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Probabilistic characteristics of nonlinear waves in nondispersive media of the hydrodynamic type
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The paper considers the probability distributions of the nonlinear wave characteristics in nondispersive media
that satisfy the Riemann- and the Kardar-Parisi-Zhang-type equations. By using the Lagrangian and Euler
relations of statistical descriptions, expressions are obtained for the probability density of the Riemann wave
(displacement) integral through the initial probability density of displacement, velocity, and acceleration. The
case of Gaussian initial statistics is considered when multivalued sections in nonlinear waves arise at arbitrarily
small distances from the entrance. The expressions obtained in this case should be interpreted as the relative
residence time of the process in a certain displacement range. It is shown that, due to the Riemann equation
locality, the appearance of ambiguity in the wave profile, which occurs mainly at negative values, does not affect
the probability density form at positive bias values.
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I. INTRODUCTION

The most famous solution for nonlinear waves in the
nondispersive media is the so-called simple, or the Riemann,
wave of the form

u(x, t ) = U [x − V (u)t], (1.1)

where u(x,t) is the wave variable, U(x) is the initial pertur-
bation, V(u) is the nonlinear medium characteristic, x is the
coordinate, and t is the time. Formula (1.1) is an implicit
solution of the equation

∂u

∂t
+ V (u)

∂u

∂x
= 0, (1.2)

Such waves are intensively studied in nonlinear acoustics
[1,2], radiophysics [3], and oceanology [4]. Mathematically,
the Riemann waves are particular solutions of partial dif-
ferential hyperbolic systems, and their theory is fairly well
developed [5].

From the point of view of physics, the Riemann waves,
like unidirectional waves, arise at certain ratios between the
various components of the wave fields (displacement, veloc-
ity, pressure, etc.). In addition to this, along with the proper
Riemann waves of type (1.1), the Riemann waves integrals
arise in applications, such as when using potentials in hydro-
dynamics

u(x, t ) = ∂�(x, t )

∂x
. (1.3)

Depending on the meaning of the variable x, the value of
Ф can describe the moving shoreline dynamics when the sea
waves run up on the shore [6,7], the expanding surfaces and
fire fronts [8], and some other characteristics. In cosmology,
when describing the large-scale structure of the universe, the
Zel’dovich approximation is widely known, which describes
the initial nonlinear stage of gravitational instability. In this
case, the particle motion is reduced in the corresponding

variables to the Riemann equation, and the evolution of the
velocity and potential fields is equivalent to the evolution of
the optical wave behind the phase screen [9,10]). Partially,
these equations are given in Sec. II.

If the initial distributions of the wave fields are random,
there arise problems of the statistical description of the Rie-
mann waves and the integrals of them. The dynamics of the
proper random Riemann waves (1.1) is well known [11–14],
but the probability distributions of the Riemann wave integrals
have not been studied yet. Perhaps we should mention here
our work [15], in which this problem was solved in the
approximation of a narrow-band initial perturbation, as well
as some previously published articles [16,17], where the wave
field moments were studied.

One of the serious difficulties encountered in the random
Riemann wave study is their breaking (gradient catastrophe).
If in dynamic problems the Riemann wave exists on a finite
time interval, in a random field, for example, with Gaussian
statistics, the ambiguity in the wave profile arises at arbitrarily
small times. In Refs. [18,19] the ambiguity effect on the
Riemann wave spectra was studied. In particular, it was shown
that the use of the double Fourier transform to solve Eq. (1.2)
leads to some effective attenuation of the Riemann wave en-
ergy, despite the formal viscosity absence in this equation. The
situation, where only unambiguous branches of the solution
are taken into account, is realized, in particular, for acoustic
turbulence, commonly called Burgers turbulence [11,13,14].
In this case, the generalized solutions of the Riemann equation
are considered when the ambiguity is eliminated by introduc-
ing discontinuities. In this case, a fairly complete statistical
description can be carried out at large times (long paths) when
limit theorems of the emission theory of random processes can
be used. In Burgers turbulence, either statistical characteristics
of the velocity itself or its gradient is considered [20].

In this paper, we will consider multivalued solutions of the
Riemann equation, and we will not be interested in velocity
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itself and its potential, the integral of velocity. For ergodic
processes, the probability density is known to coincide with
the relative residence time of the process at a certain interval.
It is this property that will be used to interpret the probability
distribution of the Riemann wave and its integral. After the
occurrence of multivalued solutions, there arise sections in
the wave profile where the points of a certain interval of the
initial profile overtake each other. There are various options
for taking into account multivalued solutions at the relative
residence time: (1) the corresponding intervals are taken into
account with the minus sign, (2) the breaking intervals are
neglected, and (3) all the intervals with the plus sign are taken
into account. The formally obtained probability distribution
of the Riemann wave and its integral will reflect the way of
taking into account multivalued solutions at the relative resi-
dence time: the loss of positivity of the probability distribution
in the first case and the violation of normalization by one
in the second and third ones. Nevertheless, the probability
distribution with the positive values of the Riemann wave
integral is expected to depend weakly on the method of taking
into account the multivalued branches of the solution, and a
certain part of this distribution remains physically significant.

A number of problems in which it becomes necessary to
study the Riemann wave integrals are discussed in Sec. II.
The probability Riemann wave characteristics and its integral
in the Lagrangian and Euler representations are obtained in
Sec. III. The important problem of taking into account the
ambiguity of the wave profile (after the wave breaks) on
probabilistic characteristics is studied in Sec. IV. The results
obtained are summarized in the Conclusion.

II. BASIC EQUATIONS

As an important example, we consider the classical eikonal
equation on the plane that arises in problems of geometry
optics and acoustics:

(∇ϕ)2 =
(

∂ϕ

∂x

)2

+
(

∂ϕ

∂z

)2

= 1. (2.1)

Assuming that z is the axis of the wave beam, and x is
the transverse coordinate, in the small-angle approximation
it follows from (2.1)

∂ϕ

∂z
=

√
1 −

(
∂ϕ

∂x

)2

≈ 1 − 1

2

(
∂ϕ

∂x

)2

. (2.2)

Excluding the regular phase shift along the z axis, Eq. (2.2)
takes the form

∂ϕ

∂z
+ 1

2

(
∂ϕ

∂x

)2

= 0. (2.3)

Introducing the beam angle (the phase gradient)

u(x, z) = ∂ϕ

∂x
, (2.4)

we arrive at the simple wave equation (1.1) with z replaced by
t . This case was used in the review [10] to draw the analogy
between the problems of optics and cosmology.

Let us note that after replacing z by t , Eq. (2.3) coincides
with the homogeneous Kardar-Parisi-Zhang equation in the

absence of the viscous term [8]. This equation is the simplest
kinematic model for fire front evolution and other changing
surfaces [21,22].

Another important practical problem, where the equation
of a simple wave and its integral arises, is the problem of the
sea wave run-up on the shore. In the dissipation absence, the
nonlinear equations of hydrodynamics (shallow water) in the
vicinity of the coast take the form

∂H

∂t
+ ∂

∂x
(Hu) = 0,

∂u

∂t
+ u

∂u

∂x
+ g

∂H

∂x
= α, (2.5)

where H(x,t) is the water flow thickness, u(x,t) is the depth-
averaged flow velocity, g is the gravity acceleration, and α

is the bottom slope near the coast. These equations can be
linearized by using hodograph transformations, which made
it possible to find the family of exact solutions [23–28].
In particular, the moving shoreline (edge) dynamics (the
boundary between water and land) is described by formulas
[6,7]

u(t ) = u[x(t ), t] = U0

(
t + u

αg

)
, (2.6)

r(t ) = αx(t ) = R0

(
t + u

αg

)
− u2

2g
. (2.7)

Here r(t ) and u(t ) are the vertical mixing and the moving
shoreline (edge) speed, and R0 and U0 are the same character-
istics calculated in the framework of the linear shallow water
equations at x = 0. Naturally, the speed and the shoreline
(edge) shift are connected by kinematic relations

u(t ) = 1

α

dr

dt
, U0(t ) = 1

α

dR0

dt
. (2.8)

Formally, the solutions given above are not the functions
of two variables, like the Riemann waves. However, having
replaced (αg)−1 with x, it is easy to see that function (2.6)
coincides with the Riemann wave (when replacing the argu-
ments with each other).

We have given a number of physical examples where the
problems of studying the Riemann waves and their integrals
arise. For generality, we will present these equations in a
generalized dimensionless form

∂u

∂ξ
− u

∂u

∂t
= 0, (2.9)

∂r

∂ξ
= 1

2

(
∂r

∂t

)2

,
∂r

∂ξ
− u

∂r

∂t
= −1

2
u2, (2.10)

where for definiteness the quantity u will be called the veloc-
ity, and r the displacement.

As is known, the wave field description in the framework
of partial differential equations in hydrodynamics is usually
called the Euler equation. It describes the temporary field be-
havior at some fixed point. To solve Eqs. (2.9) and (2.10) it is
convenient to pass over to the equations for the characteristics,
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the equations in ordinary derivatives

dU

dξ
= 0,

dT

dξ
= −U,

dR

dξ
= −1

2
U 2. (2.11)

The solutions of the characteristic system are trivial:

U (τ, ξ ) = U0(τ ), T (τ, ξ ) = τ − ξU0(τ ),

R(τ, ξ ) = R0(τ ) − ξ

2
U 2

0 (τ ), (2.12)

where R0(τ ) and U0(τ ) describe the wave field characteristics
at the input of the medium (ξ = 0). This is the so-called
Lagrangian description when we observe how the parameters
of an individual point of the wave (particle) profile behave
when the coordinate ξ changes. Moreover, the variable τ is a
temporary Lagrangian coordinate.

To go from the Lagrangian description (2.11) and (2.12) to
the Euler one it is necessary to find the function τ = τ∗(t, ξ )
from the equation

t = τ − ξU0(τ ). (2.13)

Then the wave field in the Euler representation will be ex-
pressed as follows through the Lagrangian field:

u(t, ξ ) = U0[τ∗(t, ξ )],

r(t, ξ ) = R0[τ∗(t, ξ )] − ξ

2
U 2

0 [τ∗(t, ξ )]. (2.14)

For the wave field to be unambiguous in the Euler repre-
sentation, the unambiguity of the equation solution (2.13) is
necessary, that is, equivalent to the positivity of the Jacobian
transformation

J (τ, ξ ) = ∂T

∂τ
= 1 − ξ

dU0

dτ
> 0. (2.15)

The same condition can be easily obtained by differentiat-
ing the Riemannian wave with respect to any variable, and
the solution is valid until a gradient catastrophe (collapse)
sets in.

Here we will illustrate the displacement and velocity of
the Riemann wave particles in the Lagrangian and Euler
representations in the case of harmonic oscillations in the
linear theory:

r(t, 0) = R0(t ) = cos(t ). (2.16)

FIG. 1. The velocity profile (the upper figure) and the displace-
ment (the lower figure) in the Lagrangian (the dashed line) and the
Euler representations (the solid line) for ξ = 1.8.

In Fig. 1 the velocity and displacement profiles in the
Lagrangian representation U (t, ξ ) and R(t, ξ ) are shown by
the dashed line, and those in the Euler representation are
shown by the solid line for ξ = 1.8. Let us note that it follows
from (2.15) that the solution in the Euler representation is
unambiguous under the condition ξ < 1. However, we have
specifically chosen a larger value of the coordinate to illustrate
the fundamental difference in the profiles in the Lagrangian
and Euler representations, when the wave remains unambigu-
ous in the Lagrangian representation and ambiguous in the
Euler one.

It is the combination of the Euler and the Lagrangian
approaches that allows us to find the statistical characteristics
of the nonlinear wave at a fixed distance from the input
[12,13].

III. PROBABILITY DISTRIBUTIONS OF THE RIEMANN WAVE AND ITS INTEGRAL

Let us suppose that the statistical properties of the wave field at the nonlinear medium input (ξ = 0) are known and consider
the wave field at the input to be a stationary random process with a probability density

w0,r,u(R,U ) = 〈δ[R − R0(τ )]δ[U − U0(τ )]〉 =
∫ +∞

−∞

∫ +∞

−∞
δ(z − R)δ(v − U )w0,r,u(z, v)dzdv, (3.1)

where 〈·〉 mean the brackets of statistical averaging. Then in the Lagrangian representation the probability density of
displacement and velocity is

wLag(r; ξ ) =
∫

w0,r,u

(
r + ξ

2
u2, u

)
du, (3.2)

wLag(u; ξ ) =
∫

w0,r,u

(
r + ξ

2
u2, u

)
dr, (3.3)
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while the two-dimensional probability density of displacement and velocity is

wlag(r, u; τ, ξ ) =
〈
δ

[
R0(τ ) − 1

2
U 2

0 (τ )ξ − r

]
δ[U0(τ ) − u]

〉
= w0,r,u

(
r + u2ξ

2
, u

)
. (3.4)

For the correct transition from the probability distribution in the Lagrangian representation (3.2)–(3.4) to the probabilistic
distribution in the Euler one, we also need to know additionally the Jacobian behavior (2.15), namely, the Lagrangian probability
density of four variables: t , r, u, j:

wLagr (t, r, u, j; τ, ξ ) = 〈δ[t − T (τ, ξ )]δ[r − R(τ, ξ )]δ[u − U (τ, ξ )]δ[ j − J (τ, ξ )]〉

= δ(τ − t − ξu)

〈
δ[r − R0(τ ) + ξ

2
U 2

0 (τ )]δ[u − U0(τ )]δ[ j − 1 + ξa0(τ )]

〉
, (3.5)

where we have introduced another random variable that has the acceleration meaning

a0(τ ) = dU0/dτ. (3.6)

It is also worth noting that in (3.5) we used the filtering property of the delta function δ[u − U0(τ )].
Let us assume that the probability distribution of wave characteristics at the input is known: the three-point density of the

probability of displacement, velocity, and acceleration:

w0,r,u,a(R,U, A) = 〈δ[R − R0(τ )]δ[U − U0(τ )]δ[A − a0(τ )]〉

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
δ(α − R)δ(β − U )δ(χ − A)w0,r,u,a(α, β, χ )dαdβdχ (3.7)

Using the filtering property of the delta function

δ[ j − 1 + ξa0(τ )] = 1

ξ
δ

[
a0 − 1 − j

ξ

]
(3.8)

in (3.5), for the Lagrangian probability density we get

wLagr (t, r, u, j; τ, ξ ) = 1

ξ
δ(τ − t − ξu)w0,r,u,a

(
r + ξ

2
u2, u,

1 − j

ξ

)
. (3.9)

To find the Euler probability density, it is necessary to integrate (3.9) over τ :∫ +∞

−∞
wLagr (t, u, j, r; τ, ξ )dτ = =

〈
1

J[τ∗(t, ξ ), ξ ]
δ[u − U (τ∗(t, ξ ), ξ )]δ[ j − J (τ∗(t, ξ ), ξ )]δ[r − R(τ∗(t, ξ ), ξ )]

〉

=
〈

1

j(t, ξ )
δ[u − u(t, ξ )]δ[ j − j(t, ξ )]δ[r − r(t, ξ )]

〉
= 1

j
weul(u, j, r; t, ξ ). (3.10)

Here again we have used the filtering property of the delta function

δ[t − T (τ, ξ )] = 1

j(t, ξ )
δ[τ − τ (t, ξ )] (3.11)

and the formulas (2.14) for the transition from the Lagrangian description to the Euler one. The appearance of the Jacobian in
(3.11) is due to the fact that the expanding profile sections make a larger contribution to Euler statistics than the compressing
ones. Using the puncturing property of the delta function δ(τ − t − ξu) from (3.10) and (3.11) we get

weul(u, j, r; t, ξ ) = j

ξ
w0

(
u,

1 − j

ξ
, r + ξ

2
u2, t + ξu

)
. (3.12)

After integrating (3.12) over j for the joint displacement probability density and velocity we obtain

weul(r, u; t, ξ ) = w0,r,u

(
r + ξ

2
u2, u; t + ξu

)
− ξ

∫ +∞

−∞
w0,r,u,a

(
r + ξ

2
u2, u, a; t + ξu

)
da. (3.13)

Then after integrating (3.13) over the variable r, we obtain the probability distribution of the velocity field. For the stationary
process, the probability velocity density is preserved:

weul(u; ξ ) = w0(u), (3.14)

since the broadening of individual sections of the Riemann wave is compensated by the compression of the others [12,13]. For
the probability displacement distribution from (3.13) after the integration over u, we get

weul(r; ξ ) =
∫ +∞

−∞
w0,r,u

(
r + ξ

2
u2, u

)
du − ξ

∫ +∞

−∞

∫ +∞

−∞
w0,r,u,a

(
r + ξ

2
u2, u, a

)
adadu. (3.15)
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As can be seen from the comparison with (3.2), the
first term coincides with the Lagrangian probability density
wLag(r; ξ ). The second term describes the difference between
the Lagrangian probability density and the Euler one, namely,
a relatively larger contribution from the expanding profile
sections to the Euler probability density.

So we have shown that when calculating the single-point
densities of the velocity distribution (the actual Riemann
wave) it is sufficient to know its distribution at the input,
and the nonlinearity does not affect the probability velocity
distribution. The displacement probability density (the inte-
gral of the Riemann wave) is determined by the two-point
distribution of displacement, speed, and acceleration. Such
distributions are always poorly known for random processes
and are almost never measured in laboratory or field condi-
tions. Therefore, for specific calculations of the probability
distribution of the Riemann wave integral, one has to make
additional assumptions about the form of the three-point
distribution function at the input.

IV. CALCULATIONS OF PROBABILITY DISTRIBUTION
OF BIAS CHARACTERISTICS WITH GAUSSIAN

INPUT STATISTICS

The expressions for the displacement probability density
and velocity obtained above are written under the assumption
that the wave profile in all implementations is unambiguous
everywhere, that is, condition (2.15) holds, and we reproduce
it here:

J (τ, ξ ) = 1 − ξa0(τ ) > 0. (4.1)

Thus, the strict condition for the general expressions appli-
cability for the Euler probability densities is limited to

ξ � 1/ max(a0). (4.2)

For a random field it is possible only if the initial proba-
bility distribution of the coastal motion acceleration is finitary
and identically equal to zero at a > max(a0). In Ref. [15] such
a distribution model was suggested and probability displace-
ment distributions for a narrow-band initial disturbance were
obtained. However, if the initial field has Gaussian statistics,
formally the Riemann solution ambiguities arise at arbitrarily
small distances.

In nonlinear acoustics it is customary to consider the
Riemann equation solution generalization when discontinu-
ities are introduced into the solution. This discontinuities
position is determined from the integral conservation laws
known for the Riemann wave as the Oleinik-Lax principle
[13]. Moreover, from all branches of the multivalued solution
(Fig. 1), that branch is selected on which the displacement
takes a maximum value. That is, in Eq. (2.13) from the set of
solutions τ = τ∗(t, ξ ) it is necessary to choose those where
the function r(t, ξ ) in formula (2.14) reaches the absolutely
maximum value. Let us note that this solution coincides with
the Burgers equation asymptotic solution with vanishingly
low viscosity. The evolution of this random wave type is called
acoustic turbulence, or Burgers turbulence, and sometimes
even Burgulence [29,30]. In this case, a fairly complete statis-
tical description can be carried out at large times (long paths)
when the statistical theory of large overshoots can be used. Let

us note that for the one-dimensional Burgers turbulence (as
well as the three-dimensional Burgers equation used to model
the large-scale Universe structure) for a certain class of initial
conditions it is possible to give an almost exhaustive sta-
tistical description [11–14,29–33]. In particular, single-point
and two-point probability distributions of the velocity field
and even N-point probability distributions, and, accordingly,
multipoint moment functions, were found. Moreover, as a
result of multiple merging of discontinuities, a self-similar
evolutionary regime is realized.

We will be interested in the initial stage of a random
field evolution when the ambiguity regions occupy a rela-
tively small place in the random field duration. However,
ambiguity areas are important for determining probability
characteristics. It should be said that sometimes many-valued
solutions are physically realized, for example, for the optical
wave phase (2.1)–(2.3), and we have the right to consider
ambiguous solutions. In other cases, for example, in the
hydrodynamics of the sea wave run-up on the shore, the
wave after breaking has a shape that does not coincide with
the Riemann solution. In this case, the above given analysis
is necessary to assess the Riemann wave applicability to
describe the probability density of a random field.

That is why we did not supply the Jacobian module j(t, ξ )
in formula (3.11), as is required in the generalized delta
function theory [13]. To understand the ambiguity nature
better, it is convenient to recall that for ergodic processes the
probability density, for example, of the displacement w(r, ξ )
coincides with the relative residence time of the process r(t )
in the interval (r, r + dr) [13]:

w(r; ξ ) = 1

L

N∑
n=1

dtn
dr

. (4.3)

Formally, formula (4.3) is also valid for multivalued pro-
cesses. Naturally, the probability density notion cannot be
introduced for such processes. Nevertheless, in what follows,
the expressions obtained below for the probability density of
the Gaussian process based on the previous section will be
referred to as the probability density as before. Physically,
they describe precisely the relative residence time (4.3). After
the ambiguity appearance in the Riemann solution in areas
where the Jacobian (4.1) is negative, some intervals are also
negative. There are various options to take into account mul-
tivalued solutions (of the type shown in Fig. 1) in the relative
residence time: (1) the corresponding intervals are taken into
account with the minus sign, (2) the breaking intervals are
neglected, and (3) all intervals with the plus sign are taken
into account. In interpreting the formulas obtained below, we
will use precisely formula (4.3). Every situation of the kind
corresponds to a certain sign and the delta function magnitude
in the form (3.11).

First, let us interpret the probability density preservation of
the velocity field. Obviously, an expression similar to (3.14)
can also be written for the velocity field. Moreover, from
the residence time dtn of the process u(t ) in the interval
(u, u + du) from (2.12) we have dtn = dtn,0 ± ξdu, and the
relative residence time (probability density) of the velocity
field is preserved: W (u, ξ ) = W (u, 0).
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We will now discuss the evolution of the displacement
probability density. Let us suppose that the initial field has
Gaussian statistics and let the correlation function B0(τ ) and
the spectrum S0(ω) of the input displacement are given. Then,
for the three quantity dispersions (displacement, velocity, and
acceleration), the following relations are valid [34,35]:

B0(τ ) =
∫ +∞

−∞
S0(ω) exp(iωτ )dω (4.4)

σ 2
R0

= 〈
R2

0(t )
〉 = B0(0) =

∫ +∞

−∞
S0(ω)dω, (4.5)

σ 2
U0

= 〈
U 2

0 (t )
〉 = − d2B0

dτ 2

∣∣∣∣
0

=
∫ +∞

−∞
ω2S0(ω)dω, (4.6)

σ 2
a0

= 〈
a2

0(t )
〉 = d4B0

dθ4

∣∣∣∣
0

=
∫ +∞

−∞
ω4S0(ω)dω, (4.7)

〈R0(t )a0(t )〉 = d2B0

dτ 2

∣∣∣∣
0

= −
∫ +∞

−∞
ω2S0(ω)dω = −σ 2

U0
,

(4.8)

〈R0(t )U0(t )〉 = 0, 〈U0(t )a0(t )〉 = 0. (4.9)

We denote the correlation coefficient of the initial displace-
ment and acceleration as

q = 〈R0(t )a0(t )〉
σR0σa0

= − σ 2
U0

σR0σa0

. (4.10)

The distributions of the three input quantities (displace-
ment, velocity and acceleration) are described by the Gaussian
formulas

w0(U ) = 1√
2πσ 2

U0

exp

(
− U 2

2σ 2
U0

)
, (4.11)

w0,R,a(R, a) = 1

2πσR0σa0

√
1 − q2

exp

[
− 1

2(1 − q2)

(
R2

σ 2
R0

+ a2

σ 2
a0

− 2q
ra

σR0σa0

)]
, (4.12)

w0,R,U,a(R,U, a) = w0,U (U )w0,R,a(R, a). (4.13)

Substituting these formulas in (3.15), we find the Euler probability distribution of the displacement

weul(r, ξ ) = 1

2πσR0σU0

∫ +∞

−∞
exp

(
− U 2

2σ 2
U0

)
exp

[
− (R + ξU 2/2)2

2σ 2
R0

]
dU

− ξσU0

2πσ 3
R0

∫ +∞

−∞
exp

(
− U 2

2σ 2
U0

)
exp

[
− (R + ξU 2/2)2

2σ 2
R0

](
R + ξ

2
U 2

)
dU . (4.14)

We note here that acceleration dispersion was not included in this formula. Let us move on to the dimensionless variables

ϕ = R/σR0 , v = U/σU0 , l = ξ/Lnel, (4.15)

where Lnel = σR0/σ
2
U0

is the characteristic distance of the nonlinear effect manifestation. In these variables, the Euler displace-
ment probability density takes the form

weul(ϕ, l ) = 1

2π

∫ +∞

−∞
exp

(
−v2

2

)
exp

[
− (ϕ + lv2/2)2

2

][
1 + l

(
ϕ + lv2

2

)]
dv, (4.16)

and is expressed in terms of the Lagrangian probability density as follows:

weul(ϕ, l ) = wLag(ϕ, l ) − l
∂wLag

∂ϕ
, (4.17)

wLag(ϕ, l ) = 1

2π

∫ +∞

−∞
exp

(
−v2

2

)
exp

[
− (ϕ + lv2/2)2

2

]
dv. (4.18)

From these expressions it is obvious that the normalization
per unit of both the Lagrangian and Euler probability densities
is preserved. Moreover, it follows from (4.17) and (4.18) that
the shifts of the average values of the Lagrangian and Euler
probability density displacement have different signs:

∫ +∞

−∞
ϕwLag(ϕ, l )dϕ = − l

2
,

∫ +∞

−∞
ϕweul(ϕ, l )dϕ = l

2
.

(4.19)

Figure 2 shows the graphs of the Lagrange and Euler dis-
tributions constructed according to formulas (4.17) and (4.18)
for l = 0, 0.5, and 1. To emphasize the difference between
these variables along the axes, the Lagrangian (R) and Euler
(r) variables are plotted. It can be seen from the figure that
the Lagrangian and Euler probability distributions shift in dif-
ferent directions with the increasing parameter l , as predicted
by the formulas (4.19). For the Euler distribution, there is a
relative increase in the probability of the positive bias values
r. The appearance of negative values weul(r) for the negative
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FIG. 2. The Lagrangian (the upper figure) and the Euler (the
lower figure) displacement probability density at l = 0, (the dashed
line), l = 0.5 (points), and l = 1 (the solid line).

r values is due to the fact that, in accordance with formula
(3.11), we consider the relative residence process time (4.3),
and in the multivalued solution, the breaking intervals are
taken into account with the minus sign. As already mentioned,
multivalued solutions for the Riemann wave characteristics do
not have any physical meaning. Nevertheless, for the functions
described by first-order equations of the type (2.9) and (2.10),
the locality principle is valid: the function behavior outside
the singularity zone does not depend on the function behavior
in the singularity neighborhood zone. This allows us to hope
that with positive argument values the probability density
describes the evolution of the displacement probability dis-
tribution adequately enough. As applied to the problems of
the sea wave run-up on the shore, the positive values of the
argument r correspond to the wave flooding stage of the coast,
which is of great practical importance.

As already noted, for multivalued solutions, there are three
possible options to take multivalued sections into account in
the relative residence time of the process in the given value
range. In the first case, such intervals are taken into account
with the minus sign, in the second one the run-up intervals
are neglected, and in the third, only single-valued branches
are taken into account. The first case was considered above.
Below we will see how the probability density form changes
in the last two cases. We first consider the case when we
neglect all the intervals with a different sign (the second case).

To do this, we integrate in the last integral (3.15) over a in
the Jacobian positivity interval, that is, for a < 1/ξ . Then the
probability density of the displacement has the form

w+
eul(ϕ; l, q) = 1

2π

∫ +∞

−∞
exp

(
−v2

2

)
exp

[
− (ϕ + lv2/2)2

2

]

× F (ϕ, l, q)dv, (4.20)

where

F (ϕ, l, q) = 1 + l

2

[
ϕ + lv2

2

][
1 + Er f

(
μ√

2

)

− 1√
2π

exp
(
−μ

2

)]
, (4.21)

μ = |q|√
1 − q2

[
ϕ + lv2

2
+ 1

l

]
. (4.22)

Here Er f (z) = 2√
π

∫ z
0 exp(−t2)dt is the error integral. Ex-

pression (4.20) includes an additional parameter q, which we
have already introduced earlier, as the correlation coefficient
of the surface displacement and acceleration. It is worth
noting that in addition to the nonlinear length Lnel (4.15), we
have the characteristic breaking length of the velocity profile
(the gradient catastrophe):

Lu = 1

σa0

= |q|Lnel. (4.23)

Thus, the dimensionless length included in the formulas for
the probability distribution (4.20) is related to the variable ξ

in the following way:

l = ξ

Lnel
= ξ |q|

Lu
(4.24)

and it depends on the correlation coefficient of the displace-
ment and acceleration q. Figure 3 shows the distribution (4.20)
for l = 1 and various values of the correlation coefficient
q. For relatively large values of the correlation coefficient
modules |q| ≈ 1 [Fig. 3(a)], the probability distributions for
the positive bias values are almost identical in these mod-
els. This means that the wave field peculiarities (features)
arise mainly at the negative r values and do not affect the
probability distribution form for the positive r values. As we
have underlined above, in the case of the sea wave run-up
on the coast, the positive r values correspond to the coastal
flooding stage, therefore, we can correctly predict the flooding
characteristics. In the case of small coefficients q [Fig. 3(b)],
the appearance of singularities is little correlated with the
displacement r; singularities arise both for the positive and
negative bias values. Let us note that, in accordance with
(4.24), Fig. 3(b) corresponds to the stage of developed am-
biguities.

To conclude this section, we give the formula for the dis-
placement probability density when we consider all the mod-
ule intervals in the polysemy domain. In this case, the in-
tegration over the variable a is divided into two intervals
(−∞, 1/ξ ) and (ξ,+∞), and on the right interval the sign of
the Jacobian changes. As a result, the potential probabilistic
distribution considered as the relative residence time of the
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FIG. 3. The Euler displacement probability density (relative res-
idence time) at l = 1 for two models when ambiguities are taken
into account [(a) |q| = 0.9, (b) |q| = 0.1]. The solid line shows
the displacement probability distribution when the intervals after
breaking are taken into account with the minus sign. The dotted
line shows the distribution when these intervals are not taken into
consideration.

process in the given interval, takes the form

wall
eul(ϕ; l, q) = 1

2π

∫ +∞

−∞
exp

(
−v2

2

)
exp

[
− (ϕ + lv2/2)2

2

]

× F1(ϕ, l, q)dv, (4.25)

where

F1(ϕ, l, q) = 1 + ξ l
√

1 − q2

[
ϕ + lv2

2

][
1 + Er f

(
μ√

2

)

− 1√
2π

exp
(
−μ

2

)]
. (4.26)

Figure 4 shows the Euler probability density (relative res-
idence time) for two models of accounting ambiguities. As
in the previous case, this figure shows that if the correlation
value coefficient is not too small, the probability displacement
distribution for the positive argument values is almost the
same in these models.

So the main result of this section is the assertion that
the effects of the wave breaking with a strong correlation
between the displacement and acceleration have little effect on

FIG. 4. The Euler potential probability density (relative resi-
dence time) for l = 1 and |q| = 0.9 for two models when ambiguities
are taken into account. The solid line shows the probability distribu-
tion (4.16), when the intervals after breaking are taken into account
with the minus sign. The dashed line shows the distribution (4.25)
when all the intervals in the polysemy region are taken into account
with the positive sign.

the distribution form in the area of the positive displacement
values, namely, as already mentioned, they are important in
the problems of the sea wave run-up on the shore.

V. CONCLUSION

In this paper we consider the evolution of the probabil-
ity distributions of nonlinear random waves in a nondisper-
sive medium described by an equation of the Riemann type
(a simple wave equation).

This equation and the corresponding equation for the inte-
gral from it (displacement) describe a wide class of physical
phenomena: the phase front evolution in geometry optics, fire
front evolution, intense acoustic waves, the moving shoreline
(edge) dynamics when sea waves run-up on the shore, and
some others. In the simplest case, the Riemann equation
describes the evolution of gas of noninteracting particles.
Moreover, the behavior of the particle itself is trivial: we
have a simple uniform and rectilinear motion of an individual
particle. The representation of the kind when we follow the
individual particle motion (a fixed point in the wave profile) is
usually called the Lagrangian description. However, as have
already mentioned in the review [10], the consideration of a
continuous medium, that is, not just one, but a whole ensemble
of particles, leads to interesting and nontrivial results even
in this simple case. This is a nonlinear profile distortion, the
generation of harmonics. The field description at a fixed point
and a fixed time point is usually called the Euler description.
Naturally, we have the same thing for the evolution of the
statistical characteristics of random fields. Since each particle
moves at a constant speed, its Lagrangian probability density
does not change, while in the Euler representation there is a
significant distortion of the statistical field characteristics.

The dynamics of actually random Riemann waves is well
known, but the probability distributions of the Riemann wave
integrals have not been studied yet. In this paper we have
obtained general expressions for the probability distributions
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of velocity and displacement using the Lagrange and Euler
connection of the statistical description. It is shown in the
paper that in order to find the probability displacement distri-
bution it is necessary to know the joint probability distribution
of displacement, velocity, and acceleration at the input. In
the expression for the Euler probability density there appears
a term describing the difference between the Lagrangian
probability density and the Euler probability density, namely,
the relatively larger contribution obtained from the expand-
ing profile sections to the Euler probability density. If the
Lagrangian probability density shifts toward negative biases
the Euler probability density shifts toward positive biases. The
applicability condition for these expressions is limited to the
case of single-stream solutions of the Riemann equation.

Nevertheless, the case where the wave field at the input
has Gaussian statistics, is discussed in the paper as well. In
this case, it is suggested that the obtained formulas should
be interpreted as the time of the relative process stay in a
certain range of velocity or bias values. It is true for ergodic
processes when averaging over an ensemble of realizations
can be replaced by averaging over a separate rather long
process implementation. Then the obtained formulas for the
probability distribution describe the relative residence time of
the process of the multivalued Riemann equation solutions.
At the same time, there are various options to take into
account the areas where profile points are overtaken, and
so the Jacobian of the transformation from the Lagrangian
variables to the Euler ones becomes negative. Depending on

the choice procedure of taking these intervals into account,
the relative residence time can have negative values while
maintaining normalization by one, or remaining positive to
have the normalization greater than one. This is due to the
fact that for the multivalued solutions, the total duration of the
elementary process intervals in a certain displacement interval
becomes longer than the interval duration itself.

The paper presents graphs of the probability displacement
distribution at large distances, comparable with the charac-
teristic value of the nonlinear length. From these graphs it
follows that, due to the locality of the Riemann equation,
the appearance of ambiguity occurring mainly at negative
values does not affect the probability density form at positive
bias values. In the problems of the sea wave run-up on the
shore it means that the effects of the wave collapse with
a strong correlation between displacement and acceleration
have little effect on the distribution in the area of positive
displacement values corresponding to the shore flooding stage
by the wave.
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