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Synchronization of chaotic dynamics can be pursued by means of different coupling strategies. Definitely,
master-slave coupling represents one of the most adopted solutions, even if it presents some limitations due to
the coupling term’s selection strategy. In this paper, we investigate the role of different structures of coupling
terms on the synchronization properties of master-slave chaotic system configurations. Here, Lyapunov theory
for linear systems with nonlinear vanishing perturbations is exploited. The obtained results allow to determine the
capability of a static, dynamic, or mixed coupling connection in stabilizing the synchronization manifold, using
linear techniques based on the root locus. This knowledge allows to design the coupling structure considering
also the synchronization error transient features, which are, here, shown to improve in the presence of higher-
order dynamic couplings. A number of cases of study, involving classical chaotic nonlinear systems, show the
efficacy and simplicity of the application of the strategy proposed.
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I. INTRODUCTION

Synchronization of chaotic systems is a deeply studied
research topic, initially theoretically formalized and exper-
imentally demonstrated using circuits implementation [1].
Nowadays, we can find applications of synchronization in
several fields including biological phenomena [2], secure
communications [3,4], and robotic system control [5,6].

The synchronization phenomenon, i.e., the coherent mo-
tion of two or more chaotic units starting from different initial
conditions, can be formalized as complete, phase, or phase lag
synchronization, antisynchronization, and many other weaker
levels of synchronization [7–9]. Different methods and tech-
niques are currently used for synchronization control, such
as distributed adaptive control, intermittent control, impulsive
control, and others [10–12].

In our paper, we will tackle the problem of complete syn-
chronization of chaotic systems under master-slave coupling.
This occurs when two identical systems are connected with a
unidirectional coupling: One system (i.e., the master) drives
the response of the other (i.e., the slave) [13,14]. Here, nega-
tive feedback is commonly adopted: A linear combination of
the slave state variables is fed back generating an error signal
with respect to the master dynamics, whose action induces
synchronization in the slave system. The error signal can be
directly inserted in the slave system as a driving signal or can
be processed by a dynamic controller.
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The problem of synchronization with dynamic linear feed-
back control has been already addressed in literature at the
aim to overcome limitations in static schemes. Recently [15],
a chaotic system was analyzed as a multimode linear sys-
tem, and the root locus technique was applied to design
the appropriate loop gain. Moreover, the use of a linear
dynamic controller, designed solving a constrained nonlinear
optimization problem for systems in Lur’e form, was dis-
cussed in Ref. [16]. In Ref. [17], Lyapunov stability theory
and Gerschgorin’s theorem were used to determine necessary
conditions to get synchronization, verifying the accuracy by
means of numerical simulations. Linear matrix inequalities
were used to design an integral dynamic coupling in Ref. [18],
whereas Refs. [19,20] focus on the application of Lyapunov
theory for perturbed systems to analyze the synchronization
of chaotic systems. More recently, in Ref. [21], the use of
dynamic coupling was investigated in the synchronization of
hyperchaotic systems.

The role of dynamic coupling assumes a further interesting
perspective in connection to reservoir computing-based
networks. In echo-state networks (ESNs) [22], standard
sigmoidal functions without any time dependence were
first adopted as activation functions of internal nodes. To
include time features, leaky integrator neuron (LIN) models
were considered. The LIN role resembles the effect of
the dynamic coupling, here, proposed for a master-slave
synchronization scheme. It was demonstrated that LINs
improve the ESN performance both in recognizing strongly
time-warped dynamical patterns and in learning relatively
slow and noisy time series [23]. ESN stability can be
computed using Lyapunov exponents [24] and Lyapunov
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functions [25], strategies taken into consideration in the pro-
posed
paper.

In this paper, following Refs. [19,21], we introduce a
formal generalization of the master-slave configuration, con-
sidering either static or dynamic coupling and the combination
of them. In particular, we determine a strategy to assess which
master-slave configuration is able to guarantee and enhance
complete synchronization on the basis of the specific chaotic
dynamics. The strategy is based on the application of Lya-
punov theory for systems with vanishing perturbations [26]
employing the root locus to design the coupling configuration
and the corresponding coupling gain. The proposed approach
allows to obtain synchronization also in cases where the
mere static coupling fails. A further interesting property, here,
investigated is the effect of the selected coupling scheme on
the reduction of the transient time needed to reach complete
synchronization. In particular, the introduction of higher-order
coupling systems can be envisaged if the synchronization per-
formances in terms of convergence time need to be improved.

The paper is organized as follows: In Sec. II, the frame-
work defining the generalized master-slave configuration with
static and/or dynamic coupling is introduced, in Sec. III,
the discussion of the coupling schemes in terms of control
systems is outlined. Static and dynamic coupling are deeply
investigated in Sec. IV, whereas the effectiveness of a mixed
static-dynamic coupling is introduced in Sec. V. Finally,
conclusions are drawn in Sec. VI.

II. MASTER-SLAVE SYSTEMS WITH STATIC AND
DYNAMIC COUPLING: PRELIMIARIES

The general master-slave coupling scheme adopted for
chaos synchronization is, here, reported. The dynamic evo-
lution of the state variables of a master-slave system can be
represented as

ẋM = F(xM ),

yM = CxM ,

ẋS = F(xS ) + kB(yM − yS ),

yS = CxS,

(1)

where xM, yM, xS , and yS are the state and output variables
of the master and slave systems, respectively, F is generally a
nonlinear function representing the dynamics of each system,
B ∈ Rnx1 and C ∈ R1xn are the input and output vectors,
respectively (n is the order of each system), and k ∈ R is the
strength of the unidirectional coupling.

We have complete synchronization between master and
slave when the state error dynamics tends to zero,

lim
t→∞ eM−S (t ) = lim

t→∞[xM (t ) − xS (t )] = 0. (2)

When the coupling is performed only between the ith
component of the master state vector and the jth component
of the slave one, the coupling term can be rewritten as

kB(yM − yS ) = kBCeM−S, (3)

where the matrix BC ∈ Rnxn is a zeros matrix with a single
element equal to one.

For chaotic systems, this coupling mechanism was suc-
cessfully adopted in literature, and the suitable values of k,
able to guarantee synchronization, can be found using the
master stability function (MSF) which provides necessary
conditions from the calculation of the largest Lyapunov ex-
ponent transverse to the synchronization manifold [27]. Since
the MSF depends only on the single system dynamics and
on the coupling scheme, general considerations can be gained
for given chaotic systems coupled through specific variables.
In literature, three possible behaviors of the MSF have been
characterized with respect to the coupling strength [28]. In
type I MSF, synchronization cannot be reached for any value
of the coupling strength, in type II MSF, a minimum coupling
strength among which synchronization is achievable, can be
found, whereas in type III MSF, the coupling strength must
fall in a given range. Under this perspective, the search for
strategies able to allow for synchronization in cases, such
as type I MSF, are worth being investigated. An interesting
case is represented by the Rössler oscillator where a synchro-
nized dynamics can be found, for a specific interval of the
coupling gain (i.e., type III MSF), when B = [1 0 0]T and
C = [1 0 0], whereas, when B = [1 0 0]T and C = [0 1 0],
that corresponds to a configuration where the error between
the master and the slave second state variables is fed into the
first equation of the slave system, it is not possible to find a
synchronized regime, acting on the coupling gain (i.e., type I
MSF) [29].

Recently, to overcome this limit, a linear dynamic cou-
pling was proposed and applied to synchronize harmonic
oscillators, chaotic, and hyperchaotic systems [1,19,21]. The
dynamic controller acts as a filtering system that mediates the
error between master and slave. When a first order dynamical
system is adopted for the coupling, Eq. (1) can be generalized
as

ẋM = F(xM ),

ẋS = F(xS ) − BxC,

ẋC = −αxC − kC(xM − xS ),

(4)

here, xC is the state variable of the linear dynamic coupling
and α ∈ R+ is a parameter accounting for the dynamics of the
coupling system. The coupling system can be further extended
including higher-order dynamics, for instance, considering a
second order mass-spring-damper-like system. Therefore, the
formulation of Eq. (4) can be generalized defining a state
matrix for the coupling dynamics H ∈ Rmxm where m is the
order of the coupling system. In this case, the dimensions of
matrices B ∈ Rnxm and C ∈ Rmxn will change accordingly.

Stability analysis

The stability of the synchronization manifold can be an-
alyzed using different approaches among which the master
stability function [29] and the Lyapunov theory for perturbed
systems [26].

The Lyapunov approach guarantees sufficient conditions
for the stability of the synchronization error dynamics and
allows to analyze the problem considering a restriction of the
system dynamics to the linear part, handling the remaining
nonlinear dynamics as a vanishing perturbation.
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Under these assumptions, we can reformulate the synchro-
nization error dynamics as follows:

ėM−S = (A − kBC)eM−S + g(t, eM−S ), (5)

where A is the state matrix associated with the linear com-
ponents of the error dynamics and g(t, eM−S ) contains all
the nonlinearities present in the error system. Therefore, we
can define the state matrix of the error dynamics, restricted
to the linear part, when a static coupling is applied to the
master-slave configuration as follows:

Ã = A − kBC. (6)

Equation (5) can be extended in the presence of a dynamic
coupling considering a generalized error vector ẽ = [e xC]T , a
perturbation g̃(t, ẽ) = [g(t, e) O1m]T , and the state matrix in
Eq. (6) can be extended considering a block matrix,

Ã =
[

A B
−kC H

]
. (7)

The stability of the extended error system needs to be im-
posed to synchronize master and slave. Following the theory
of stability for perturbed systems [26], we can consider the lin-
ear dynamics as associated with the nominal system, whereas
the nonlinear parts are treated as a vanishing perturbation.
Under these assumptions, a sufficient condition to guarantee
a stable synchronization manifold is derived imposing the
stability of the linear system, i.e., matrix Ã is Hurwitz and
verifying that the perturbation is vanishing g̃(t, O1(n+m) ) =
O1(n+m). Finally, considering g̃(t, ẽ) as a continuous nonlinear
function, we need to impose a linear growth bound satisfying
the following Lipschitz condition: ‖g̃(t, ẽ)‖2 � γ ‖ẽ‖2, ∀ t �
0, ∀ ẽ ∈ D ⊂ Rn+m. The parameter γ needs to verify the
following inequality γ < 1/[2λmax(P)], where P is the sym-
metric positive definite matrix that satisfies the Lyapunov
equation PÃ + ÃT P = −I as commented in Ref. [26]. If these
properties are verified, the origin is a stable equilibrium point
for the error system, guaranteeing a complete synchronization
between master and slave.

III. EFFECTS OF THE COUPLING SYSTEMS

The principles of master-slave synchronization, discussed
in Sec. II, can be applied to generic nonlinear dynamical
systems, in particular, to chaotic ones. This system category
is characterized by an extreme sensitivity to initial conditions,
and the synchronization property is a key aspect in several
applications [4,5]. For the sake of simplicity, here, we will
take into consideration autonomous chaotic dynamical sys-
tems with a single output variable that corresponds to one of
the state variables and the control action will be applied only
on a single equation of the slave system, therefore, matrices B
and C will contain zeros with the exception of a single element
equal to one, whose position identifies the configuration of the
master-slave coupling. However, the following analysis can
be extended also in the presence of generic input and output
matrices.

We will start analyzing the effect of static and dynamic
couplings in terms of asymptotic stability of the linear system
defined by state matrix Ã. We can perform this analysis with
different methods, a possible strategy consists in applying

the Routh-Hurwitz criterion to the characteristic polynomial
associated with the state matrix as depicted in Ref. [19]. In our
paper, we followed another route that allows to formalize the
problem from a different perspective, thus, helping understand
the role of the dynamical coupling.

A. Static coupling

The characteristic polynomial of matrix Ã when a static
coupling is applied is, here, reported

pÃ(λ) = |(A − λI) − kBC|, (8)

where | · | indicates the determinant operator. Applying the
matrix determinant lemma, we can rewrite Eq. (8),

pÃ(λ) = |(A − λI)| − kC[A − λI]adjB, (9)

where [·]adj represents the adjugate matrix operator. With the
assumptions, previously introduced, on the type of the input
and output matrices, we can reformulate Eq. (9),

pÃ(λ) = pA(λ) − k p̄A
i, j (λ), (10)

where p̄A
i, j (λ) is the term with position (i, j) in matrix [A −

λI]adj with i and j corresponding to the position of the nonzero
element in the output and input matrices, respectively. In the
following, we use the notation i → j to identify the coupling
connection where the error between master and slave ith state
variables is used as input for the jth equation of the slave
system.

From Eq. (10), it is evident that the effect of the static
coupling consists in an additive term to the characteristic poly-
nomial of the noncontrolled error system. The term p̄A

i, j (λ)
could be either a constant or a polynomial, modulated by the
gain k, depending on the selected coupling variables.

B. Dynamic coupling

In the presence of a dynamic coupling, the previous anal-
ysis can be applied as long as a further step is initially per-
formed. In fact, for a generic block matrix M, the determinant
can be calculated using the property of the Schur complement
[30],

M =
[

M1 M2

M3 M4

]
|M| = |M4|

∣∣M1 − M2M−1
4 M3

∣∣, (11)

with M4 nonsingular.
Applying this property, starting from the block matrix in

Eq. (7), we can evaluate the characteristic polynomial of the
controlled error system in the presence of a linear dynamic
coupling as

pÃ(λ) = |H − λI||(A − λI) + kB(H − λI)−1C|. (12)

In this case, we have the product of two determinants:
The former depends on the linear coupling system that we
need to choose stable to guarantee the stability of the error
system, therefore, we can concentrate on the the latter term
that we want to express in the form reported in Eq. (8). If we
suppose a first order dynamic coupling, the term (H − λI)−1

is a scalar value, and we can move it outwards in the gain
position. When a higher-order coupling system is considered,
we can assume that only the equation associated with the last
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state variable of the dynamical coupling system will receive
the error information to control the slave system [19]. Under
this assumption, the input matrix B ∈ Rn×m will be a zero
matrix with a single element equal to one in position ( j, m)
and, similarly, the output matrix C ∈ Rm×n will contain a one
in position (m, i), where m is the order of the coupling system.

Applying these constraints, it is simple to verify that the
term we are interested in, for the matrix (H − λI)−1, is that
one in position (m, m). Therefore, Eq. (12) becomes

pÃ(λ) = pH(λ)

[
pA(λ) − k p̄A

i, j (λ)
−p̄H

m,m(λ)

pH(λ)

]
. (13)

As already underlined for the static coupling, also in the
presence of a dynamic coupling, the characteristic polynomial
of the controlled error system contains an additive term that, in
general, is a ratio of polynomial functions. When the coupling
system is characterized by a simple first order linear dynamics
H = [−α] ∈ R and −p̄H

m,m(λ)/pH(λ) = 1
λ+α

.
A careful analysis of Eqs. (10) and (13) for the static

and dynamic couplings, respectively, leads to formulate the
problem in terms of a feedback control scheme where the
gain k is in both cases a parameter that influences the closed
loop pole positions on the complex plane. These need to lie
within the real negative half complex plane to satisfy the
Lyapunov stability theory for perturbed systems applied to
the master-slave synchronization problem. The stability of
the error dynamics can be, therefore, studied using the well
known root locus, thus, simplifying the overall procedure as
illustrated in the following sections. For the sake of clarity and
for consistency with the control theory standard notation, we
will use the s variable instead of λ in the following analyses.

IV. STATIC AND DYNAMIC COUPLING IN CHAOTIC
SYSTEM SYNCHRONIZATION

The master-slave synchronization scheme is, here, applied
to the Rössler oscillator to underline strengths and weaknesses
of the static coupling mechanism and the possible solutions
introduced with the dynamic coupling.

A. Static coupling

An interesting case of study for the application of the
proposed method is represented by the Rössler oscillator [31]
characterized by the following dynamical equations:

ẋ = −y − z,

ẏ = −x + ay,

ż = −cz + xz + b,

(14)

where a, b, and c are positive parameters, fixed for the
following simulations to a = 0.2, b = 0.2, and c = 5.7.

Formulating the problem of a master-slave synchronization
of two identical Rössler chaotic systems, we can define state
matrix A of the error system and the nonlinear perturbation

FIG. 1. Root locus associated with Rössler systems with a static
coupling and configuration 1 → 1.

term,

A =
⎡
⎣0 −1 −1

1 a 0
0 0 −c

⎤
⎦ g(t, eM−S ) =

⎡
⎣ 0

0
xM zM − xS zS

⎤
⎦.

(15)
As previously illustrated in Ref. [20], to demonstrate that

the nonlinear components act as a vanishing perturbation, we
can rewrite g(t, eM−S ) through the components of the error
vector eM−S = [e1 e2 e3]T ,

g(t, eM−S ) = [0 0 xMe3 + zMe1 − e1e3]T , (16)

where it is easy to verify the vanishing condition g(t, O1×3) =
O1×3.

The characteristic polynomial of matrix A can be easily
evaluated

pA(s) = −(s + c)(s2 − as + 1). (17)

We can now evaluate the adjugate matrix of A − sI,

[A − sI]adj =
⎡
⎣(s − a)(s + c) −(s + c) −(s − a)

s + c s(s + c) −1
0 0 s2 − as + 1

⎤
⎦.

(18)
Let us consider a static coupling with a connection config-

ured as 1 → 1: The error between master and slave on the first
state variables is used as input for the first equation of the slave
system. On the basis of the considerations reported in Sec. III,
we can analyze the root locus of the following system:

S1→1
Static(s) = − p̄A

1,1(s)

pA(s)

= −(s − a)(s + c)

−(s + c)(s2 − as + 1)

= (s − a)

(s2 − as + 1)
. (19)

We can now verify the effect of the control gain in terms
of stability evaluating the root locus for the system S1→1

Static(s)
as shown in Fig. 1. There is a range for the coupling gain
0.2 < k < 5 where the system is stable.

The last condition to be verified is related to the linear
growth bound for the perturbation. To evaluate the parameter
γ , we need to solve the Lyapunov equation PÃ + ÃT P =
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FIG. 2. Relation between the parameter γ related to the linear
growth bound for the perturbation and the coupling gain k in the
Rössler systems with static coupling and configuration 1 → 1.

−I. Matrix Ã can be calculated as in Eq. (6) considering
that a static coupling with a connection of the type 1 → 1
corresponds to an input matrix B = [1 0 0]T and an output
matrix C = [1 0 0]. The relation between the parameter γ and
the coupling gain k is shown in Fig. 2.

We can select the coupling gain in correspondence to the
maximum of the curve: k � 1.34 and γ � 0.1875. Therefore,
to verify the linear growth bound, we need to satisfy the
following equation:

|xMe3 + zMe1 − e1e3| − 0.1875‖eM−S‖2 < 0. (20)

The analytical verification of this condition ∀ t � 0 and
∀ eM−S ∈ D ⊂ R3 is beyond the aims of this paper. For the
Rössler system, we performed a numerical analysis, identify-
ing if this inequality is verified in regions surrounding a series
of points on the trajectory followed by the master system as
illustrated in Fig. 3. Here, the domains for the state variables
of the slave system, that verify inequality in Eq. (20), is
reported. The visual representation of the domains is restricted
to a cube with side dimensions equal to 2, centered on selected
points of the master trajectory. It has to be noted that the
domains reported in Fig. 3 are not always dense, therefore,
during the system dynamic evolution, the condition could be
locally violated.

A typical outcome of the static coupling scheme with the
selected gain is reported in Fig. 4 where the time evolution

FIG. 3. For each selected point of the master trajectory, the
domain for the slave system where Eq. (20) is verified is depicted.
To facilitate visualization, the analysis was restricted to a cube with
sides equal to 2 and centered in the chosen point for the master.
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FIG. 4. Typical dynamics obtained in a master-slave synchro-
nization scheme for two identical Rössler systems with static cou-
pling and configuration 1 → 1: (a) root mean square error (RMSE)
between the master and the slave state variables; (b) first term of
Inequality (20).

of the synchronization error and the linear growth bound
condition for the perturbation are shown.

The concurrent verification of the three conditions intro-
duced in Sec. II A guarantees a sufficient condition for the
master-slave synchronization. In particular, that one imposing
the linear growth bound for the perturbation has been evalu-
ated in the worst case [26] and, even if it could not be verified
somewhere on the phase plane, however, the synchronization
manifold can still be contractive. Interesting results are re-
ported in Ref. [32] where a comparison between the proposed
approach and the master stability function applied to Chua’s
circuit is provided.

B. Dynamic coupling

The dynamic coupling can be applied either to synchronize
systems when the static coupling is not able to solve the
problem or to improve the synchronization properties of the
systems.

Referring to the Rössler oscillator, let us consider a case
different from that one treated in Sec. IV A where the first
state variable is no longer available and we need to apply the
coupling configuration 2 → 1. As discussed in Ref. [29] and
further investigated in Ref. [19], this configuration does not
guarantee a stable synchronization manifold independently on
the selected coupling gain k.

This appears evident if we evaluate the equivalent of
Eq. (19). In this case,

S2→1
Static(s) = − p̄A

2,1(s)

pA(s)

= −(s + c)

−(s + c)(s2 − as + 1)

= 1

(s2 − as + 1)
. (21)

The root locus obtained for this system, reported in
Fig. 5(a), shows that all the poles never belong contemporarily
to the stable region. Here, we demonstrate that the inclusion
of a dynamic coupling can modify this portrait. A simple first
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FIG. 5. Master-slave Rössler systems with configuration 2 → 1:
Root locus associated with a static coupling in (a) and first order
dynamic coupling with α = 1 in (b).

order dynamic coupling (H = [−α]) leads to

S2→1
DynI (s) = −p̄A

2,1(s)

pA(s)

−p̄H
1,1(s)

pH (s)

= −(s + c)

−(s + α)(s + c)(s2 − as + 1)

= 1

(s + α)(s2 − as + 1)
. (22)

The corresponding root locus, obtained for this config-
uration [Fig. 5(b)], clearly demonstrates the possibility to
stabilize the system in a specific range of the coupling gain.
Assigning, for instance, the parameter α = 1, we can evaluate
that, for −1 < k < −0.36, the system is stable.

Deepening the role of the dynamic coupling, we can ana-
lyze the stability in terms of the parameters α and k in closed
form, applying some properties of the root locus. To evaluate
the value of k for which the real pole of the system passes
from the negative to the positive real part, we can impose that
the origin belongs to the negative locus,

k = −D(s)

N (s)

∣∣∣∣
s=0

= −(s + α)(s2 − 0.2s + 1)|s=0 = −α,

(23)
where D(s) and N (s) are the denominator and numerator of
the S2→1

DynI (s) transfer function. To evaluate the other boundary,
we need to verify when the other two complex poles enter
on the left semiplane. When the order of the denominator
(mD) and the order of the numerator (mN ) verify the condition
mD-mN � 2 the barycenter of the locus is independent from k,
therefore, the sum of the real parts of the closed loop poles is

FIG. 6. Master-slave Rössler systems with configuration 2 → 1:
Root locus associated with a first order dynamic coupling with α =
10, and the system is always unstable independent from the coupling
gain.

constant. In our case, we have three poles and no zeros, and
the real parts of open loop poles are [−α, 0.1, 0.1]. Imposing
that two poles are crossing the imaginary axis, the position
of the third one will be equal to the sum of the three in the
open loop (i.e., s = 0.2 − α). We can now apply the locus gain
condition to this third pole,

k = −D(s)

N (s)

∣∣∣∣
s=0.2−α

= −(s + α)(s2 − 0.2s + 1)|s=0.2−α

= −0.2(α2 − 0.2α + 1). (24)

To define the range of the stabilizing gain as a function of
α,

−α < k < −0.2(α2 − 0.2α + 1). (25)

To guarantee a feasible range for k, the left term and the
right one of Inequality (25) need to be as follows:

−α < −0.2(α2 − 0.2α + 1)

0.2α2 − 1.04α + 0.2 < 0. (26)

The solution of Inequality (26) guarantees a stability region
in the range of 0.2 < α < 5. Beyond these limits, the root
locus changes, some branching points occur, and stability
cannot be obtained. For instance, if α = 10, independent of
k, there is always, at least, one unstable pole (Fig. 6).

This closed-form solution, for the evaluation of the range
of admissible parameters, permits to improve the analysis
performed in Ref. [19] where the Routh-Hurwitz criteria is
applied, in fact, we are now able to better understand which is
the effect of the dynamic coupling and its limits.

We can also evaluate the role of parameters α and k in
connection with parameter γ . Matrix Ã, needed to solve the
Lyapunov equation, can be calculated from Eq. (7) consider-
ing a dynamic coupling with a connection type 2 → 1 that
corresponds to an input matrix B = [1 0 0 0]T and an output
matrix C = [0 1 0 0]. The values assumed by parameter γ as
a function of the coupling gains k and α are reported in Fig. 7.

The stability region assumes a shape that is limited by
the conditions in Inequality (25) and, in this case, there is a
maximum of γ = 0.0308 where α � 0.9 and k � −0.62.
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FIG. 7. Relation between the parameter γ related to the linear
growth bound for the perturbation and the coupling parameters k and
α in the Rössler systems with a first order linear dynamical coupling
and configuration 2 → 1.

In Fig. 8, the evolution of the master and slave state
variables together with the dynamical coupling variable are
depicted, assuming, for the system parameters, the previous
selected values. The considerations about the linear growth
bound for the perturbation are similar to the previous case,
and the time evolution of this condition is also reported in
Fig. 8, last panel. It has to be noted that the state variable of the
dynamical coupling system will contribute to the evaluation of
‖ẽ‖2. Simulations highlight some limited time windows, that
correspond to a peak of the z variable where the condition on
the linear growth bound for the perturbation is not verified. In
fact, for a short time, a slight increment of the synchronization
error occurs, but it is suddenly annihilated after a transient.

In addition, looking to the adjugate matrix in Eq. (18),
it is easy to verify that, choosing as coupling configuration
1 → 2, we will have only a change in the sign with respect
to the configuration 2 → 1. Following our analysis, we can
conclude that, also in this case, the static coupling will
not guarantee synchronization whereas a dynamical coupling
will, just changing the sign of the coupling gain k with respect
to the previous case.

Moreover, if we take into consideration the configurations
3 → 1 and 3 → 2, the presence of a zero element in the

FIG. 8. Rössler systems with a first order linear dynamical cou-
pling, (configuration 2 → 1, α = 0.9, and k = −0.62): time evolu-
tion of the master and slave state variables (left panels) and dynamic
coupling variable (top right panel); RMSE between the master and
slave state variables and the condition in Eq. (20) with γ = 0.0308
are reported in the middle and bottom right panels, respectively.

adjugate matrix prevent to obtain, using the proposed ap-
proach, a stable synchronization manifold independent of the
coupling system.

All these considerations provide useful indications to bet-
ter understand the inherent complexity of the master-slave
synchronization of chaotic systems. However, there are cases
where, even if the proposed method is not able to find so-
lutions, a stable synchronization manifold can occur as for
the Rössler systems with configuration 3 → 1 as illustrated in
Ref. [29] applying the master stability function. In this case,
even if the dynamics of the linear part of the synchronization
error is not stable, the nonlinear components, considered in
our analysis as a perturbation on a stable dynamics, are,
indeed, fundamental to stabilize the synchronization, pushing
the evolution of the slave state variables in the direction that
minimizes the error with the master.

C. Higher-order dynamic coupling

The introduction of a first order linear dynamical coupling
system can guarantee a synchronization manifold where the
static coupling fails. Here, we want to inspect whether the
introduction of a higher-order coupling system could be use-
ful. In Refs. [19,21], the possibility to augment the admissible
range for the coupling gain, eliminating the upper bound was
introduced, considering a second order dynamical system.

Moreover, the introduction of a higher-order dynamical
coupling system can reduce the transient time of the synchro-
nization regime by moving the position of the closed loop
poles in the root locus, improving the performance of the
synchronization scheme.

Considering the previous case of two Rössler systems
with coupling configuration 2 → 1, we need, at least, a first
order dynamical coupling (i.e., one pole) to guarantee a stable
synchronization manifold, but, as demonstrated in Eqs. (25)
and (26), there are strict limits on the parameters, and we are
not able to freely move the dominant poles of the error system
to speed up the error dynamics.

When a second order linear coupling system is considered,
we introduce one zero and two poles that can help in stabi-
lizing the error system. In fact, we can choose the following
input, output, and state matrices for the coupling system:

H =
[ −α 1
−β1 −β2

]
B =

⎡
⎣0 1

0 0
0 0

⎤
⎦ C =

[
0 0 0
0 1 0

]
,

(27)
where α, β1, and β2 are control parameters. We fix one of the
elements of matrix H to one because we do not need other
parameters to arbitrarily place the zero and poles introduced
by the linear dynamical coupling.

Applying this coupling system, we can rewrite Eq. (13),

pÃ(s) = pA(s) − k p̄A
2,1(s)

s + α

s2 + (α + β2)s + β1 + αβ2
.

(28)
With this second order coupling, we can move the domi-

nant poles speeding up the error dynamics as reported in Fig. 9
where the root locus is reported adopting the following set of
parameters for the matrix H: α = 10, β1 = 1600, β2 = 90.
For this system configuration, if we consider a high coupling
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FIG. 9. Root locus associated with a second order dynamic cou-
pling in a pair of Rössler systems with configuration 2 → 1 and
parameters α = 10, β1 = 1600, β2 = 90.

gain k = 45 × 103, we can heavily reduce the transient time.
A simulation campaign changing the initial conditions over
100 trials was carried out comparing the synchronization time
in a pair of Rössler systems with first (parameters: α = 0.9
and k = −0.62) and second order linear dynamical couplings
as previously presented. Synchronization is reached when the
RMSE between state variables is below a given threshold
ETh = 0.001. The obtained mean and standard deviation of
the synchronization time for the two cases are as follows:
TDynI = 78 ± 17 s and TDynII = 2 ± 0.2 s.

The possibility to reduce the transient time is an interesting
property, and its relation with the selected coupling system is
a relevant issue and will be deeply investigated in the future
applications of the proposed methodology to better quantify
the cost in terms of complexity and energy needed (e.g.,
increase in the coupling gain k) and the role of the nonlinear
perturbation in providing limits to the transient time reduction.

V. MIXING STATIC AND DYNAMIC COUPLINGS

Following the previous analyses, we can investigate the
effect of the combination of the static and dynamic couplings.
In particular, as already demonstrated in Eqs. (22) and (28),
a first order dynamical coupling system corresponds to the
introduction of a single pole, whereas, a second order cou-
pling is characterized by a system with one zero and two
poles. Similarly, higher-order coupling schemes increase the
number of poles and zeros. Trying to maintain the coupling
system as simple as possible, another configuration that can be
considered, consists of mixing static and first order dynamic
couplings. This control solution produces an overall effect that
corresponds to the following dynamical coupling:

HSD(s) = kS + 1

s + α
= kS

s + z

s + α
, (29)

where kS is the additional gain we need to associate with the
static coupling and can be chosen on the basis of the pole and
zero positions. Therefore, we can impose kS = 1/(z − α).

The effect of mixing static and dynamic couplings corre-
sponds to introduce a zero-pole network that can be applied to
move the center of the asymptotes in the root locus to improve
the synchronization performances. This new coupling scheme

FIG. 10. Master-slave Rössler systems with configuration 2 →
1: root locus associated with a mixed static and dynamic coupling
with α = 10 and kS = −0.2.

is evaluated in the previously introduced Rössler oscillator
and in the Hindmarsh-Rose (HR) neuron model.

A. Rössler oscillator

An interesting case of application of the proposed static
and dynamic mixed strategy is related to the Rössler systems
with coupling configuration 2 → 1. As previously demon-
strated, we are able to produce a master-slave synchronization
for a suitable range of the coupling gain when a dynamical
coupling is considered. Herewith we want to demonstrate that,
if we apply, at the same time, both a static and a dynamic
coupling, we can obtain synchronization in an open region
of the coupling parameter k. This possibility was previously
investigated in Refs. [19,21] where, to solve this problem, a
second order dynamical coupling was considered imposing
parameters β1 and β2 as functions of the coupling gain k.
The approach we are proposing simplifies the problem and
provides a synthesis method through the study of the root
locus. Figure 5(a) clearly shows that the static coupling is
not able to stabilize the error system; we need to move the
vertical asymptote to the left half-plane, and this can be
performed introducing a zero-pole control network. Selecting
the parameters α = 10 and kS = −0.2, we can impose a pole
in −10 and a zero in −5; the effect of this coupling system is
shown in Fig. 10. Analyzing the root locus, we can guarantee
the stability of the linear error system, imposing only a lower
bound limit to the coupling gain. The threshold value can be
evaluated finding the intersection between the root locus and
the imaginary axis,

k = −D(s)

N (s)

∣∣∣∣
s=−9.8

= − (s + 10)(s2 − 0.2s + 1)

−0.2(s + 5)

∣∣∣∣
s=−9.8

= −20.625. (30)

Therefore, imposing a coupling gain k < −20.625 corre-
sponds to an asymptotically stable error system. However,
the proximity of the roots to the imaginary axis could be a
problem in terms of convergence time, and due to the pres-
ence of the nonlinear perturbation a complete synchronization
between master and slave cannot be guaranteed. Therefore,
both acting on the coupling gain k and on the parameters α

and kS , we can move the closed loop position of the dominant
poles towards more negative values that permit to reduce
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FIG. 11. Relation between parameter γ related to the linear
growth bound for the perturbation and the coupling gain k in the
Rössler systems with static coupling and configuration 2 → 1 when
both static and first order dynamic couplings are applied.

the synchronization transient time creating a dynamics more
robust to perturbations.

Analyzing the trend of parameter γ related to the linear
growth bound for the perturbation as shown in Fig. 11, we
can identify a peak for k � −49 and an unlimited range of
negative gain even if with a slightly stronger condition for the
nonlinear component.

B. HR neuron

The HR neuron is characterized by the following dynami-
cal equations:

ẋ = y − z − x3 + 3x2 + I

ẏ = −y − 5x2 + 1

ż = rsx − rz + 1.6rs

(31)

where I = 3.2, r = 0.06, and s = 4. Also, in this case, it can
be easily verified that the nonlinear part of the error system
can be treated as a vanishing perturbation, therefore, we can
analyze state matrix A of the linear part of the error system,

A =
⎡
⎣ 0 1 −1

0 −1 0
rs 0 −r

⎤
⎦. (32)

The characteristic polynomial of matrix A can be easily
evaluated

pA(s) = −(s + 1)(s2 + 0.06s + 0.24). (33)

For the HR neuron, the linear error system is already stable
(s1 � −1, s2,3 � −0.03 ± 0.49 j), but the poles are practi-
cally on the imaginary axis, and this condition is strengthened
by the presence of the nonlinear perturbation.

We can now evaluate the adjugate matrix of A − sI,

[A − sI]adj =

⎡
⎢⎣

s2 + 503
500 s + 3

500 s + 3
500 −s − 1

0 s2 + 3
500 s + 3

125 0
3

125 s + 3
125

3
125 s2 + s

⎤
⎥⎦. (34)

We can verify the effect of the static coupling using the
root locus as shown in Fig. 12. It can be noted that there
are some configurations (i.e., 2 → 1 and 2 → 3) that due
to the presence of a zero element in the adjugate matrix
cannot be treated using the proposed approach. For the other
configurations, we can distinguish a safe open region for the
coupling gain (i.e., in the case of 2 → 2 where the increase
in k will further stabilize the error system) and other cases

FIG. 12. Root locus associated with a static coupling in a master-
slave HR neuron with all the possible configurations i → j; the
negative gain locus is reported using dashed lines.

where the proximity of the locus to the imaginary axis does
not allow to identify a sharp behavior. In particular, if we
consider the configuration 3 → 1 (and similarly 1 → 3), we
identify a locus with a vertical asymptote, a case encountered
also for the Rössler system with configuration 2 → 1. In this
case, we move the position of the vertical asymptote towards
the left semiplane, applying together the static and dynamic
couplings. In fact, if we apply a first order dynamical coupling
with α = 10 and a static coupling with kS = − 1

5 , we are
introducing a zero-pole compensation network that modifies
the root locus as shown in Fig. 13(a). The parameters selected
for the coupling guarantee a shift of the dominant poles of
the error system towards the stable region. When the coupling
gain is not large enough (k = −650), synchronization does
not occur, at least, in the selected time window (t = 500 s) as
shown in Fig. 13(b). To guarantee a fast convergence, we can
impose a higher negative gain as shown in Fig. 13(c) where
the results obtained imposing k = −3 × 104 are depicted.

By changing the value of the coupling gain and, conse-
quently, the position of the closed loop poles in the root locus,
it is possible to reduce the transient time as shown in Fig. 14.
The presence of dominant poles with large negative real parts
guarantees better performance whereas, moving towards the
imaginary axis, enlarges the needed time window and reduces
the basins of attraction due to the constraint on the nonlinear
perturbation.
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FIG. 13. Root locus associated with a mixed static and dynamic
coupling in a master-slave HR neuron with configuration 3 → 1:
(a) root locus with parameters α = 10 and kS = −1/5 and compar-
ison between the x-state variables for the master and slave system
together with the trend of the root mean square error for all state
variables when (b) k = −650 and (c) k = −3 × 104.

VI. CONCLUSIONS

In this paper, a general framework for the design of master-
slave coupling of nonlinear systems has been presented. The
proposed approach relies on exploiting the Lyapunov theory
for perturbed systems to determine the conditions under which
a master-slave coupling either static and/or dynamic can
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FIG. 14. Trend of the synchronization time considering a pair of
HR neurons with configuration 3 → 1 changing the position of the
dominant poles varying the coupling gain. The statistics is performed
over 100 trials, for each case, changing the initial condition of the
slave that spreads within a cube with side dimensions 2, centered on
the master initial condition. The simulation time was fixed at 500 s.
Simulations considering the most right and left cases are reported in
Figs. 13(b) and 13(c), respectively.

lead to chaotic synchronization. This innovative approach
represents a useful tool in the design of master-slave cou-
pling, allowing to discriminate when, for a given chaotic
dynamics, synchronization can be obtained on the basis of
the available input and output signals. The outlined strategy
provides guidelines to the analysis and synthesis of suitable
coupling schemes. The application of the Lyapunov theory
for perturbed systems allowed to consider the coupling as a
linear system whose root locus for either positive or negative
gains can be used to determine the coupling parameters,
thus, generalizing the concept of feedback synchronization in
chaotic systems.

Moreover, the relation between the adopted coupling sys-
tem and the transient time needed to reach complete syn-
chronization has been discussed underlying the possibility
to use higher-order dynamical coupling systems to improve
synchronization performances, even if an additional cost in
terms of increase in the coupling gain is requested. This may
represent a fundamental insight since, usually, the synchro-
nization time is considered as a measure of the stability of the
synchronous state [33]. Here, we provide a clear relationship
between the coupling design and the time needed to reach the
synchronous state, thus, allowing the synchronization time to
be considered as a design specification. Nontrivial results on
the adoption of static, dynamic, or combined static/dynamic
coupling allowed to assess the validity of the approach and
the suitability of the design guidelines in enhancing chaos
synchronization in master-slave coupling.
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