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Discrete vortices on spatially nonuniform two-dimensional electric networks
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Two-dimensional arrays of nonlinear electric oscillators are considered theoretically where nearest neighbors
are coupled by relatively small constant but nonequal capacitors. The dynamics is approximately reduced to a
weakly dissipative defocusing discrete nonlinear Schrödinger equation with translationally noninvariant linear
dispersive coefficients. Behavior of quantized discrete vortices in such systems is shown to depend strongly on
the spatial profile of the internode coupling as well as on the ratio between time-increasing healing length and
lattice spacings. In particular, vortex clusters can be stably trapped for some initial period of time by a circular
barrier in the coupling profile, but then, due to gradual dissipative broadening of vortex cores, they lose stability
and suddenly start to move.
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I. INTRODUCTION

Nonlinear complex wave fields are known to support quan-
tized vortices in two and three spatial dimensions [1–8]. Vor-
tices have also been studied in discrete systems (on lattices;
see, e.g., Refs. [9–16] and citations therein). As far as weakly
dissipative lattice dynamics is considered, among the most
popular mathematical models are modifications of a discrete
nonlinear Schrödinger equation (DNLSE) [9–25]. They arise
in various scientific contexts (but mostly in nonlinear optics
[13,15] and in physics of nonlinear metamaterials [16]), where
we have nearly identical oscillators with their normal complex
variables an(t ) = An(t ) exp(−iω0t ) and with nonlinear fre-
quency shifts g|An|2 � ω0. The simplest form of the DNLSE
is

i(Ȧn + γω0An) = g|An|2An − 1

2

∑
n′

cn,n′An′ , (1)

where the overdot means a time derivative. A linear damping
rate γω0 takes into account dissipative effects with small
γ = 1/Q � 1 being an inverse quality factor. Oscillators are
weakly coupled by (real) coefficients cn,n′ = cn′,n � ω0 (if
coupling strength and/or nonlinearity level are not weak, then,
more complicated forms of the DNLSE appear, including
nonlinearities in coupling terms [13,15]). In many interesting
cases, multi-index n is a node n = (n1, . . . , nd ) of a simple
regular lattice in one, two, or three spatial dimensions (d =
1, d = 2, and d = 3, respectively). Besides electromagnetic
artificially created structures [16], the DNLSE has been suc-
cessfully applied in nonlinear optics where it describes a
stationary regime of light propagation in waveguide arrays
[13] [one-dimensional (1D) and two-dimensional (2D) cases
with time variable t replaced by propagation coordinate z].

The coupling coefficients cn,n′ are often considered as
translationally invariant on the lattice and taking place be-
tween a few near neighbors. If they have a definite sign, then,
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in the long-scale quasicontinuous limit, we have either a defo-
cusing regime (when gc > 0), or a focusing one (when gc <

0). Accordingly, different nonlinear coherent wave structures
can take place in each case. In particular, in the most well-
studied focusing regime, there are highly localized discrete
solitons and discrete vortex solitons (see Refs. [9–13]), and
references therein). In the defocusing regime, there are dark
solitons, and besides that, discrete analogs of superfluid quan-
tized vortices can be excited and interact with each other over
long distances.

In this paper, we consider discrete vortices but in somewhat
more complicated arrangements where coupling coefficients
are not translationally invariant cn+l,n′+l �= cn,n′ , and the cor-
responding terms contain differences (An − An′ ) instead of
(−An′ ),

i(Ȧn + γω0An) = g|An|2An + 1

2

∑
n′

cn,n′ (An − An′ ). (2)

In general, Eqs. (1) and (2) are not equivalent. The exception
is for infinite and uniform lattices where they are related to
each other by a simple gauge transformation.

It is important that Eq. (2) with any coefficients cn,n′ admits
a class of spatially uniform solutions,

An = A0 exp[−γω0t − ig|A0|2(1 − e−2γω0t )/(2γω0)]. (3)

However, spatial nonuniformity of couplings should strongly
affect vortex dynamics on the above background since vor-
tices are known to have highly delocalized phase gradi-
ents, even if the amplitude variation (vortex core) is local-
ized. Continuous quantized vortices on spatially nonuniform
backgrounds have been extensively studied in application to
trapped Bose-Einstein condensates where nonuniformity is
introduced by external potential (see, e.g., Refs. [5–8,26–49]
and citations therein). Effects of dispersive nonuniformity are
still waiting for studying. Therefore, the first goal of this
paper is to investigate such effects for vortices on discrete
lattices within model (2). For simplicity, we consider below a
square lattice and interactions between the nearest neighbors
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FIG. 1. Schematic representation of coupled oscillators. Only a
fragment of the whole network is shown (two cells and coupling
between them).

in the form

cn,n′ = f (h[n + n′]/2), (4)

where h � 1 is a lattice spacing and f (x, y) is a sign-definite
function varying on scales (�x; �y) ∼ 1.

Equation (2) with nonuniform couplings has been intro-
duced recently in a formal manner as a three-dimensional
(3D) discrete system supporting long-lived vortex knots [25].
But no physical prototype was indicated there. In the present
paper, as a possible physical implementation approximately
corresponding to this equation, we theoretically suggest and
analyze a specially designed electric circuit network. Im-
plementation of discrete nonlinear dynamic systems in the
form of 1D and 2D electric networks has a long and rich
history [50–64], including even experimental simulations of
the integrable Toda chain [50–53]. Major attention has been
devoted to modulationally unstable systems. Here, we con-
sider a network possessing stable solutions (3). We adopt a
scheme consisting of nonlinear oscillator circuits coupled by
relatively small nonequal capacitors as shown in Fig. 1. It
will be derived below that nonlinear constant g and coupling
coefficients cn,n′ appear both negative in this case, so the
corresponding DNLSE is defocusing and appropriate for vor-
tices. If, instead, of small capacitances, oscillators are coupled
by large inductances, then a focusing DNLSE arises. That case
has been already studied previously (on uniform lattices) in
the context of discrete solitons, breathers, and vortex soli-
tons [55,56,60–62]. From a formal viewpoint, each induc-
tor represents a separate degree of freedom. Therefore, our
scheme is mathematically different. From a practical view-
point, small capacitors on links are more convenient than large
inductors.

It should be noted that electric networks can be of macro-
scopic sizes and assembled of standard radiotechnical ele-
ments. Typical dispersive and nonlinear times can be about
milliseconds with the carrier frequency ω0/2π of order
1 MHz. Additional convenience of electric implementation
is in easy setting the model parameters and in controllability
including arbitrary variation of coupling capacitances with

time. Moreover, flexible wires make possible to construct
topologically nontrivial 2D discrete manifolds as Möbius
strip, torus, Klein bottle, projective plane, and so on. This
fact opens wide new perspectives in studying vortices on
such discretized surfaces. Another important thing is that
our electric scheme can be equally suitable for construc-
tion of 3D nonlinear lattices. A practical problem is only
in a very big number of elements. So, to observe inter-
esting nonlinear behavior of vortices, in a 2D lattice, we
need about N2D ∼ 103–104 individual oscillators, whereas,
for a 3D lattice, the required number is N3D ∼ 105–106.
Therefore, planar constructions seem more realistic at the
moment.

Since the electric model is very promising, we put also the
second goal in this paper, that is to simulate the dynamics
directly within equations of motion governing the scheme
in Fig. 1 and then compare the results with the DNLSE
simulations.

This article is organized as follows. In Sec. II, we introduce
the theoretical model and derive the corresponding DNLSE
together with the parameters. Some technical details about
the DNLSE are included because it is easier for theoretical
analysis than the basic system of circuit equations. In Sec. III,
we generally analyze vortex motion in the 2D case with
orientation on the quasicontinuous limit. Special attention is
given there to coupling profiles with a barrier. This feature
is new in comparison with Ref. [25]. In Sec. IV, we present
some numerical results demonstrating nontrivial behavior of
interacting vortices in discrete spatially nonuniform weakly
dissipative 2D systems. Both the DNLSE and the original
system of circuit equations are simulated. In particular, it
will be shown that depending on parameters, vortex clusters
can be stably trapped for some initial period of time by a
circular barrier in function f profile, but then, due to gradual
dissipative broadening of vortex cores, they lose stability and
suddenly start to move in a complicated manner, some of
vortices penetrating the barrier. Finally, Sec. V contains a brief
summary of the paper.

II. MODEL DESCRIPTION AND BASIC EQUATIONS

In the beginning, we describe our simple scheme (see
Fig. 1). Let each electric oscillator in the network consist
of a coil with inductance L and small active resistance RL,
connected in series to a voltage-dependent differential ca-
pacitance (varicap) Cv (V ) = dq/dV , where q is the electric
charge. A reverse-biased varactor diode is implied or another
nonlinear capacitor (perhaps in parallel with an ordinary
capacitor). The varicap is characterized by a large shunt
resistance RC (for leakage current). For simplicity, we assume
RC = const, thus, neglecting nonlinearity in dissipation. The
remaining end of the coil is connected to a dc bias voltage
Vb, whereas the remaining contact of the varicap is grounded.
A voltage at the contact between the coil and the varicap
is Vb + Vn(t ). Functional dependencies C(Vn) = Cv (Vb + Vn)
differ for devices fabricated under different technologies,
so many expressions were suggested to approximate them.
In particular, for a reverse-biased diode in parallel with a
constant capacitor, the following combined formula is able to
ensure good accuracy within a sufficiently wide voltage range
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(see, e.g., Refs. [51,53,56,60,61]),

C(Vn) = C0

[
μ + (1 − μ)

(1 + Vn/V∗)ν
+ ηe−κVn

]/
(1 + η), (5)

with fitting parameters C0 = C(0), V∗, μ, ν, η, and κ . Here,
0 < μ < 1 takes into account an ordinary capacitor in paral-
lel, whereas 0.3 � ν � 6.0 is related to the diode (by the way,
for the Toda lattice implementation, one needs to take diodes
with ν = 1). Very often in theoretical studies, it is put η = 0.
In some research works, a different kind of variable capacitor
is also considered with C(Vn) = C0(1 + V 2

n /V 2
∗ ) [63]. Such

a symmetric dependence is possible in devices using special
nonlinear dielectric films [65]. In any case, (additional) accu-
mulated electrostatic energy at the varicap is given by formula,

W (Vn) =
∫ Vn

0
C(u)u du, (6)

whereas, the ac electric charge is

qn = q(Vn) =
∫ Vn

0
C(u)du. (7)

Taking the inverse relation, we have Vn = U (qn). The equation
of motion for a single oscillator circuit with dissipative terms
neglected is Lq̈n + U (qn) = 0. It will be important for our
purposes that a nonlinear frequency shift can be negative in
this dynamics. Of course, the fully nonlinear regime should
be studied numerically, but analytical investigations may be
based on the expansion,

U (qn) = C−1
0

[
qn + αq2

n + βq3
n + · · · ] (8)

assuming relatively small amplitudes. Then, a frequency shift
for the weakly nonlinear regime is known to be

�ω = ω0(3β/8 − 5α2/12)q2
0, (9)

with ω0 = 2π/T0 = 1/
√

LC0 and q0 being an amplitude of the
main harmonics.

FIG. 2. Critical values of ξeff found numerically by minimizing
the Hamiltonian (36), starting with a small ξeff and increasing it by
small steps until cluster destruction.

The inverse quality factor of the oscillator is apparently,

γ = (
RL

√
C0/L + R−1

C

√
L/C0

)
/2. (10)

It is presumed very small (as we will see below, the
most interesting things happening with vortices begin at
Q � 104). For example, with L = 5.0 × 10−4H, C0 = 5.0 ×
10−10 F, RL < 0.1, and RC > 107 �, we have ω0 = 2.0 ×
106 rad/s, corresponding to a frequency about 0.3 MHz and
a sufficiently high quality factor of Q > 104. Perhaps, even
smaller values of RL and larger values of RC can be achieved
at reasonably low temperatures, making Q � 105.

There are also weak ordinary capacitors Cn,n′ � C0 in-
serted between points Vn and Vn′ . They unite individual os-
cillators into a whole network.

Equations of motion for the united system can be derived
in a very simple manner. Indeed, electric current through the
coil is In, whereas currents through the capacitors are C(Vn)V̇n

and Cn,n′ (V̇n − V̇n′ ). The leakage current parallel to varicap is
Vn/RC . Thus, we obtain equations,

C(Vn)V̇n +
∑

n′
Cn,n′ (V̇n − V̇n′ ) + Vn

RC
= In. (11)

A voltage difference at the coil is Lİn + RLIn. In sum with
Vb + Vn, it should give Vb. Therefore, we have the second
subset of equations, closing the system,

Lİn + Vn + RLIn = 0. (12)

It is clear that our system admits a class of n-independent
solutions related to Eq. (3) when each node oscillates as if
there were no couplings.

It is not so obvious at first glance but can be easily checked
that, without dissipative terms containing active resistances RL

and RC , Eqs. (11) and (12) correspond to a Lagrangian system
with the Lagrangian function,

L =
∑

n

L

2

[
C(Vn)V̇n +

∑
n′

Cn,n′ (V̇n − V̇n′ )

]2

−
∑

n

W (Vn) −
∑
n,n′

Cn,n′

4
(Vn − Vn′ )2. (13)

Equations of motion in the form (11) and (12) are suitable
enough for numerical simulations but difficult for theoretical
analysis. Therefore, our next steps will be to rewrite the
Lagrangian in terms of charges qn and then introduce a Hamil-
tonian description. It is convenient to adopt nondimensional-
ization (voltage in units of V∗, charge in units of C0V∗, and time
in units of 1/ω0), formally corresponding to L = 1, C0 = 1.
Then, in the first order on small quantities c̄n,n′ = Cn,n′/C0,
and retaining only main terms on oscillation amplitudes in the
couplings, we have

L ≈
∑

n

[
q̇2

n

2
− q2

n

2
− α

q3
n

3
− β

q4
n

4

]

+1

4

∑
n,n′

c̄n,n′ [2(q̇n − q̇n′ )2 − (qn − qn′ )2]. (14)
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FIG. 3. An example of the evolution of two vortices in the DNLSE.

The canonical momenta for this Lagrangian are

pn = q̇n + 2
∑
n,n′

c̄n,n′ (q̇n − q̇n′ ). (15)

Inverse relations, again, with the first-order accuracy on c̄n,n′ ,
are easily obtained as

q̇n ≈ pn − 2
∑
n,n′

c̄n,n′ (pn − pn′ ). (16)

As the result, the Hamiltonian function of weakly interacting
oscillators acquires the following form:

H ≈
∑

n

[
p2

n

2
+ q2

n

2
+ α

q3
n

3
+ β

q4
n

4

]

−1

4

∑
n,n′

c̄n,n′ [2(pn − pn′ )2 − (qn − qn′ )2]. (17)
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FIG. 4. An example of the evolution of three vortices in the DNLSE.

When an oscillator is taken separately, then, there exists a weakly nonlinear canonical transform,

qn ≈ q̃n − α

3

(
q̃2

n + 2 p̃2
n

) + q̃n

16

[(
25

9
α2 − 5

2
β

)
q̃2

n +
(

13

9
α2 − 9

2
β

)
p̃2

n

]
, (18)

pn ≈ p̃n + 2α

3
p̃nq̃n − p̃n

16

[(
11

9
α2 − 15

2
β

)
q̃2

n +
(

47

9
α2 − 3

2
β

)
p̃2

n

]
, (19)

such that a combination an = (q̃n + i p̃n)/
√

2 (the normal
complex variable) is related to the action-angle variables
Sn and φn by formula an = √

Sn exp(iφn). That transform
excludes third-order terms from the partial Hamiltonians.
Neglecting again nonlinearities in the couplings, we reduce
the total Hamiltonian to the following expression:

H ≈
∑

n

(
|an|2 + g

2
|an|4

)

−1

4

∑
n,n′

c̄n,n′ (an − an′ )(a∗
n − a∗

n′ )

+3

8

∑
n,n′

c̄n,n′ [(an − an′ )2 + (a∗
n − a∗

n′ )2], (20)

where the nonlinear coefficient is g = (3β/4 − 5α2/6).
In terms of an, Hamiltonian equations of motion are
iȧn = ∂H/∂a∗

n. In the main approximation, an behaves

proportionally to exp(−it ) since the nonlinearity and the
couplings are weak. Therefore, the last double sum in Eq. (20)
contains quickly oscillating quantities which are not important
after averaging. Introducing slow envelopes An = an exp(it )
and taking into account linear damping (not covered by
Hamiltonian theory), we arrive at Eq. (2) with negative cn,n′ =
−c̄n,n′ . Nonlinear coefficient g, for physically relevant param-
eters in Eq. (5), appears also negative. In particular, if η = 0,
then

g = ν(1 − μ)

24
[−3 + ν(1 − 4μ)]. (21)

It is very important that a nonzero value of μ, corresponding
to a constant capacitor in parallel with the diode, results in
stronger negative frequency shift. For example, with ν = 2
and μ = 0.5, we have g = −5/24, whereas for ν = 2 and
μ = 0, it is g = −1/12.
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FIG. 5. An example of the evolution of four vortices in the DNLSE.

III. ANALYSIS OF VORTEX MOTION IN 2D

As far as our goal is to study vortices on 2D networks, it is
convenient to introduce new complex variables ψn(t ) through
the following substitution (compare to Ref. [25] where a
positive frequency shift was considered):

An(t ) = A0ψ
∗
n (t ) exp[−γ t − iϕ(t )], (22)

where real A0 is a typical amplitude at t = 0 and ϕ(t ) =
gA2

0(1 − e−2γ t )/(2γ ). As the result, we reduce our dissipative
autonomous system to a nonautonomous Hamiltonian system,

iψ̇n =
∑

n′

c̄n,n′

2
(ψn − ψn′ ) + ∣∣gA2

0

∣∣e−2γ t (|ψn|2 − 1)ψn. (23)

Let a typical value of c̄n,n′ be c̄ � 1. For purposes of further
analysis, we introduce a slow time τ = h2c̄t and small param-
eters,

δ = γ /(h2c̄) � 1, ξ = (
h2c̄/

∣∣gA2
0

∣∣)1/2 � 1. (24)

Then, Eq. (23) takes the following form:

i
dψn

dτ
=

∑
n′

Fn,n′

2h2
(ψn − ψn′ ) + e−2δτ

ξ 2
(|ψn|2 − 1)ψn, (25)

where n′’s are the nearest neighbors for n on the square lat-
tice, Fn,n′ = F (h[n + n′]/2), and F (r) ∼ 1 is a non-negative
function. In the continuous limit, the above equation reduces

to a defocusing NLSE with a spatially variable dispersion
coefficient and a time-dependent nonlinear coefficient,

iψτ = −1

2
∇ · [F (r)∇ψ] + e−2δτ

ξ 2
(|ψ |2 − 1)ψ. (26)

We are interested in vortices on constant background ψ0 =
1. It is clear from the equation above that intervals �τ ∼ 1
are typical vortex turnover times in the system, ξ is a typical
relative healing length at τ = 0, whereas,

ξ̃ (r, τ ) = ξeδτ
√

F (r) (27)

is a local relative vortex core width. Vortices described by
Eq. (26) have been analyzed in Ref. [25] for the 3D case. Ap-
plying a similar analysis to the 2D situation, we easily obtain
that coordinates x j and y j of N point vortices are canonically
conjugate quantities (up to vortex signs σ j = ±1). On not very
long times and for small ξ , when ξeff = ξ exp(δτ ) � 1, vor-
tex motion is approximately described by a time-dependent
Hamiltonian function (compare to Refs. [40,41]),

H =
∑

j

σ 2
j E (r j, τ ) +

∑
j,k

′ σ jσk

2
G(r j, rk ), (28)

E (r, τ ) ≈ 1

2
G[r − eξ̃ (r, τ )/2, r + eξ̃ (r, τ )/2], (29)

where the prime means omitting diagonal terms in the double
sum determining pair interactions between vortices, e is a
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FIG. 6. An example of the evolution of four vortices in the basic electric model.

unit vector, and a two-dimensional Green’s function G(r, r1)
satisfies equation,

−∇r · 1

F (r)
∇rG(r, r1) = 2πδDirac(r − r1). (30)

The physical meaning of G(r, r1) can be explained as follows.
Let ψ = √

ρ exp(i�) be the Madelung transform, and J =
ρF (r)∇� be a “current density” (in the hydrodynamic sense)
for Eq. (26). In the long-scale hydrodynamic regime, away
from vortex cores, we have ρ ≈ 1 and, thus, ∇ · J ≈ 0, so
a stream function � exists for 2D vector field F (r)∇�.
Since the � field created by vortices is not single val-
ued and has singularities, it satisfies equation curl2D∇� =
2π

∑
j σ jδDirac(r − r j ). Therefore, we have a partial differen-

tial equation determining the stream function,

−∇r · 1

F (r)
∇r�(r) = 2π

∑
j

σ jδDirac(r − r j ). (31)

So G(r, r1) is a stream function created at point r by a vortex
placed in point r1. Expression (28) for vortex Hamiltonian H
then follows from appropriately regularized “kinetic-energy”
integral:

2πH = 1

2

∫
(∇�)2

F (r)
d2r. (32)

It follows from Eq. (30) that

G(r1, r2) = θ̃ (r1, r2) −
√

F (r1)F (r2) ln |r1 − r2|, (33)

with some smooth function θ̃ (r1, r2) ∼ 1. Therefore, the self-
energy is

E (r, τ ) = θ (r) − 1

2
F (r){ln[ξ

√
F (r)] + δτ }, (34)

where θ (r) = θ̃ (r, r)/2.
In particular, we may take the circularly symmetric profile

F (r) with r =
√

x2 + y2, and roughly (with a logarithmic
accuracy) estimate energy of a vortex cluster in the form of
a regular N polygon,

EN (r, τ ) ≈ N

2
F (r)[�(τ ) − (N − 1) ln(r)], (35)

where �(τ ) = [ln(1/ξ ) − δτ ] = − ln(ξeff ) is a logarithmi-
cally large quantity. It is not difficult to understand that, if
F (r) has a barrier at some finite rb, and N is not too large, then
expression (35) may have a minimum at some 0 < r∗ < rb.
Thus, whereas ξeff is less than a critical value, such a profile is
able to trap a vortex cluster.

Discreteness (finite h) acts also to stabilize vortex config-
urations because, whereas ξeff � h, the lattice tends to create
local minima (in the internode vortex center positions) for the
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FIG. 7. Four vortices in the electric model: phases corresponding to Fig. 6. The presence of vortices is clearly seen.

Hamiltonian corresponding to Eq. (25),

H̃ =
∑
n,n′

Fn,n′

4h2
|ψn − ψn′ |2 +

∑
n

e−2δτ

2ξ 2
(|ψn|2 − 1)2. (36)

Figure 2 illustrates this fact for a particular case of “rect-
angular” barrier [F (r) = 1 if r2 < 1, and F (r) = B > 1 if
1 � r2 < 3; otherwise F = 0]. There, for different N’s, and
for two different values of h, numerical estimates are pre-
sented how the critical value of parameter ξeff depends on
barrier height B. It is seen that spatial nonuniformity of the
links has a strong influence on vortex stability for 1 � B �
3. However, saturation on larger B is still waiting for an
explanation.

So we can expect stable trapping of a few vortices of the
same sign within a domain surrounded by the barrier. How-
ever, as time increases, function �(τ ) decreases, and, there-
fore, vortex configuration should suddenly become unstable
at some moment. In the next section, we numerically verify
such a scenario within Eq. (25) and, then, within Eqs. (11)
and (12).

IV. NUMERICAL RESULTS

Equation (25) has been numerically simulated using a
fourth-order Runge-Kutta scheme for time stepping. Function
F (r) was taken in the above described simple form with

B = 3.0. That corresponds to using just two kinds of coupling
capacitors Cn,n′ . Thus, we have a compact planar structure
with a finite number of interacting degrees of freedom.

We present numerical results for N = 2, N = 3, and N =
4 vortices (Figs. 3–5, respectively, where each vortex is seen
as a density depletion). The parameters in these numerical
experiments were as follows: h = 0.12, ξ = 0.05, and δ =
0.04. As initial states, we took nonsymmetric vortex config-
urations corresponding to numerically found local minima of
Hamiltonian (36).

The most regular dynamics was observed for N = 2, per-
haps, because the simplified continuous counterpart (28) is
an integrable system in the case of two vortices (besides the
Hamiltonian, the angular momentum is conserved). After the
initial quasistatic period of evolution [Fig. 3(a)], there was
stage of oscillatory motion without orbiting [Fig. 3(b)]. Then,
it was orbiting in anticlockwise azimuthal direction with grad-
ually widening cores [Figs. 3(c) and 3(d)]. Finally, wide vor-
tices comparable to the whole system size were transformed
to a wave structure propagating mainly clockwise [Figs. 3(e)
and 3(f)]. The last stage was practically in a linear regime
because the effective nonlinear coefficient exp(−2δτ )/ξ 2 was
very small at τ � 100.

Vortex clusters with 3 � N � 5 passed similar initial two
stages in their evolution, but the, subsequent, dynamics was
different. The first stage was again a stable nearly static con-
figuration when vortex centers were motionless whereas their
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FIG. 8. An example of the evolution of four vortices in the electric model with smaller h = 0.06.

cores gradually broadened according to Eq. (27) [Figs. 4(a)
and 5(a)]. The second stage was the oscillation of vortices
around their previous positions [Figs. 4(b) and 5(b)]. At the
third stage, vortices lose stability and begin to move in a
complicated manner, typically, one or two of them at fast
external orbits [Figs. 4(c) and 5(c)]. At the fourth stage, the
external vortices quit the lattice producing strong short-scale
nonvortical oscillations in it [Figs. 4(d) and 5(d)]. During
a further evolution, some of the remaining vortices go to
external orbits and leave the lattice in a similar manner until
one or two are present on a highly disturbed background (not
shown).

Static initial configurations with N � 6 were not found
with the given parameters. However, cases N = 6 and N =
6 + 1 (hexagon plus central vortex) were successfully simu-
lated with h = 0.04, ξ = 0.025, and δ = 0.02 (not shown).
It should be noted that, for this case, the quality factor should
be extremely high since γ /gA2

0 = δξ 2 ∼ 10−5, whereas gA2
0 ∼

0.1. The dynamics was qualitatively similar to that described
above. It is interesting to note that, in the last case, the central
vortex lost stability first and quickly passed to external orbit,
crossing the system boundary soon after that.

Of course, the above results were obtained within the
DNLSE under many simplifying assumptions, and, therefore,
they cannot be completely convincing. In order to get more
direct evidence of vortex existence and behavior in fully
nonlinear regime, the original system of circuit equations

(11) and (12) has been numerically simulated using expres-
sion (5) with parameters η = 0, ν = 2, μ = 0.5 (and C0 =
1, V∗ = 1). Two numerical experiments are presented below.
In the first one (see Figs. 6 and 7), the remaining dimen-
sionless parameters were c̄ = 0.02, h = 0.12, L = 1, RL =
10−4, RC = 104. At t = 0, the partial energies of oscilla-
tors were corresponding to I2

n /2 + W (Vn) = 0.32 (excluding
vortex cores), whereas their phases �n = arctan(In/Vn) were
the same as the initial phases for the DNLSE simulation.
Therefore, |gA2

0| ≈ (5/24)0.32 ≈ 0.067 in these numerical
experiments. Initial ac voltages were in the range of −0.6 �
Vn � 1.0.

To resolve Eqs. (11) with respect to V̇n, a simple iterative
scheme was developed,

D( j+1)
n = D( j)

n − 0.2

[
C(Vn)D( j)

n +
∑

n′
Cn,n′

(
D( j)

n − D( j)
n′

)

+ Vn

RC
− In

]
, (37)

with D(0)
n = (In − Vn/RC )/C(Vn). The result of the 60th itera-

tion V̇n ≈ D(60)
n was then used in a Runge-Kutta fourth-order

time stepping. The convergence of this scheme was ensured
by positive definiteness of the corresponding quadratic form
and by choosing the coefficient 0.2 sufficiently small to have
|1 − 0.2Cmax| < 1 [where Cmax = C(Vmin), and Vmin ≈ −0.57
is the negative root of equation W (V ) = 0.32].
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FIG. 9. Time dependence of x and y coordinates of four vortices,
corresponding to simulation with h = 0.06. Conventionally, vortices
are located at the centers of those h × h squares where the sum of
phase increments along the sides is 2π .

In Fig. 6, the evolution of quantities 2εn = I2
n + 2W (Vn)

is shown for the case of four vortices, whereas, in Fig. 7,
we see the corresponding phases. In particular, Fig. 7 in-
dicates unambiguously that we deal with vortices not sim-
ply with some amplitude depressions. Qualitatively, the sys-
tem passed the same stages as in the simplified DNLSE
model. However, since here the initial phase distribution was
not appropriately adjusted to strong nonlinearity, the first

(trapping) stage was not so long as in experiment shown in
Fig. 5.

Finally, in Figs. 8 and 9, we present results for a smaller
h = 0.06 and for larger initial energies I2

n + 2W (Vn) =
0.81. In this simulation, c̄ = 0.04. In general, vortices look
smoother here. As Figs. 8(a) and 8(b) demonstrate, and Fig. 9
confirms, the cluster was almost static until t ∼ 1000T0. After
that time, the configuration was deformed by appeared insta-
bility, and the vortices started intense motion. Unlike the case
of h = 0.12, here, no vortex exited the disk until the very end
of the simulation.

V. SUMMARY

To summarize, in this paper, a general scheme of an
electric network has been suggested which can be approx-
imately described by a weakly dissipative defocusing dis-
crete nonlinear Schrödinger equation of a special kind where
coupling terms are not translationally invariant but spatially
uniform background solutions exist. Discrete vortices in such
systems have been analyzed and then numerically simu-
lated. Simulations have demonstrated qualitatively similar
results within the DNLSE and within the original circuit
equations.

Of crucial importance is the quality factor of oscillator
circuits. Numerical experiments have shown that nontrivial
behavior of vortices is observable with Q � 104–105. In
practice, such values could be achieved at sufficiently low
temperatures when conductivity of metals as well as resistivity
of dielectrics are both substantially higher than they are at
room temperature.

The study above is apparently far from being exhaustive.
This system seems deserving further through investigation
especially in its highly nonlinear regimes and under external
driving (driving signals can be easily introduced into electric
network, resulting in many resonance phenomena, perhaps,
similar in some sense to those reported in Ref. [22]). The
author also hopes that experimentalists will be interested in
conducting laboratory experiments inspired by the present
theory.
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