if we could increase their magnitude
by decreasing the step size in β, 	β . We reran the simulation
in exactly the same way as before, but this time we took 	β

to be 0.0005 and 0.0002, as shown in Fig. 5. The effect of
this was not as expected, and rather than getting more data
points in the same hysteresis loop, we had fewer points in
the meander-meander region and a change in the size of the
hysteresis region.

One such explanation for this is that for larger β steps, the
step is large enough to induce a perturbation such that there
is sensitivity to initial conditions causing a premature switch
from RW to MRW motion. This describes the effect of sen-
sitivity to initial conditions [46]. Furthermore, the bifurcation
points for the forward and the reverse run across the β values
are highlighted in Table I.

Further, analyzing the behavior across the hysteresis re-
gion, we decided to run the simulations with the same range of
β but now for a different value of epsilon. We chose ε = 0.25
and varied β both forward and backward across the range.

From Fig. 6, we can see that both the graphs coincide with
each other apart for the few values of β near the bifurcation
point, which seems more obvious on the left hand side, similar
to our original result. The width of the hysteresis region
represents the parameter range where the system is bistable.
It can be clearly seen that the width of the hysteresis zone
is also affected with the change in the value of ε. Here, we
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1

1.2

1.4

FIG. 6. Bifurcation diagram ε = 0.25 with β varied across for-
ward and backward over the range.

discovered that the width of the hysteresis zone decreases with
the increase in ε. The presence of hysteresis also confirms that
the transition to instability is subcritical.

VI. CONVERSION

Our next concern was to consider only the hysteresis
region and to check if it is possible, for a pair of solutions
corresponding to the same β value, to convert from one
solution to another. We only tested for the region on one side
of the original bifurcation diagram (	β=0.001), being more
prominent on the left-hand side, shown in Fig. 4. We described
the conversion of one type of solution to another under pertur-
bation such as single shock defibrillation [41,47,48].

The main focus here is on the bistable region where there
exists both steady and periodic states. In our case, we inves-
tigate a parameter region in an excitable media, where RW
and MRW solutions coexist for the same parameter values.
They differ significantly as rigid motion depicts steady states
whereas meander depicts oscillatory states.

It can be seen that for a particular value of β within the
hysteresis region given by 0.592 < β < 0.602, depicted in
Fig. 4, we have two types of solutions. Here, we consider
the transition between the two solutions and chose β = 0.595,
which exhibits steady state (RW) while we run the simulations
forward across the β range, whereas it shows the periodic
behavior (MRW) with the reverse run.

Now, to test if the spiral wave solutions can be converted
from one type to another, there are many ways in which this
can be achieved. We decided to use the method of single shock
defibrillation by adding a perturbation to the system. Foulkes
et al. [41] have shown that we can convert one type of spiral
into another by means of a single shock, and so we utilize
techniques from their work.

TABLE I. Variation in β steps and their corresponding bifurca-
tion points.

β step Forward run Reverse run

0.001 0.602 0.592
0.0005 0.6195 0.5915
0.0002 0.6618 0.5912
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FIG. 7. (a) Conversion of the rigidly rotating spiral wave to meander; (c) attempt to convert a meandering spiral wave to another solution.
We show both the reconstructed tip trajectory together with the t-ω plots (b) and (d), illustrating the solutions have settled. This is illustrated
by using parallel black lines on the t-ω plots.

We added a perturbation to the u-field, uniformly through-
out space at a specified time T [41]:

∂u
∂t

= D∇2v + f (v) + h(t ),

where u = (u, v) and h(t ) = [hu(t ), hv (t )]� is a time-
dependent perturbation, defined as

hu(t ) = Aδ(t − T ), hv (t ) = 0,

where A is a constant.
Since we consider solutions in a comoving frame of

reference, we consider solutions to the reaction-diffusion-
advection system of equations [33]

∂v
∂t

= D∇2v + f (v) + h̃(t ) + (c,∇)v + ω
∂v
∂θ

,

where h̃(t ) is defined as

h̃ = T (g−1)h(T (g)v, r, t ).

Since h is dependent on time, then h̃ = h.
We initially applied a shock of minimum amplitudes of

A = 0.1, 0.5, and observed that it was not sufficient to convert
from a rigidly rotating to a meandering spiral wave. Further,
increasing it to A = 1.0, we could see the conversion from
rigidly rotating wave to a meandering wave pattern. The
conversion was also possible with the shock amplitude of
A = 1.2 whereas an increase in the amplitude to A = 1.3

resulted in the elimination of spiral wave activity, thereby
causing defibrillation.

All these shocks were applied after 40 000 steps to check
for the conversion. After applying the shock, we can see the
change in the steady spiral state changes to a periodic state.
It concludes that the shock successfully converted a rigidly
rotating spiral wave solution into a meandering solution, as
shown in Fig. 7 (top).

We also tested if we could shock from a periodic solution
to a stable solution. We now considered the meandering
spiral wave solution for β = 0.595 and applied a shock of
same amplitude to it. In this case, we did not observe the
conversion from meandering to rigid rotation by a shock of
any amplitude. This shows that conversion is not possible
from meander to rigid state.

Alonso et al. [49] noted that the meandering spiral waves
with the inward facing petals in two-dimensions always have
negative filament tension in three-dimensional case, and me-
andering solutions with outward facing petals have positive
filament tension. Hence, this gives us an explanation for
the conversion not being possible in our case, as shown in
Fig. 7. For β = 0.595, we can see that these are the outward
meandering spiral waves corresponding to positive tension in
3D. In addition, Foulkes et al. [41] have shown that it is only
possible to convert a wave with negative filament tension to a
wave with positive filament tension. Therefore, for β = 0.595,
it is possible to convert from rigid rotation to meander but not
conversely.
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FIG. 8. Convergence analysis: change in 	x changes 	t , keeping
ts constant (a) 	x = 1

3 , (b) 	x = 1
8 ; change in 	x , allow ts to change

but keeping 	t constant (c) 	x = 1
2 , (d) 	x = 1

10 ; change in time
step, keeping space step constant (e) ts = 0.2, (f) ts=0.025; change
in box size (g) L = 15, (h) L = 60.

VII. CONVERGENCE ANALYSIS

We also need to test that the numerical results that we
observed are in fact a true representation of the analyti-
cal results. Therefore, we performed several tests to see if
the solutions we originally observed converged by changing
	x, 	t and the domain size, L, to prove that it is an accurate
representation of the true solution. We note that 	x = L/Nx

and 	t = ts(	x )2/4, so to vary 	x while keeping L fixed, we
varied Nx. Similarly, if we vary 	x, and keep ts fixed, then 	t

will also vary. If we vary L, then to keep 	x fixed, we must
vary Nx. A summary of the four tests we conducted is shown
below.

(1) 	x varied, ts fixed implying 	t varies, L fixed;
(2) 	x varied, ts varied so that 	t is fixed, L fixed;
(3) 	x fixed, ts varied so that 	t varied, L fixed; and
(4) 	x, ts and 	t are fixed, L varies.
The default values of the various numerical parameters are

L = 30, 	x = 0.2, 	t = 0.001, ts = 0.1. Figure 8 shows a
selection of the convergence tests that we conducted, plotting
β against Qs.

The first test, shown in Figs. 8(a) and 8(b) was to vary
	x while keeping ts fixed, meaning that 	t varies too. It was
observed that with the decrease in the space step, the size of
the left hand hysteresis region becomes more prominent. We
also noted that other changes included an increase in the max-
imum value of Qs as a function of β, and the bifurcation point
positions also changed. However, despite all these changes,
the overall shape of the graph depicting the growth of quotient
size against β remains the same.

The next test varied the 	x but this time we ensured that 	t

was fixed by varying ts. Partial results are shown in Figs. 8(c)
and 8(d). As with the first test, certain features such as the
location of the bifurcation points, the maximum value of Qs,
etc., changed as we varied 	x, but the overall shape of the arc
remained qualitatively the same.

The third test varied 	t while keeping all other numerical
parameters fixed, Figs. 8(e) and 8(f). While we ran the simula-
tions for different time steps, instabilities were present for the
larger time steps but these instabilities tend to decrease in size
and frequency as we decreased the time step. But, yet again,
while features such as the location of the bifurcation points,
maximum value of Qs, etc changed slightly, the overall shape
of the curve stayed the same.

The final test is the convergence in box size and some of the
results are shown in Figs. 8(g) and 8(h). We considered two
variants: first with half the box size and the other one when we
double the original box size. In both the cases, we got almost
the same Hopf bifurcation points. Only the properties (area,
β with maximum quotient size) affecting quotient size differs
while we increase the box size.

These tests, show that as we vary the numerical parameters,
some of the features of the results changes such as the location
of the Hopf bifurcation points, the maximum value of Qs.
This should be expected. With varying numerical accuracy
comes variation in the error associated with the corresponding
results. But one thing remains clear, and that was the overall
shape of the curve remained similar throughout the studies.
It is clearly evident that the original data represents a true
likeness of the actual data.

VIII. DISCUSSION

We have examined the type of bifurcation responsible for
the transition from rigidly rotating spiral wave solutions to
meandering spiral wave solutions using FHN model.

We chose the FHN model, where β was considered as
a bifurcation parameter. It is also important to note that we
conducted numerical simulations in the FOR moving with the
tip of a spiral wave. This helped us to overcome the drawbacks
of previous studies which were unable to quickly study the
large core spirals [24]. We were able to successfully study
the bifurcation analysis of spiral waves for the full range of β

depicting the transition from rigid to meander and then back
to rigid motion.

Since, our analysis was conducted in comoving FOR, we
study the limit cycle solutions within meandering spiral waves
described by the advection coefficients. Here, the limit cycles
are not of any particular shape. Therefore, we presented a new
technique to check for the type of bifurcation responsible for
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the transition from rigid to meander motion in FHN model
with a specific set of parameters. We calculated the quotient
size of limit cycles and plotted it as a function of β. With
this approach, we discovered that unlike other authors [24,42],
there is a subcritical Hopf bifurcation responsible for the tran-
sition from rigid rotation (RW) to meander states (MRW) in
the parameter space that we studied. Near the Hopf bifurcation
points, it was observed that there is a discontinuous jump,
being more prominent on the left hand side of the bifurcation
diagram. Due to this discontinuous growth in Qs, the analysis
was conducted in a reverse direction across the β-range, which
disclosed a region of hysteresis where one could find two
spiral wave solutions for a single set of parameters. It made
it more clear about the existence of subcritical bifurcations
within FHN model.

The hysteresis region is the region of bistability where
there exists two types of solutions for all the values of β

within the region. We investigated this region by applying
the technique of single shock defibrillation. We showed that
only a rigidly rotating spiral wave can be converted into a
meandering spiral wave but not conversely. Reasons for this
could be related to filament tension, as noted in the conversion
section above.

From theory, it is known that for subcritical Hopf bifurca-
tions, as well as the boundary of the hysteresis region there
is also a locus of unstable limit cycles. This locus extends
from one end of the lower branch of the hysteresis loop to
the opposite end of the upper branch. In all our studies, we
were unable to simulate any solutions along this locus of
unstable limit cycles. The absence of this locus should not
distract from the result that a hysteresis region is present.
Other studies involving FHN-like models and subcritical Hopf
bifurcation have not reported this locus too, which asks the
question about whether this locus is possible to simulate in
FHN-like models for spiral waves [50]. Possible reasons for
this are that, firstly, FHN is notoriously stable [50] and there-
fore simulating unstable solutions will either be extremely
difficult or impossible. Also, the numerical techniques that
we employed into simulating spiral waves in a comoving
FOR relies on numerical stability in the calculation of the
quotient data, particularly ω. If stability limits are breached,
then the calculations of the quotient data is halted, and the
simulation comes out of the comoving FOR. Hence, it may
not be possible for our techniques to simulate unstable limit
cycles. This is an area of research that we intend to look into
for future work.

Furthermore, the β step in the system was arbitrarily
closely approximated by other β steps with distinguishably
different bifurcation points, resulting in wider hysteresis re-
gion. In other words, we can say that a small change to initial

conditions may lead to different behavior, thereby showing the
sensitive dependence on initial conditions.

We have also demonstrated the numerical convergence
analysis which confirms the true representation of the solu-
tions. It highlighted that the overall shape of the bifurcation
diagrams remains the same for all numerical and model pa-
rameters. It was clearly noted that the change in the numerical
or model parameters does not qualitatively affect the bifur-
cation diagram depicting the growth of quotient size. Adding
to it, these tests can be used in future to check for different
numerical parameters which would enable us to run faster
simulations for various studies.

In 2018, Fu et al. published work relating to subcritical
Hopf bifurcations in a FHN-like model. Although based on
FHN, their model was modified significantly to achieve the
results they needed [50]. They noted that the FHN was very
stable and we believe that their modifications enabled them
to observe subcritical Hopf bifurcations by creating instability
within the model. Hence, we believe that our results is novel in
that it is the first report instance of subcritical Hopf bifurcation
in the original FHN model. However, it is encouraging that
within FHN type models, subcritical Hopf bifurcations can
be found. Whether this can be extended to other FHN type
models has yet to be seen.

In terms of practical uses of the discovery of subcritical
Hopf bifurcations in FHN, there are many applications across
the biological, physical, and chemical sciences. In cardiac dy-
namics, the presence of two solutions for the same parameter
set has been observed before but in the rigidly rotating region
of FHN [41]. They showed that there were two rigidly rotat-
ing spiral wave solutions for the same parameter set within
the hysteresis. In our current study, the knowledge of the
presence of two solutions being two different types of spiral
wave motion (one rigidly rotating and the other meandering)
can assist in studying the conversion of certain arrhythmia
such as monomorphic VT, as simulated by rigidly rotating
spiral waves, to those such as ventricular fibrillation (VF) or
polymorphic ventricular tachycardia (VT), both represented
by meandering spiral waves. Subcritical Hopf bifurcations
are also important in areas such fluid dynamics in which the
presence of subcritical Hopf bifurcations relates to the onset
of turbulence in fluid flow.
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