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Chaotic scattering with localized losses: S-matrix zeros and reflection time difference
for systems with broken time-reversal invariance
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Motivated by recent studies of the phenomenon of coherent perfect absorption, we develop the random matrix
theory framework for understanding statistics of the zeros of the (subunitary) scattering matrices in the complex
energy plane, as well as of the recently introduced reflection time difference (RTD). The latter plays the same
role for S-matrix zeros as the Wigner time delay does for its poles. For systems with broken time-reversal
invariance, we derive the n-point correlation functions of the zeros in a closed determinantal form, and we study
various asymptotics and special cases of the associated kernel. The time-correlation function of the RTD is then
evaluated and compared with numerical simulations. This allows us to identify a cubic tail in the distribution of
RTD, which we conjecture to be a superuniversal characteristic valid for all symmetry classes. We also discuss
two methods for possible extraction of S-matrix zeros from scattering data by harmonic inversion.
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I. INTRODUCTION

Wave scattering in cavities with chaotic classical ray dy-
namics has been studied intensively over the last few decades
[1–4]. The use of random matrix theory (RMT) has allowed
for a statistical description of quantities derived directly from
the M × M, energy-dependent scattering matrix S(E ), where
M is the number of scattering channels; for recent reviews, see
[5–7]. In an ideal flux-conserving system S(E ) is unitary, but
in practice unavoidable losses, e.g., due to imperfect conduc-
tivity of the cavity walls, or leaks in connecting microwave
waveguides [8–15], make the experimentally observed scat-
tering matrix subunitary. To that end, a considerable effort
has been invested in generalizing the random-matrix-based
approaches to chaotic wave scattering in the presence of
some form of absorptive loss [16–24]. In recent years, the
interest in absorptive scattering has been stimulated by a
proposal to construct the so-called coherent perfect absorber
(CPA), which can be looked at as a scattering system (e.g., a
cavity) with a small amount of loss that completely absorbs
a monochromatic wave incident at a particular frequency
[25]. Applications for a CPA may include optical filters and
switches or logic gates for use in optical computers. Recently,
a CPA in a rectangular cavity with randomly positioned scat-
terers and absorption due to a single antenna has been realized
experimentally [26], paving the way for the construction of
CPAs based on disordered cavities. In another recent exper-
iment, a CPA was realized with a two-port microwave graph
system, both with and without time-reversal symmetry [27]. In
the framework of chaotic scattering, a CPA state corresponds
to an eigenstate of the S matrix with zero eigenvalue at a
real energy. This fact naturally motivates rising interest in
a more general question of characterizing S-matrix complex
zeros, which has not been systematically studied for wave
chaotic systems with absorption until very recently [28,29].

This is in sharp contrast with the statistics of S-matrix com-
plex poles, known as resonances, whose exact density in the
complex plane (and more delicate characteristics) for systems
with chaotic scattering has been systematically studied in the
framework of the random matrix approach [30–42] with some
aspects amenable to experimental verification [43–51].

As is well known, an important quantity directly related
to resonance poles in a scattering system is the so-called
Wigner time delay, the energy derivative of the total phase
shift [52,53], which in systems with chaotic scattering can
be measured experimentally [54] and whose various general-
izations recently attracted much attention [55]. In particular,
it has been suggested that complex zeros of the scattering
matrix can manifest themselves in a very analogous way via a
quantity called the reflection time difference (RTD), which, in
principle, may be measured experimentally [56]. Note that the
problem of characterizing the statistics of Wigner time delays
and related quantities in the RMT framework (and beyond)
has been attracting considerable interest in the last 25 years
[57–72]; for reviews, see [33] as well as the more recent
Ref. [73]. It is therefore natural to ask similar questions about
the statistics of the RTD in systems with chaotic scattering.

The goal of the present paper is to provide some in-
formation on fluctuations of RTD in the framework of the
RMT approach. To this end, we mainly consider systems with
broken time-reversal symmetry, where the properties of the
complex S-matrix zeros can be very efficiently studied non-
perturbatively (in particular, for any localized losses as well as
any channel coupling) by adjusting the method suggested for
S-matrix poles in [34]. This approach allows us to verify (and
then exploit) that the S-matrix zeros for an absorptive system
form asymptotically a determinantal process in the complex
plane, as long as the effective dimension N of the Hilbert
space describing the cavity Hamiltonian in an appropriate
energy range is considered large: N � 1. The explicit form
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for the two-point function is then used to study the RTD
correlation function along the lines suggested in [56], in full
analogy with similar studies of the Wigner time delay [74].

To begin with, let us recall that one of the most natural
ways of incorporating localized losses into the RMT de-
scription is to associate them with additional (or “hidden”)
scattering channels. When those channels are numerous and
weak, one can model in this way spatially uniform absorption,
the idea possibly going back to [16]; cf. the discussion after
Eq. (12) in the text below. For the nonperturbative localized
setting, the corresponding construction has been proposed
recently in [29] in a form closest to our needs. To this
end, consider a closed cavity whose internal chaotic wave
dynamics is modeled by an N × N RMT Hamiltonian H0,
coupled to M scattering and L absorbing channels, the latter
representing the sources of localized loss. The vectors of
couplings to scattering/absorbing channels are collected in an
N × M (N × L) matrix W (A). We also define the associated
N × N matrices �W = πWW † and �A = πAA†, of the ranks
M and L, respectively, and we further assume M + L < N . It
is also convenient to assume that the columns of W and A are
mutually orthogonal:

N∑
n=1

W ∗
naAnb = 0, ∀a = 1, . . . , M&b = 1, . . . , L (1)

being in addition orthogonal within each of the channel
groups:

N∑
n=1

W ∗
naWnc = γaδac,

N∑
n=1

A∗
nbAnd = ρbδbd . (2)

The above assumptions lead to the diagonal form of the
ensemble-averaged scattering matrix, which describes only
the resonant scattering associated with the creation of long-
lived intermediate states. The condition (2) can be easily lifted
(see, e.g., Appendix in [24] for a recent discussion and further
references).

The construction of the energy-dependent flux-conserving
(M + L) × (M + L) scattering matrix S is done following the
standard procedure frequently referred to as the “Heidelberg
approach” and going back to the seminal work of Ref. [75];
see also [33]. Adapting it to the present situation, one gets the
following block form, cf. [29]:

S =
(

1M − 2π iW †D−1W −2π iW †D−1A
−2π iA†D−1W 1L − 2π iA†D−1A

)
, (3)

where we denoted

D(E ) = E1N − H0 + i(�W + �A). (4)

The upper left block S(E ) := 1M − 2π iW †D−1W de-
scribes the scattering between M “observable” channels, and
it has the following alternative representation:

S(E ) = 1N − iKA

1N + iKA
, KA = πW † 1

E − H0 + i�A
W. (5)

Note that due to the presence of hidden/absorbing chan-
nels encapsulated via �A �= 0, the matrix S(E ) is subunitary
reflecting the loss of flux injected through the observable
channels, which escapes via the hidden channels, and as such

is treated as irretrievably absorbed. A similar representation
holds for the lower right block S′(E ) after the replacement
W ↔ A everywhere.

Since S(E ) is subunitary, the positions of its zeros in
the complex energy plane are no longer conjugates of the
corresponding poles, and thus in principle it can be located
in both half-planes. From (5) one can easily deduce that the
determinant of S(E ) has the following form:

det S(E ) = det[E1N − H0 + i(�A − �W )]

det[E1N − H0 + i(�W + �A)]
, (6)

from which it is clear that the zeros zn of S(E ) in the
complex energy plane are the complex eigenvalues of the
non-Hermitian matrix H0 + i(�W − �A). Writing a similar
expression for det S′(E ) and taking their ratio, we arrive at
the following complex number:

det S(E )

det S′(E )
= det[E1N − H0 + i(�A − �W )]

det[E1N − H0 + i(�W − �A)]
(7)

= e2iφ(E ), (8)

which is obviously unimodular for real values of the
energy E .

Now we follow the proposal of [56] and define the re-
flection time difference (RTD) as the energy derivative of the
phase φ(E ):

δT (E ) := −i
∂

∂E
ln

det S(E )

det S′(E )
(9)

=
N∑

n=1

2 Imzn

(E − Rezn)2 + (Im zn)2
. (10)

Such a definition of RTD is inspired by the Wigner time delay,
which has the same form as 10 but with the zeros zn replaced
by the complex S-matrix poles located in the lower half-plane
of complex energies. Those are simply complex eigenvalues
of another non-Hermitian matrix Heff := H0 − i(�W + �A)
and will be denoted En = En − i�n/2, with condition ImEn =
−�n < 0 due to non-negativity of �W + �A. The main dif-
ference between the RTD δT (E ) and the Wigner time delay is
that the former can be negative whereas the Wigner time delay
is always positive in the present model in view of �n > 0. The
term “reflection time difference” comes from the fact that the
phase of det S(E ) gives the delay (averaged over the scattering
channels) in the propagation of a nearly monochromatic wave
due to scattering, relative to a perfectly reflecting cavity.
Hence the RTD is the difference in this delay between the
first M channels, deemed observable, and the last L channels,
deemed absorbing. Let us stress, however, that equivalently
in any flux-conserving two-terminal system one can always
simply subdivide channels into two groups, most naturally in a
two-terminal scattering setup, via the left/right division. Then
S(E ) and S′(E ) in such a system simply describe reflection
blocks of the total S-matrix. Note that RMT-based statistics of
entries and eigenvalues of the reflection blocks are interesting
by themselves, and because they are related to Wigner time
delays, they have been studied from various viewpoints, e.g.,
in [18,63,71,76,77].
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II. STATISTICS OF S-MATRIX ZEROS FOR SYSTEMS
WITH BROKEN TIME-REVERSAL INVARIANCE

We have thus seen that the zeros zn of S(E ) in the present
approach are merely the complex eigenvalues of the non-
Hermitian N × N random matrix H0 + i(�W − �A). As the
zeros are the main constituents of the RTD (10), we briefly
analyze the statistics of those zeros in the complex plane for
wave-chaotic systems with broken time-reversal invariance,
when the matrix H0 is taken from the Gaussian unitary en-
semble (GUE). Note that systems of such type can be studied
experimentally; see, e.g., [78] and references therein.

Since we have assumed the orthogonality both inside
and between the two groups of channels [see (1) and
(2)], by exploiting the unitary invariance of the GUE
part we can easily check that the matrix � := �W − �A

of rank M + L < N can be chosen to be diagonal: � =
diag(γ1, . . . , γM ,−ρ1, . . . ,−ρL, 0, . . . , 0). In the lossless
case L = 0, � is necessarily positive and all n-point corre-
lation functions have been derived in [34] in the limit N �
max(M, n). We show in the Appendix which modifications
are necessary to adapt the method [34] to the lossy case
L > 0, again with M, L � N . The end result is the following
determinantal form for the asymptotic n-point correlation
functions for the eigenvalues zn in the whole complex energy
plane:

lim
N→∞

1

N2n
Rn

(
x + z1

Nπν(x)
, . . . , x + zn

Nπν(x)

)
= det[K (zi, z∗

j )]1�i, j�n, (11)

where x ∈ (−2, 2), ν(x) = 1
2π

√
4 − x2 is the semicircular

density of real eigenvalues of the GUE matrix H0, and the
kernel is given explicitly by

K (z,w∗) =
√

F (z)F (w∗)

×
∫ 1

−1
du ei(z−w∗ )u

M∏
a=1

(ga + u)
L∏

b=1

(hb − u),

(12)

where for z = Rez + i Imz we have

F (z) =
∫ ∞

−∞

dk

2π

e−2ik Imz∏M
a=1(ga − ik)

∏L
b=1(hb + ik)

, (13)

ga = 1

2πν(x)

(
γa + 1

γa

)
, hb = 1

2πν(x)

(
ρb + 1

ρb

)
. (14)

Let us first check the simplest limit of very many equivalent
weakly coupled absorbing channels, namely L → ∞, ρb →
0, in such a way that the product Lρb remains a finite constant.
Following [16], one expects that the absorption becomes
spatially uniform across the sample, and that all zeros zn

will be uniformly shifted downward in the complex plane
by the same amount. Indeed, introducing the notation Lρb =
ε/[πν(x)], ∀b = 1, . . . , L and assuming it remains constant
as L → ∞, we see that we can replace hb ≈ L

2ε
, and easily

verify that the kernel in (12) reduces to the L = 0 case but with
the shift Imz → Imz + ε, in full agreement with the uniform
absorption picture.

A less trivial, representative case to be considered next is
that of equivalent scattering channels ga = g, ∀a = 1, . . . , M,
as well of equivalent absorbing channels hb = g0, ∀b =
1, . . . , L, but both couplings are not considered to be weak.
The interesting limiting case arises if we again assume the
channels are abundant, so that both M → ∞ and L → ∞, but
in such a way that the ratio L

M = p with 0 � p � 1 remaining
constant (the case p > 1 follows by replacing p → 1

p and
M ↔ L and g ↔ h). Note that this limit is performed after
first taking the N → ∞ limit with M, L finite. In such a limit,
the integrals over variables u and k1,2 can be readily evaluated
by the Laplace (saddle-point) method. The calculation can be
performed for general p, g, g0, but the resulting expressions
are relatively cumbersome; here we present explicit formulas
only for the special case p = 1 and g = g0 when they are more
elegant. The ensuing asymptotic mean density of complex
zeros is supported inside the domain,{

(x, y) : −2 � x � 2,− M

g2 − 1
� y � M

g2 − 1

}
. (15)

Note that since g depends on x as g ∼ 1/ν(x), the width of
the support along the imaginary axis decreases monotonically
to zero at x → ±2. Inside the support, the density is constant
near the real axis and decays as y−2 when y = O(M ): defining
ρ̃(x, y) := ρ(x,y)

ν(x) , we then have

ρ̃(x, y) =
{ g2

2πM if y = O(1),
g2

4πMỹ2

(
1 + 1√

1+4g2 ỹ2

)
if y = Mỹ. (16)

For the general parameters p, g, g0, the support of the
density in the complex plane is given for −2 � x � 2 by

−M

2

(
p

g0 − 1
− 1

g + 1

)
� y � M

2

(
1

g − 1
− p

g0 + 1

)
.

(17)

Figures 1(a) and 1(b) show the eigenvalues of five 4000 ×
4000 matrices with M = L = 100 and g = g0 = 1.25 and g =
1.25, g0 = 5.05, respectively.

In particular, we see that if p = 0 then the zeros are all in
the upper half-plane, separated from the real axis by the gap

M
2(g+1) . Remembering that for p = 0 zeros are mirror images
of poles, this result is simply the L = 0 case of [34]. The gap
in the poles distribution is the well-known feature first derived
in [31] and [57] in the related but slightly different limit M =
O(N ). It has profound consequences for underlying dynamics,
and it also has a semiclassic significance, being related to the
classic escape time [79,80]. Moreover, one can see that all the
S-matrix zeros will still be in the same half-plane as long as
|pg − g0| > 1 + p (upper half-plane for g0 − pg > 1 + p and
lower for pg − g0 > 1 + p). An illustration of such a situation
is given in Fig. 1(b).

When |z1 − z2| = O(1/N ), the kernel can be reduced after
some algebraic manipulations to the Ginibre-like form

|K (z1, z∗
2 )| = ρ̃(z)e− π

2 ρ̃(z)|z1−z2|2 , (18)

where z = z1+z2
2 , and ρ̃(z) is from (16). Such a kernel was

found in the L = 0 case when M → ∞ [34] and is conjectured
to be the universal form of the kernel for strongly non-
Hermitian matrices [39].
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(a) M = L = 100 and g = g0 = 1.25

(b) M = L = 100, g = 1.25 and g0 = 5.05

FIG. 1. Eigenvalues of five 4000 × 4000 matrices, with the solid
line indicating Eqs. (15) (a) and (17) (b).

We also record for completeness the general expression for
the density of zeros, valid for any M, L:

ρ̃(x, y) = 1

(g + g0)M+L−1

∫ 1

−1
du e−2uy(g + u)M (g0 − u)L

×
{

θ (−y)e2g0y
L∑

n=1

an(L, M )
[−2(g + g0)y]n−1

�(n)

+ θ (y)e−2gy
M∑

n=1

an(M, L)
[2(g + g0)y]n−1

�(n)

}
, (19)

where

an(M, L) = �(M + L − n)

�(M − n + 1)�(L)
. (20)

(a) N = 100, M = 4, L = 2

(b) N = 500, M = 10, L = 5

FIG. 2. Density of the imaginary parts Imzn for Rezn = 0 com-
pared against (19) (solid line).

The above mean density in y for x = 0 is compared with
RMT simulations in Figs. 2(a) and 2(b).

III. STATISTICS OF REFLECTION TIME DIFFERENCE
FOR SYSTEMS WITH BROKEN TIME-REVERSAL

INVARIANCE

In this section, we convert the information about S-matrix
zeros into information about the two-point connected correla-
tion function of the reflection time difference δT defined via
(10). In doing this, we largely follow the method proposed
in [74] for the Wigner time delays. We start by recalling
that the main microscopic energy scale characterizing (real)
eigenvalues of the Hermitian RMT cavity Hamiltonian H0 is
the associated mean level spacing � = [Nν(E )]−1, and we
introduce the appropriately rescaled RTD via δ̃T = �

2π
δT .

From a technical point of view it is more natural to consider
the associated Fourier transform of the two-point correlation
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function in question defined as

CM,L(t ) := 1

2π

∫
dω eiωt

〈
δ̃T

(
E + �

2π
ω

)
δ̃T

(
E − �

2π
ω

)〉
c

.

(21)

Defining the so-called empirical density of S-matrix zeros zn

in the complex plane z = Imz + i Rez as

ρ(z) = 1

N

N∑
n=1

δ(2)(z − zn), (22)

where δ(2)(z − zn) := δ(Rez − Rezn)δ(Imz − Imzn), with
δ(x) being the standard Dirac delta function, we first rewrite
(10) as

δ̃T (E ) = � N

2π

∫
2 Imz

(E − Rez)2 + (Imz)2
ρ(z) d Rez d Imz,

(23)

and then we substitute this in (21) and perform the ensemble-
averaging. In doing this, we exploit the relation between
covariance functions of empirical densities and the two-point
function featured in (11) for n = 2, hence the associated
kernel (12):

〈ρ(z1)ρ(z2)〉c = 〈ρ(z1)〉δ(z1 − z2) − Y2(z1, z2), (24)

where Y2(z1, z2) = |K (z1, z∗
2 )|2 is the associated two-point

“cluster” function. After rescaling and straightforward manip-
ulations, this brings (21) to the form

CM,L(t > 0) = A(t ) − B(t ), A(t ) = 1

2

∫
dy e−2|y|t ρ̃(E , y)

(25)
and

B(t ) = 1

2π

∫
dωdy1dy2 e−itω−(|y1|+|y2|)t (26)

×Y2(E , ω, y1, y2) sgn(y1y2).

Finally, using the expression (12) for the kernel, we arrive at
the following formulas:

A(t ) = 1

4

∫ 1

−1
du

(g + u)M (g0 − u)L

(g + g0)M+L

×
[

M∑
n=1

an(M, L)

(
g + g0

g + t + u

)n

+
L∑

n=1

an(L, M )

(
g + g0

g0 + t − u

)n
]
, (27)

B(t ) = θ (2 − t )

4

∫ 1−t

−1
du

(g + u)M (g0 − u)L

(g + g0)2(M+L)
(g + t + u)M

× (g0 − t − u)L

[
M∑

n=1

an(M, L)

(
g + g0

g + t + u

)n

−
L∑

n=1

an(L, M )

(
g + g0

g0 − u

)n
]2

, (28)

where an(L, M ) has been defined in (20).

A few remarks are in order. First, the limit of no absorption
is equivalent to sending g0 → ∞. The dominant contribution
then obviously comes from the n = M term in the first sum,
in both A(t ) and B(t ). The resulting expression reproduces the
well-known correlation function of the Wigner time delay for
systems with broken time-reversal invariance [33,59]:

CM,0(t ) = 1

4

∫ 1

max(1−t,−1)

(
g + u

g + t + u

)M

du. (29)

Note that the above correlation function of Wigner time
delays decays as t−M for t → ∞, whereas the corresponding
correlation of RTD for any finite absorption g0 < ∞ decays in
the same limit as t−1 for any fixed value M > 0, L > 0. This
implies that the variance of the RTD, which in view of (21)
can be found as

〈[δ̃T (E )]2〉c ∝
∫ ∞

0
CM,L(t )dt,

logarithmically diverges for any finite number of absorbing
channels. This feature is strikingly different from the Wigner
time delay, whose variance is infinite only for a single-channel
scattering, being finite for any M > 1. The logarithmic diver-
gence of the variance suggests that the distribution of RTD

must have the large-tail behavior P(δ̃T ) ∼ δ̃T −3
. Although

we cannot prove this conjecture rigorously in general, it can
be strongly supported by a perturbative argument (sketched
in the Appendix) valid in the regime of small absorption
in a weakly open system with equivalent channels, γa =
γ � 1, ρa = ρ � 1, when imaginary parts of the S-matrix
zeros are much smaller than their separation: 〈|Imzn|〉 � �.
Adapting the argument along the lines used in [33] for Wigner
time delays, and further assuming ρ � γ , the probability
density for RTD can be shown to have an algebraic decay with
universal exponents,

Pβ (δ̃T ) ∼
{|δ̃T |−3/2, 1 � |δ̃T | � γ −1,

|δ̃T |−3, |δ̃T | � γ −1,
(30)

and similarly for negative δ̃T with γ and ρ exchanging their
roles. This result is “superuniversal,” that is, it holds not
only for systems with broken symmetry but for all standard
symmetry classes of H0 described by values of the Dyson
index β = 1, 2, 4 and for all M > 0, L > 0. We indeed see
that the infinite variance is due to the cubic asymptotic
decay in the probability density. Note that in the case of
Wigner time delay τ the asymptotic tail of the probability
density is rather τ−βM/2−2 making the variance finite for
M > 2/β. Anticipating that for ρ = 0 RTD should be indis-
tinguishable from the Wigner time delay, one may consider
the parameter range ρ � γ and find that in that case the

decay δ̃T −βM/2−2
also happens for RTD in the intermediate

asymptotic range 1/γ � δ̃T � 1/ρ, whereas the cubic tail
takes over only as δ̃T � 1/ρ, reconciling the two types of
behavior.

One can also be interested in the short-time behavior of
the RTD correlation function. Considering for simplicity the
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simplest case M = L = 1, we obtain in this limit

C1,1(t � 1) = 1

2

[
1 − 4 + 3(g − g0)2

3(g + g0)2

]
+ (g − g0)2 − 4(g + g0 − 1)

4(g + g0)2
t + O(t2). (31)

The first-order term vanishes when g±
0 = g + 2 ± 2

√
2g

and vice versa. For 1 < g < 3 + 2
√

2, the second solution
g−

0 = g + 2 − 2
√

2g < 1 is not valid since g, g0 > 1 by def-
inition. Thus, the correlator switches from an increasing to a
decreasing function of time as g0 passes through g+

0 . Reverting
to the frequency domain, we find that in this case the correlator
decays as ω−4, whereas the correlator of the Wigner time
delay always decays as ω−2 since ĊM,0(0) = 1/4.

Another curious observation is that due to the appearance
of the factor sgn(y1y2) in the integrand of (32), the term B(t )
identically vanishes when Y2 is even in y1 and y2 separately, in
which case C(t ) only depends on the mean global density of
complex eigenvalues rather than on the two-point correlation
function. For equivalent channels, a necessary condition for
this to happen is M = L and g = g0.

To compare with numerical simulations, we find that
instead of directly computing (21), it is more practical to
consider instead the Fourier transform of the RTD weighted
by a Gaussian:

F (t,W ) :=
∫

dE√
2πW

δ̃T (E )eiEt− E2

2W (32)

=
√

π

2W
e− W t2

2

N∑
n=1

sgn(Imzn)

×
[

erfcx

( |Imzn| + W t + i Rezn√
2W

)
+ erfcx

( |Imzn| − W t − i Rezn√
2W

)]
, (33)

where erfcx(z) = ez2
erfc(z), and erfc(z) = 2√

π

∫ ∞
z e−x2

dx is

the complementary error function. If we take 1
N � √

W � 1,
then we find the approximate relation

�

4π

√
W

π
〈|F

(
πt

�
;W

)
|2〉c ≈ CM,L(t ). (34)

The advantage of this approach is that the ensemble av-
erage of F (t ;W ) converges faster than that of the RTD.
Figures 3(a) and 3(b) compare the correlator obtained in this
way from RMT simulations (N = 300) with the prediction for
M = 1 and L = 0, 1.

IV. ON EXTRACTING S-MATRIX ZEROS
FROM SCATTERING DATA

Let us now discuss a possibility of determining the po-
sitions of the zeros of a subunitary scattering matrix from
an experiment, real or numerical. One may imagine two
possibilities: either one has access to the total unitary S matrix,

(a) M = 1, L = 0, g = 1.25

(b) M = 1, L = 1, g = g0 = 1.25

FIG. 3. CM,L (t ) of (21) compared with simulations of 300 × 300
random matrices, using (34) as an estimator. The small time discrep-
ancy in the second figure appears to be a finite-size effect that occurs
over a smaller window in time as the dimension of the matrices
increases.

or only to its subunitary observable/scattering block S(E ).
Indeed, one may consider constructing a CPA in the form
of a three-port microwave network, where one port plays
the role of the attenuator providing absorption. In such a
setup, if one disregards imperfections in the setup, the output
in all three ports is directly accessible, hence the total S
matrix.

In the usual case of S-matrix poles, one of the most
well-established methods for determining their positions in
the lower half-plane is “harmonic inversion” [44], which
estimates the poles by solving a set of nonlinear equations.
Basically, one estimates a signal represented in the time
domain as a sum of decaying exponentials evaluated at times
t = nτ , where τ is the sample rate, by relying on the Padé
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approximation:

cn :=
N∑

k=1

dke−izk nτ , (35)

f (z) :=
∞∑

n=0

cnz−n =
N∑

k=1

dkzk

z − zk
(36)

= PK (z)

QK (z)
, (37)

where PK/QK is the order (K, K ) Padé approximant to f (z).
The zeros zk are the poles of Q(z), and the amplitudes dk

are the ratio of the residues and the poles. The integer K is
chosen as an upper bound to the number of true zeros N ,
leading to N − K spurious zeros that must be discarded. In
general, it is common to introduce a cutoff and discard zeros
for which the magnitude of the residue falls below the cutoff.
The procedure for S-matrix poles outlined in [43] used a cutoff
and discarded those poles whose imaginary parts were smaller
than the energy spacing (distance between energy samples),
as well as with real parts near the boundary of the sampling
window.

Harmonic inversion can be performed directly on the
S-matrix elements or, alternatively, on the Wigner time delay.
When estimating zeros, the signal to be considered is given by
the inverse of the determinant:

1

det S(E )
=

N∏
n=1

E − En + i�n/2

E − Rezn − i Imzn
. (38)

Alternatively, when the whole unitary S can be measured,
one can use the expression (10) for the RTD. Assuming
additionally a weak uniform absorption ε � 1 inside the
scattering domain, the RTD can be alternatively computed
from the unitary deficit of the determinant ratio (see [56] for a
discussion):

δT (E ) = −1

ε
Re ln

det S(E + iε)

det S′(E + iε)
+ O(ε2). (39)

The advantage of using the RTD for extracting positions of
complex zeros is that the Lorentzians in the sum are all nor-
malized to unity, providing us with a way to distinguish true
and spurious zeros by looking at the corresponding residues.
The residues in (38) involve instead a product over the remain-
ing zeros and poles which can take arbitrary values. It is not a
priori clear how to choose an appropriate cutoff, particularly
when the zeros/poles appear as Lorentzians with varying
amplitudes. We compare the performance of both methods
for extracting the zeros by simulating H0 from the GUE;
parameters affecting the accuracy of the estimates are the
number of samples nE of S(E ) and the strength of the uniform
absorption ε. Since the first step of the harmonic inversion
procedure is to take the Fourier transform, when using (38) we
perform a second transform on the complex conjugate so that
the zeros in both half-planes are accounted for. The detection
of spurious zeros differs between the two methods. In the first
method, we follow [43] in using a cutoff and removing zeros
near the boundaries. The cutoff has been chosen as 1, the value
accounting well for most of the spurious zeros. In the second
method, the zeros occur in complex conjugate pairs whose

residues (after normalizing by the energy spacing) should
add up to 1. We therefore grouped the zeros into conjugate
pairs and removed those whose residues were significantly
different from 1. This allowed us to bypass the need for the
removal of zeros near the boundaries. Figure 4 shows the true
zeros plotted against those estimated from (38) and (39), for
various parameter configurations. In Figs. 4(a) and 4(c), there
are what appear to be spurious zeros (isolated green crosses)
among those estimated by the second method. These arise
because of the appearance of two complex conjugate pairs
for the same zero; in general, we observe that as the strength
of the uniform absorption ε increases, an increasing number
of zeros are associated with two or more complex conjugate
pairs. This is why these do not appear in Figs. 4(b) and 4(d),
where ε = 10−6. One could attempt to group all pairs in order
to bring the sum of residues closer to 1, or simply discard all
but one pair. Note also that in all four figures there are zeros
near the boundaries that are discarded in the first method but
included in the second.

V. DISCUSSION AND OPEN PROBLEMS

In conclusion, we have studied the statistics of the zeros of
the subunitary S matrix for a RMT-based model of scattering
in chaotic cavities with localized absorption and broken time-
reversal symmetry. The n-point correlation functions of the
zeros in the complex plane for a system with a finite number
of scattering and absorbing channels (M and L, respectively)
can be calculated by extending the method used in [34] for
characterizing the S-matrix poles (formally equivalent to the
L = 0 case). The resulting kernel, in the limit of strong non-
Hermiticity with at least one of the parameters M and/or
L going to infinity, takes the form of a generalized Ginibre
kernel, expected to be universal in this regime [39]. For
finite M < ∞ and L < ∞, the kernel was used to obtain
the Fourier transform of the correlation function CM,L(t ) of
the RTD, which has been shown to decay as CM,L(t ) ∼ t−1

at large times for any L > 0. This is in sharp contrast with
the case L = 0 (formally equivalent to replacing RTD with
the Wigner time delay), where a similar tail is known to
be M-dependent: ∼t−M . In particular, this implies that the
variance of the RTD is infinite regardless of the value of M or
L. We interpret this divergence as evidence for the existence
of a far tail P(δ̃T ) ∼ δT (E )−3 in the RTD probability density,
and we verify this in the regime of a weakly open and weakly
absorbing system. We expect such a tail to be a superuni-
versal feature of the RTD distribution valid for all symmetry
classes.

The short-time behavior of the RTD correlation function is
again markedly different for L = 0 and L > 0: CM,0(t ) ∼ 1

4 t
in the former case and CM,L(t ) ∼ CM,L(0) + ĊM,L(0)t in the
latter, with CM,L(0) �= 0 and the coefficient ĊM,L(0) depending
on g and g0 in such a way that it changes from a positive value
through zero to negative values as g0 is reduced from infinity
toward unity. This implies that there must exist a particular
value of absorption parameter g0 (depending on g) such that
the large frequency asymptotic of the Fourier-transformed
correlation function decays as ω−4 instead of the typical
decay ω−2.
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(a) γ = 0.5, ρ = 0.5, nE = 800, ε = 10−5

(b) γ = 0.5, ρ = 0.5, nE = 800, ε = 10−6

(c) γ = 0.5, ρ = 0.1, nE = 800, ε = 10−5

(d) γ = 0.5, ρ = 0.1, nE = 800, ε = 10−6

FIG. 4. Estimated zeros using (38) (orange plus signs) and (39) (green crosses) compared to true zeros (blue circles). In all cases, N =
100, M = 2, L = 1.

We have also examined two methods for extracting the
positions of S-matrix zeros from experimental scattering data
by harmonic inversion of either the inverse determinant of S
or from the RTD. The first method is applicable when only the
scattering part of S is available, while for the second method
the total S-matrix must be accessible. The advantage of the
second method is that we know in advance the residue of each
zero, which allows us to distinguish more easily between true
and spurious zeros. In the recent papers demonstrating the
construction of a disordered CPA [26,27], the S-matrix was
measured at regular intervals in an energy window, but rather
than determine the zeros, each S-matrix was diagonalized and
the eigenvalue closest to zero selected as a candidate for the
CPA state. Using harmonic inversion, one can instead directly
estimate the zeros themselves.

Finally, let us mention that all nonperturbative treatment
in our paper has been restricted to systems with broken
time-reversal invariance. Actually, the mean density of com-
plex eigenvalues zn for chaotic systems with preserved time-
reversal invariance, with H0 being taken from the Gaussian

orthogonal ensemble, can be deduced for L > 0 from known
L = 0 results by an ad hoc analytic continuation; see [29].
However, its systematic controllable derivation, not speaking
about deducing the form of the two-point (and higher) cor-
relation functions, remains an outstanding and challenging
problem. This currently prevents us from any nonperturbative
insights into the statistics of the reflection time difference
(apart from its expected superuniversal cubic tail in the prob-
ability density) for this important case.
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APPENDIX

Derivation of the correlation function of S-matrix zeros

We give a brief sketch of the derivation of the expression
(12) for the n-point correlation function. Since the deriva-
tion follows mainly the steps of [34] (explained in more
detail in [39]), we omit the detail and point out only the
necessary modification. The object of study is the spec-
trum of the perturbed GUE matrix J = H + i�, where � =
diag(γ1, . . . , γM+L, 0, . . . , 0) is a rank M + L matrix where
γ1 � · · · � γM > 0 > γM+1 � · · · γM+L. It is the fact that the
matrix � has eigenvalues of both signs that makes a difference
from [34] and should be properly accounted for. The joint
probability density for the matrix J induced by H is

P(J )dJ ∝ e− N
2 tr( J+J†

2 )2
δ

(
J − J†

2i
− �

)
, (A1)

where δ(A) = ∏
i, j δ(Ai j ). Making use of the Schur decompo-

sition J = U (Z + R)U †, the integral over the upper triangular
matrix R can be performed with the δ function in the off-
diagonal elements. The remaining δ functions in the diagonal
elements are represented by a Fourier integral over a diagonal
matrix K , leaving a Harish-Chandra–Itzykson–Zuber (HCIZ)
integral with K and �. Since � is not of full rank, the limit
of N − M − L eigenvalues going to zero is calculated by
repeated application of l’Hôpital’s rule to the original HCIZ
formula. The result is the following expression for the density
of eigenvalues Z:

P(Z ) ∝ |�(Z )|2
detN−M−L(γ )�(γ )

e− N
2 RetrZ2− N

2 trγ 2

×
∫

dK

(2π )N

eitrK ImZ

�(K )
D(K ), (A2)

where we denoted γ = diag(γ1, . . . , γM+L ) and introduced

D(K ) := det

∣∣∣∣∣∣∣
e−ik1γ1 · · · e−ik1γM+L (−ik1)N−M−L−1 · · · 1

...
. . .

...
...

. . .
...

e−ikN γ1 · · · e−ikN γM+L (−ikN )N−M−L−1 · · · 1

∣∣∣∣∣∣∣. (A3)

The difference now from the original derivation is that the
terms e−ik jγc are represented by the integral

e−ik jγc = 1

2π i

∫
Lc

e−ik jλc

λc − k j
dλc, (A4)

where Lc = sgn(γc)(−R + i0). After taking the λ integrals
outside the determinant and using the following identity:

det

∣∣∣∣∣∣∣
1

λ1−k1
· · · 1

λM−k1
(−ik1)N−M−1 · · · 1

...
. . .

...
. . .

...
1

λ1−kN
· · · 1

λM−kN
(−ikN )N−M−1 · · · 1

∣∣∣∣∣∣∣
∝ �(�)�(K )∏M

j=1

∏N
i=1(λ j − ki )

, (A5)

which follows by elementary row and column operations, the
final expression for the density P(Z ) is

P(Z ) ∝ 1

detN−M(γ )�(γ )
|�(Z )|2e− N

2 RetrZ2− N
2 trγ 2

×
∫
L1

· · ·
∫
LM

d��(�)e−i
∑M

j=1 γ jλ j

×
N∏

i=1

M∑
j=1

eiλ j Imzi∏
l �= j (λl − λ j )

θ (Imλ jImzi ), (A6)

where M = M + L. The above expression is exact for any
N, M, L with M + L < N , but in order to make further
progress in deriving the n-point correlation function, we con-
sider the limit of weak non-Hermiticity when N → ∞ with
M, L, n finite, for which the results are expected to be broadly
independent of the model details [39,81]. From this point

onward, the derivation follows exactly along the lines of [39],
where in the Appendix of that paper the n-point correlation
function is related to the average of a product of characteristic
polynomials that is subsequently evaluated by integrating over
anticommuting variables.

Distribution of RTD in the regime of weak
coupling and absorption

In this regime, the imaginary part of the zeros is much
smaller than the typical separation between the real parts,
and, moreover, the imaginary parts of neighboring zeros are
independent to leading order. Then the dominant contribution
to RTD at a given real energy E can be estimated by a heuristic
argument [33] that takes into account only the zero whose
real part is the closest to the energy value E in the sum of
Lorentzians (10). Attributing the index n to this particular zero
and defining un = βπ

�
(E − Rezn) and yn = βπ

�
Imzn, we have

δ̃T (E ) � 2yn

u2
n + y2

n

. (A7)

The real and imaginary parts of zn are independent in the
weak-coupling regime, with the latter having the density

Pβ
Y (y) =

∫
dk

2π

eiky∏M
a=1(1 + 2ikγa)β/2

∏L
b=1(1 − 2ikρb)β/2

.

(A8)

We also assume that un is uniformly distributed
in [−βπ, βπ ]. The result of these approximations is the
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following estimate for the density of δ̃T ≡ τ :

Pβ

δ̃T (τ ) =
∫

dy Pβ (y)
∫ βπ

−βπ

du δ

(
τ − 2y

u2 + y2

)
(A9)

� 2

τ 3

∫ min(1,
β2π2τ2

4 )

0

√
y

1 − y

[
θ (τ )Pβ

Y

(
2y

τ

)
+ θ (−τ )Pβ

Y

(
−2y

τ

)]
dy. (A10)

Focusing on positive δ̃T and equivalent channels γa =
γ � 1, ρb = ρ � 1, let us first assume that ρ � γ . Then
we can identify two regimes for τ > 2/(βπ ): (i) τγ � 1
and (ii) τγ � 1. In the first regime, the dominant term in
Pβ

Y [2y/(Mτ )] is yβM/2−1e− y
τγ :

Pβ

δ̃T (τ ) � γ βL/2−1

τ 3�(βM/2)(γ + ρ)βL/2
(A11)

×
∫ ∞

0

√
y

(
y

τγ

)βM/2−1

e− y
τγ dy

= γ β(L+1)/2

(γ + ρ)βL/2
τ−3/2, (A12)

where we have set the upper limit of integration to infinity and
taken 1 − y � 1, both justified by the exponential damping. In

the second regime, the dominant term is now just e− y
τγ , which

is approximately unity,

Pβ

δ̃T (τ ) � �(β(M + L)/2 − 1)
�(βM/2)�(βL/2)

1

τ 3γ βM/2ρβL/2
(A13)

×
(

γ ρ

γ + ρ

)β(M+L)/2−1 ∫ 1

0

√
y

1 − y

= π�(β(M + L)/2 − 1)
2�(βM/2)�(βL/2)

× 1

γ βM/2ρβL/2

(
γ ρ

γ + ρ

)β(M+L)/2−1

τ−3. (A14)

Thus we see that Pβ

δ̃T (τ ) behaves as a power law with univer-
sal exponents, summarized in (30).

If, however, one assumes ρ � γ and repeats the analysis
above, one finds that the regime τ � 1/γ should be further
subdivided into two new regimes: 1/γ τ � 1/ρ and τ � 1/ρ.
Only in the latter case does one reproduce the superuniversal
asymptotics Pβ

δ̃T (τ ) � τ−3, whereas in the former the asymp-

totic is changed to Pβ

δ̃T (τ ) � τ−(2+βM/2). This type of tail
behavior is precisely one that is typical for the Wigner time
delays, to which the RTD formally reduces as ρ → 0. The
same arguments can be made for negative δ̃T by exchanging
the role of γ with that of ρ.
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