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Giant leaps and long excursions: Fluctuation mechanisms in systems with long-range memory
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We analyze large deviations of time-averaged quantities in stochastic processes with long-range memory,
where the dynamics at time t depends itself on the value qt of the time-averaged quantity. First we consider the
elephant random walk and a Gaussian variant of this model, identifying two mechanisms for unusual fluctuation
behavior, which differ from the Markovian case. In particular, the memory can lead to large-deviation principles
with reduced speeds and to nonanalytic rate functions. We then explain how the mechanisms operating in these
two models are generic for memory-dependent dynamics and show other examples including a non-Markovian
simple exclusion process.
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I. INTRODUCTION

Memory effects and long-range temporal correlations are
important in many physical systems [1–5] and in other sci-
entific fields ranging from biology to telecommunications
to finance [6,7]. It is particularly notable that long-range
memory can change fluctuation behavior qualitatively, com-
pared to Markovian (memory-less) cases. Demonstrations of
this include non-Markovian random walks [8–13], models
of cluster growth [14–16], and agent-based models where
decisions depend on past experience [17]. The distinction be-
tween Markovian and non-Markovian systems is also impor-
tant when formulating general theories. For example, a large
deviation theory of dynamical fluctuations is now established
for Markovian systems [18–23], but memory can lead to
new effects which cannot be captured by the standard theory
[16,24–27]. In particular, one finds [24,25] a breakdown of
the standard large-deviation principles (LDPs) that hold quite
generically in finite Markovian systems [22].

In this work, we consider non-Markovian systems where
the dynamics depend explicitly on a time-averaged current,
whose value at time t is denoted by qt . This is a simple type
of memory that occurs in a wide range of physical models
[8,12,16,17,24,25]. Using methods of large-deviation theory
[18–22,28], we show how this long-range memory can lead
to anomalous fluctuations of qt . We explain that much of this
behavior can be understood by considering two generic fluc-
tuation mechanisms, where memory plays an intrinsic role.
These general mechanisms are useful for classifying previous
results for non-Markovian systems and for identifying new
phenomena.

We illustrate these mechanisms by analyzing current
fluctuations in the elephant random walk (ERW) of
Refs. [8,10,29,30] and a related process which we call the
Gaussian elephant random walk (GERW). A key difference
from Markovian systems is that large (rare) fluctuations in
these models are associated with currents that are strongly

time-dependent [16,24,25,28]—a large current at early times
biases the subsequent evolution and can trigger anomalous
fluctuations that persist for large times. The two specific
mechanisms that we discuss are (i) a very large initial current
flow in a finite time interval, which results in anomalously
large deviations (specifically, an LDP for qt with a speed that
is less than t [24,25]), and (ii) a large initial current that occurs
over a sustained time interval, which leads to a breakdown of
the central limit theorem (CLT) for qt [8] and an LDP which
generically has a nonanalytic rate function [16]. The GERW
illustrates mechanism (i), which we refer to as an initial giant
leap (IGL); the ERW illustrates mechanism (ii), which we call
a long initial excursion (LIE). We also describe several other
examples of systems in which these mechanisms occur.

The structure of the paper is as follows. Section II intro-
duces the models that we analyze and some relevant theory.
In Sec. III we describe the large-deviation behavior of the
ERW and GERW models. Section IV gives a general theory
for the IGL and LIE mechanisms, and Sec. V describes how
this theory plays out in several other models, to illustrate its
applicability. Section VI gives a summary of the main conclu-
sions and open questions. Additional details of calculations
are given in Appendixes.

II. MODELS AND METHODS

A. Definitions of ERW and GERW

The ERW is a random walk model, in discrete time [8,9].
The position of the elephant after step t is xt . In the variant
of the model that we consider here, xt takes values in a fi-
nite domain {0, 1, . . . , L − 1}, with periodic boundaries. (The
choice of periodic boundaries does not change the physical
behavior, but it is useful when comparing the large-deviation
behavior with that of Markovian systems; see Sec. II B. In the
following we do not distinguish our periodic variant from the
original ERW, except in the rare cases where this is necessary.)
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We take x0 = 0 and denote the displacement of the elephant
on step t by �xt . Hence the time-averaged current is

qt = 1

t

t∑
τ=1

�xτ (1)

with q0 = 0. The dynamical rule is that

�xt = ±1 with probability
1 ± aqt−1

2
, (2)

where a ∈ (−1, 1) is a parameter that corresponds to 2p − 1
in Ref. [8].

The GERW is similar to the ERW, except that the position
xt is a real number in [0, L), still with periodic boundaries.
The dynamical rule is that �xt is a Gaussian-distributed real
number with mean aqt−1 and variance unity. Hence the mean
value of �xt (conditional on qt−1) is the same as for the ERW.
At first glance, one might also expect fluctuations in the two
models to behave similarly, but in fact their memory-induced
large-deviation behavior is very different. Note that although
the GERW is rather simple to analyze, it is useful to study
in detail as a contrast to the ERW and to illustrate the strong
effects of memory.

B. Large deviations for Markovian and
non-Markovian dynamics

For the ERW and GERW, we consider the probability
density for qt at large times, which we denote by pt (q). We
will be particularly concerned with the tails of this probability
distribution and the associated fluctuation mechanisms, which
are characterized by large deviation theory [18–22]. This
theory describes rare fluctuations, outside the range of CLTs
and their generalizations [10]. In recent years, it has been
applied to time-averaged quantities in many physical systems,
yielding important new insights [20,31–34].

For finite Markov chains, there is a well-established large
deviation theory due originally to Donsker and Varadhan (DV)
[35–38]; see, for example, Refs. [23,39] for recent summaries.
Within this theory, time-averaged quantities such as qt obey
LDPs of the form

pt (q) � exp[−t I (q)], (3)

where t is called the speed of the LDP, and I the rate function.
More generally, one may also consider LDPs of the form

pt (q) � exp
[−t θ I (q)

]
(4)

with θ �= 1. In some of the non-Markovian models considered
here we find 0 < θ < 1, so the speed t θ is reduced, compared
to the Markovian case. Physically, this means that the memory
makes large fluctuations less rare [24,25]. See Refs. [40–42]
for some other examples where LDPs with reduced speed are
associated with enhanced fluctuations.

For large deviations, an important quantity is the cumulant
generating function for qt :

G(λ, t ) = log〈eλtqt 〉. (5)

To analyze the limit of large t , we consider the scaled cu-
mulant generating function (SCGF), which can be defined

generally for LDPs with speed t θ :

ψθ (λ) = lim
t→∞

1

t θ
log〈eλt θ qt 〉. (6)

For the usual case θ = 1 we omit the subscript and write
simply ψ (λ). If the limit (6) exists and certain other technical
conditions are met, then the Gartner-Ellis theorem states that
the LDP (4) holds with

I (q) = sup
λ

[λq − ψθ (λ)]. (7)

The classical (DV) theory deals with LDPs of speed t .
Under suitable assumptions, the rate function can be shown
to be analytic and strictly convex. For processes on discrete
state spaces, it is sufficient that (i) the model is Markovian, (ii)
transition rates (or transition probabilities) are independent
of time, (iii) the model is finite and irreducible (and, for
discrete-time systems, aperiodic), and (iv) the contribution of
each transition to the sum in (1) is fully determined by its
initial and final state. For the ERW, condition (i) is violated,
but the other conditions still hold. [The ERW was defined on
a finite (periodic) domain so that assumption (iii) is valid.]
This enables a clear comparison with the classical theory.
The striking result of this comparison is that the memory
effect in the ERW leads to a rate function that is (generically)
singular at q = 0, as we show below. Such behavior is strictly
forbidden in the classical case and is directly attributable to
the memory effect, via the breaking of assumption (i).

By contrast, the GERW does not allow such a clear com-
parison with the classical case. The model is defined on a
compact domain, and assumption (ii) can be generalized to
account for this, while still ensuring an analytic rate function.
However, the GERW allows for jumps with |�xt | > L, in
which case the contribution to (1) is not fully determined by
the initial and final states (due to the periodic boundaries). In
principle, assumption (iv) might be generalized to account for
this effect, but the memory effect means that the typical jump
size can diverge as qt → ∞, which would not be allowed
in the classical case. In this sense, the GERW violates the
classical assumptions more strongly than the ERW. We show
below that this strong violation can lead to an LDP with
reduced speed, θ < 1.

In fact, the large-deviation behavior that we will observe
also has implications for a particular class of Markovian
models. To see this, note that both the ERW and GERW can
be formulated as Markovian models for either the current
qt or (equivalently) the displacement Qt = tqt . The case of
the displacement is more natural: in this case the dynamical
rule of the ERW is that Qt+1 = Qt ± 1 with probabilities
(1 ± aQt/t )/2. In this formulation, one sees that the transition
probabilities depend explicitly on time. The GERW may be
formulated in a similar way. Representing the models in this
way, the Markovian assumption (i) above is now obeyed,
but assumption (ii) is violated. It follows that the behavior
presented here can be viewed as either an extension of the
classical theory to a particular class of non-Markovian models
or an extension to a class of Markovian models with explicit
time dependence in the rates.

In terms of methods, it is notable that the SCGF ψ (λ) in the
classical theory can be characterized as the largest eigenvalue
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of a matrix, the tilted generator [22]. Hence the rate function
is available, via (7). Such a determination of ψ (λ) is not
possible for the models considered here, and other methods
must be used, for example, the theory of Dupuis-Ellis [43] as
in Ref. [28] or arguments based on separation of timescales
[24,25].

We close this section by noting that since the (G)ERW
models are defined on finite periodic domains, they cannot
be formulated as Markovian processes for xt , even with time-
dependent rates. The transition rates (or transition probabili-
ties) would need to depend on the winding number around the
periodic boundaries.

C. General models

Although we use the ERW and GERW as motivating exam-
ples, we stress that the mechanisms they illuminate have much
wider applicability. To this end, we introduce here a general
notation for describing a broad class of models with similar
memory-induced phemenonlogy. Several examples are given
in Sec. V.

We consider models in which the time t may be continuous
or discrete. Let Ct denote the configuration of the (general)
model at time t ; this corresponds to xt in the (G)ERW. This Ct

may come from a finite set as in the periodic ERW, or it may
indicate a vector in some compact domain such as [0, L]d . The
periodic GERW is in this latter class with d = 1.

All models considered are jump processes. We define a
time-averaged quantity that generalizes (1):

qt = 1

t

∑
jumps j

α j, (8)

where the sum is over all jumps up to time t and α j depends
on the properties of jump j. (In the ERW there is one jump on
each time step and α j = ±1 coincides with �xt .) In discrete
time the model is specified by the conditional distribution
of Ct+1 given (Ct , qt ), supplemented by a rule specifying the
contribution α j for each jump. In continuous time the model
is specified by a set of jump rates [dependent on (Ct , qt )], and
a rule specifying the α j . We assume that the dynamical rules
do not depend explicitly on time but only on (Ct , qt ).

All the results that we present can be straightforwardly
generalized to the case where qt is a time average of a
state-dependent quantity [for example, 1

t

∫ t
0 b(Cτ ) dτ as in

Ref. [23]], but we restrict here to the form (8). The models
that we consider have scalar qt , but the analysis is easily
extended to vectorial qt . For continuous-time models then
some regularization may be required for (8) at short times;
see, for example, Sec. V A.

Consistent with Sec. II B we observe that these general
models can be formulated as Markov processes (Ct , qt ) but
they are not Markovian for Ct . Independent of this mathemat-
ical distinction, the physical role of q is to capture the role
of memory: its definition depends on the full history of the
process.

III. FLUCTUATIONS IN THE GERW AND ERW

In this section we describe the large-deviation behavior
of (G)ERW models. For the ERW we draw on results of

Refs. [8,10,28], and we characterize the relevant fluctuation
mechanisms. For the GERW then pt (q) can be computed quite
straightforwardly and leads to an LDP with reduced speed. We
describe the relevant fluctuation mechanisms in this case too.

A. Preliminary results

We summarize here some preliminary results for the
ERW and GERW with further detail given in Appendixes A
and B. For 0 < a < 1/2 the memory is relatively weak in
these models, and at large times they both obey a CLT, where
the variance behaves asymptotically as

〈
q2

t

〉 � 1

t (1 − 2a)
. (9)

Our work focuses on a > 1/2 where the memory effect is
strong, and both ERW and GERW exhibit superdiffusive
behavior: 〈

q2
t

〉 � χ

t2(1−a)
, (10)

where χ is an a-dependent constant which we denote by χE

and χG for the two models. For the ERW we have χE =
1/[(2a − 1)	(2a)] from Ref. [8].

For the GERW the total displacement is a sum of Gaussian-
distributed increments, so pt (q) is Gaussian at all times (al-
though the increments are neither independent nor identically
distributed). As shown in Appendix A, for large times one has

pt (q) ∝ exp

[
−q2t2(1−a)

2χG

]
, (11)

where χG can be obtained from the limit of a series solution.
(The proportionality sign is used because a t-dependent nor-
malization constant has been omitted. We use this notation in
cases where the normalization is clear from the context.) For
large times, the corresponding CGF is

G(λ, t ) � λ2t2aχG

2
. (12)

We now turn to the ERW. Since the second derivative of the
CGF gives the variance of tqt (and using that the distribution
is symmetric) one obtains from (10) an expansion in powers
of λ (at fixed t 
 1):

G(λ, t ) � λ2t2aχE

2
+ O(λ4), (13)

which is similar to (12). However, there is no CLT for qt

[44,45], which has consequences for the correction terms in
(13) and their scaling with t .

Baur and Bertoin [10] considered typical fluctuations of q
at large times (that is, fluctuations with probabilities of order
unity). Their theorem 3 states that pt (q) is a scaling function
of qt1−a, as in the GERW. Hence, G is described by a scaling
form at large t ,

G(λ, t ) � g(λt a), (14)

which holds as t → ∞, with the argument of g held fixed. In
a recent mathematical study, Franchini [28] considered large
deviations in Pólya urn models, which can be mapped onto
the ERW [10]. Corollary 12 of Ref. [28] establishes that pt (q)
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follows an LDP and that (14) extends into the large-deviation
regime: taking t → ∞ with fixed λ � 1, one has

g(λt a) � cEt |λ|1/a (15)

for some constant cE (dependent on a). This result is discussed
in Appendix B, and a formula for cE is given in (B10). Hence
for q � 1 and t → ∞ one has the large-deviation result

pt (q) ∝ exp
(−κEt |q|1/(1−a)

)
(16)

with κE = (1 − a)(a/cE)a/(1−a). For larger q there are devia-
tions from the scaling form; the full SCGF is given in (B4),
as derived in Ref. [28]. Equation (16) is an LDP with speed
t and rate function I (q) � κE|q|1/(1−a). As advertised above,
the long-range memory has resulted in a rate function that
is nonanalytic (at q = 0), except in exceptional cases where
1/(1 − a) happens to be an even integer. From a physical
perspective, note that if qt obeyed a CLT, then its asymptotic
variance would be 1/I ′′(0): here we have I ′′(0) = 0, which
shows that the scaling is superdiffusive, consistent with (10).

We emphasize that the distributions (11,16) are sharply
peaked as t → ∞. In this sense, both systems are ergodic [11].

Figure 1 shows numerical data, which illustrate these pre-
liminary results. For small values of λt a the CGF for the
ERW is proportional to |λt a|2 and matches the large-t GERW
result. For larger λt a, the CGF for the ERW matches the
large-deviation form (15) without any fitting [the value of cE

is given in (B10)]. For both ERW and GERW, the distribution
pt (q) is a scaling function of qt1−a. The ERW result (16)
is shown in Fig. 1(b) with a dashed line: the value for
κE is derived from cE, but the proportionality constant in (16)
is used as a fitting parameter.

We close this section with a result for conditional averages.
The models have fixed initial conditions and averages over the
dynamics are denoted by 〈·〉. Define also 〈·〉qτ

as an average
that is conditioned on the value of qτ . For both GERW and
ERW, averaging over the possibilities in a single step gives

(τ + 1)〈qτ+1〉qτ
= (τ + a)qτ . (17)

It follows, as in Ref [8], that for t > τ ,

〈qt 〉qτ
= qτ

	(t + a)	(τ + 1)

	(t + 1)	(τ + a)
. (18)

Hence for large t :

〈qt 〉qτ
= η

qτ

t1−a
(19)

with η = 	(τ + 1)/	(τ + a). That is, if the elephant is con-
ditioned to have a nontypical value of qτ , its subsequent evo-
lution involves regression to the mean (zero) as a power law
with exponent 1 − a. This result will be used in the following
to rationalize the large-deviation behavior of these models.
As a point of comparison, time-averaged quantities in finite
Markovian systems generically have power-law relaxation
with exponent 1.

B. IGL mechanism for large deviations in the GERW

We now analyze large deviations for the GERW, in
detail. Consider a discrete-time trajectory with t steps,
which we represent using its sequence of increments: X =

FIG. 1. Numerical data for ERW and GERW with a = 0.7.
(a) CGF for ERW and GERW, plotted as a scaling function of λt a.
The dotted line is the analytical (large-t) GERW result (12) with χG

obtained from Appendix A. The dashed line corresponds to (15) and
agrees well with the data, given that it is an asymptotic prediction
that assumes that both t and λt a are large. There are no fitting
parameters. (b) Distribution of q for the ERW, which collapses to
a scaling function of qt1−a, as predicted in Ref. [10]. (The collapse is
not quite perfect, which we attribute to finite-t corrections to scaling.)
The solid line is the analytical (large-t) Gaussian distribution of the
GERW, for comparison; the dashed line is the prediction (16) for
the tail of the distribution; the constant κE is derived using results
from Appendix B, while the proportionality constant is determined
by fitting to the data.

(�x1,�x2, . . . ,�xt ). This trajectory occurs with probability
P(X ), which is a multivariate Gaussian distribution, so all
correlations can be computed exactly (at fixed t). Specifically,

P(X ) ∝ exp[−S (X )/2] (20)

with

S (X ) =
t−1∑
τ=0

[(τ + 1)qτ+1 − qτ (τ + a)]2, (21)

where we recall that qτ is related to the increments �x by (1),
with q0 = 0.
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To characterize large deviations, the most likely path that
achieves qt = q can be derived, by conditioning P(X ) on this
rare event. Collecting terms in (21), one obtains

S (X ) = t2q2
t +

t−1∑
τ=1

q2
τ (2τ 2 + a2 + 2aτ )

− 2
t−1∑
τ=1

qτ qτ+1(τ + 1)(τ + a). (22)

Conditioning on qt , we arrive at a Gaussian distribution for
the (t − 1)-dimensional vector q = (q1, q2, . . . , qt−1). This is

Pmicro(q|qt ) ∝ exp

(
hqt qt−1 − qT Mq

2

)
, (23)

where h = t (t + a − 1), and M is a matrix whose elements
can be read from (22). The subscript “micro” recalls that
conditioning on qt = q is analogous to considering a mi-
crocanonical ensemble in thermodynamics. Completing the
square in the exponent, one obtains

Pmicro(q|qt ) ∝ exp

[
− (q − hqtμ)T M(q − hqtμ)

2

]
, (24)

where μ is given by the (t − 1)th column of M−1. Hence the
most likely path with qt = q is given by

〈qτ 〉micro = μτ qh. (25)

This path depends on the value of qt and on the associated
time t . For finite t , the path can be straightforwardly computed
numerically (for all τ < t).

It is also possible to construct an optimally controlled pro-
cess (or auxiliary process) whose typical dynamics generate
the most likely path to qt = q. This is similar to the Doob-
transformed dynamics of Refs. [22,46]; see also Refs. [47–51]
and Appendix C1 of this work for the general theory. For the
GERW, we have derived the optimally controlled process; see
Appendix C2. Its average path is 〈qτ 〉con = 〈qτ 〉micro (for τ =
1, 2, . . . , t). Figure 2(a) shows results illustrating the average
path under the controlled dynamics, also compared with the
ERW (see below). The mechanism for achieving a rare value
of qt is that the GERW makes very large hops on the first few
steps, after which qτ decreases towards qt .

The results so far are valid for any finite time but we
are interested in large deviations as t → ∞. In this case the
problem may be simplified. We characterize the most likely
path as the minimum of the exponent in (24). Writing the
matrix product as a sum over time steps [similar to (21)],
we fix some K and separate the sum into terms with τ � K
and τ > K . For τ > K we make the replacement qτ → q̃(τ )
where q̃ is a smooth function of τ ; this allows the sum to
be estimated by an integral. Fixing values for qK and qt , the
action can be minimized (exactly) over the function q̃, which
is equivalent to solving the instanton equation in Ref. [25].
One finds

q̃(τ ) = C1τ
−a + C2τ

−(1−a), (26)

where C1 and C2 are fixed by the boundary conditions at τ =
K, t . Writing u = K/t (so 0 < u < 1), the contribution to S

100 101 102 103 104 105 106

τ

0

1

2

3

4

〈q τ
〉 co

n

(a)
GERW

ERW

qt(t/τ)1−a + C

10−2 10−1 100 101

λ

100

102

104

106

ψ
(λ

)

(b)
theory

numerical

FIG. 2. (a) Averaged paths 〈qτ 〉con of the controlled dynamics
with t = 105, 106 and 〈qt 〉con = 0.2, for the ERW and GERW with
a = 0.7. These illustrate the IGL and LIE mechanisms. The dashed
line indicates the long-time behavior (29), which is common to both
ERW and GERW. (In the plot, this has been offset by C = 0.14, for
clarity.) (b) Theoretical estimate for ψ (λ) in the ERW again with
a = 0.7, derived at t = 104 and compared with numerically exact
results for small λ. The dashed and dotted lines indicate the predicted
power laws ψ ∝ λ1/a and ψ ∝ λ, respectively.

from this path is [25]

S1 = 2a − 1

u1−2a − 1
(qt − qK u1−a)2t . (27)

For this optimal path (21) then reduces to

S =
K−1∑
τ=0

[(τ + 1)qτ+1 − qτ (τ + a)]2 + S1, (28)

which is to be minimized over q1, q2, . . . , qK . This is the
procedure used to obtain the GERW paths in Fig. 2(a). We
typically take K = 40, this choice does not strongly affect the
results because replacing the discrete sum by an integral is
accurate for K 
 1.

Remembering that we focus throughout on the case a >

1/2, the behavior of (26) for large t, τ gives

〈qτ 〉con ≈ qt (t/τ )1−a, (29)

similar to Ref. [25]. Comparing with (19), we see that the
long-time behavior of the optimally controlled dynamics
matches the natural regression to the mean.
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Extrapolating (29) back to τ = 1 indicates that for (rare)
paths that end at qt , the first hop should have size qtt1−a, which
diverges as t → ∞. In fact, the early-time behaviour is more
complex but the size of the first hop is indeed of this order.
The diverging hop is the reason that we call this mechanism
an initial giant leap (IGL). It applies in the Gaussian elephant
for all fluctuations with qt = O(1) as t → ∞.

Two comments are in order. First, the analysis here for
τ > K recovers exactly that of Ref. [25], the fact that the
distribution of qt is sharply peaked under the controlled dy-
namics can be used to justify the so-called temporal additivity
assumption in that work, for τ � K 
 1. However, for the
early part of the trajectory with τ < K , it is important that the
model evolves by discrete time steps and that qt can change
significantly in a single step. This means that the temporal ad-
ditivity assumption is not valid in this regime. For this reason,
quantitative results for pt (q) require a more detailed analysis
of early times, without the temporal additivity assumption.
We accomplish this here by analyzing numerically the sum
of terms with τ < K . The second comment is that we use the
language of a giant leap, but we note that the GERW makes
(on average) very large jumps on several of the early time
steps. We explain below that we are using IGL to refer to
any divergent displacement q∗ in a finite time interval τ ∗; see
Sec. IV B.

C. LIE mechanism for large deviations in the ERW

As discussed in Sec. III A, large-deviation properties of the
ERW are available from Ref. [28]. In particular, there is an
LDP for qt with speed t whose rate function behaves for small
q as

I (q) � κE|q|1/(1−a). (30)

Correspondingly,

ψ (λ) � cE|λ|1/a, (31)

for small λ. [Recall Eqs. (15) and (16).]
We characterize here the mechanism responsible for (31),

by deriving a controlled process which captures the behavior
of the relevant conditioned path ensemble; see Secs. C1 and
C3. This controlled process is similar to the original process,
but now �xτ = ±1 with time-dependent probabilities (1 ±
bτ )/2 where (b1, b2, . . . , bt ) are variational parameters that
we optimize, to reproduce the large-deviation mechanism.

This analysis yields a controlled process for which 〈qτ 〉con

is shown in Fig. 2(a): for early times, typical paths have qτ ≈
1, which is the maximum possible value in the ERW. This
behavior persists over a finite fraction of the trajectory, which
motivates the name long initial excursion (LIE). For larger
times, qτ decreases. Figure 2(b) shows our theoretical estimate
of ψ (λ) obtained by a variational analysis at finite t , compared
with numerically exact results from direct simulation. The
theoretical estimate (i) matches the exact result in the region
where numerical results are available, (ii) is consistent with
(31) for t−a � λ � 1, and (iii) recovers ψ (λ) � |λ| for large
λ, which is the exact result (since q � 1). The controlled
dynamics give a good description of the true ψ (λ).

It can also be shown that the averaged paths in Fig. 2(a)
capture the true fluctuation mechanism. We sketch the

argument. At the level of large deviations, the true mechanism
is the path measure Pcon that achieves equality in (C4). From
Ref. [28], the large-deviation event qt = q is associated with
a single path, in the sense that the conditional distribution
of qαt is sharply peaked as t → ∞ for all α ∈ (0, 1]. Our
ansatz for the controlled process is sufficiently general to
capture this path, so minimizing over all controlled paths is
sufficient to make (C4) an equality and hence to obtain the
true mechanism. This argument also justifies the temporal
additivity principle of Ref. [24] in this case.

Reference [25] used that principle together with a quadratic
expansion of the action about q = 0, for (symmetric) models
similar to the ERW. This predicts dominant paths similar to
(26). The results presented here show that such an expansion
is not generically valid: for all qt �= 0, large-deviation events
involve initial excursions far from qt = 0, and the quadratic
expansion breaks down. Nevertheless, if qt � 1, then the
quadratic expansion is applicable at large times and can be
used to show that the optimally controlled process behaves the
same as the GERW for large τ , that is, 〈qτ 〉con ≈ (t/τ )1−aqt

as in (29). [For the ERW, this result is valid for a > 1/2 and
qt � 1 with t, τ → ∞ such that also 〈qτ 〉con � 1.] A very
similar case is analyzed in Sec III.C of Ref. [16], for a cluster
growth model.

Comparing (29) with (19), we see that the long-time behav-
ior of the optimally controlled dynamics matches the natural
regression to the mean, for both ERW and GERW. In other
words, the controlled dynamics is almost that of the original
model, when τ is sufficiently large. In Sec. IV C below, we
exploit this fact to show that the scaling ψ (λ) ∼ |λ|1/a of (31)
is generic if optimally controlled processes have (i) 〈qt 〉con ≈
1 until some time τ ∗ ∼ t and (ii) 〈qτ 〉con ∼ τ−(1−a) for long
times. This is the sense in which the ERW is a prototype for a
general fluctuation mechanism.

IV. GENERIC FLUCTUATION MECHANISMS

A. Overview of method

We have explained that the large-deviation behavior of the
ERW and GERW is different from that expected in Markov
chains. Fluctuations in these models occur by mechanisms
where the particle makes a large excursion from the origin
at early times, which biases all future motion in the same
direction, via the memory effect. This leads to a reduced speed
in the LDP of the GERW and to a singular rate function in
the ERW. The difference between ERW and GERW arises
from the different characters of their initial excursions (a giant
leap over a finite time for the GERW and a long excursion
scaling with trajectory length for the ERW). In this section we
explain that such phenomena are relevant for a broad class of
non-Markovian models. We provide general conditions under
which excursions can occur and explain their consequences
for LDPs.

We consider models where qt converges to its mean as
t → ∞ (to be precise, this is convergence in probability). We
denote this mean value by

q∞ = lim
t→∞〈qt 〉. (32)
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For simplicity we discuss deviations with qt > q∞; the oppo-
site case is a straightforward analog. We consider excursions
which extend over a time period between t = 0 and some
time τ ∗. The probability pt (q) can be bounded from below
by restricting to paths where the size of the excursion is at
least q∗, that is, qτ ∗ � q∗. By conditional probability,

log pt (q) � log pt (q|qτ ∗ � q∗) + log P(qτ ∗ � q∗), (33)

where P(qτ ∗ � q∗) is the probability of the excursion and
pt (q|qτ ∗ � q∗) is the corresponding conditional probability
density for qt .

The inequality (33) is valid for all q∗, τ ∗. Now, suppose
that q, t are given, and we seek a useful bound on pt (q):
this requires that we choose suitable values for q∗, τ ∗. To
this end, we introduce the notation 〈·〉q∗,τ ∗ for averages that
are conditioned on qτ ∗ � q∗. Then we choose q∗, τ ∗ such
that 〈qt 〉q∗,τ ∗ = q, and we further assume that the conditional
distribution of qt is sharply peaked at this value. This means
that if we consider trajectories where a suitable excursion
has already taken place before τ ∗, then following the natural
dynamics of the model for t > τ ∗ will result in qt ≈ q with a
probability close to unity.

Under these assumptions, (33) reduces to

log pt (q) � log P(qτ ∗ � q∗). (34)

In other words, we now have a more explicit lower bound on
pt (q), which is valid if

〈qt 〉q∗,τ ∗ = q. (35)

(The additional requirement that the conditional distribution
is sharply peaked is always obeyed in the following.)

The strategy in Secs. IV B and IV C below is to characterize
situations in which (34) can be used to establish LDPs that
differ from those expected in finite Markovian models. In
particular, we now establish a sufficient condition for memory
to have a strong effect on the large-t behavior. Physically,
the idea is that after the excursion, the time-averaged current
relaxes to its steady-state value as a power law with exponent
a − 1, as established in (19) for the (G)ERW. Finite Marko-
vian systems relax generically as t−1, so a encodes the effects
of memory; this is related to the fixed-point stability analysis
of Ref. [25]. The condition that we will require is that for
t > τ ∗,

〈qt − q∞〉q∗,τ ∗ � (q∗ − q∞)F (q∗, τ ∗)

(
τ ∗

t

)1−a

, (36)

for some function F and some number a ∈ (0, 1).
We then arrive at the following method for deriving bounds

on pt (q). We must first establish (36) for a particular model, at
least for q∗ in some range. To bound pt (q) for specific values
of q, t , we must then find a combination q∗, τ ∗ such that (36)
holds, with qt = q. As long as this is possible, the constraint
(35) is satisfied and the resulting q∗, τ ∗ can be substituted into
(34) to obtain a bound on pt (q). Note that the combination
q∗, τ ∗ depends in general on t ; the final step is to take t → ∞
in order to characterize large deviations that occur in this limit.
This strategy is similar to those used in Ref. [16].

B. Generic IGL mechanism

We now show how a generic IGL mechanism leads to a
useful bound. We achieve this by laying out the properties that
a model should have, in order that this mechanism is relevant.
A defining feature of the IGL is that it takes place over a finite
time period τ ∗ and that the size of the excursion diverges in
the limit t → ∞.

The first requirement is that the model of interest supports
very large excursions. To characterize their probability, we
require that there exists some τ ∗ such that for q∗ → ∞ we
have

log P(qτ ∗ � q∗) � −γ |q∗ − q∞|β, (37)

with γ , β > 0. Since we consider divergent excursions, we
require that (36) remains valid even as q∗ → ∞. In the
following we take τ ∗ to be a fixed parameter, the choice of
its value is discussed below. We define

f∗(τ ∗) = lim
q∗→∞

F (q∗, τ ∗), (38)

which we require to be strictly positive. These requirements
place strong constraints on the range of models for which the
IGL mechanism will determine the large deviations, but, as
we demonstrate, such models do indeed exist. Then (33) and
(36) with q = 〈qt 〉q∗,τ ∗ yield

− log pt (q) � tβ(1−a)|q − q∞|βκIGL (39)

with κIGL = γ f∗(τ ∗)−βτ
−β(1−a)
∗ .

Equation (39) corresponds to an LDP with speed tβ(1−a).
If this speed is less than t , fluctuations are qualitatively larger
than one finds in generic Markovian systems. In principle the
bound (39) can be optimized over τ ∗. However, (39) already
establishes that the speed of the LDP can be less than t ,
without any requirement for optimization over τ ∗. This is the
central result. In this sense, the specific value of τ ∗ is not
crucial.

The GERW satisfies all the requirements for the IGL mech-
anism, with β = 2; one may take τ ∗ = 1. The applicability of
(36) was already shown in (19). The resulting bound is con-
sistent with the exact result (11); it gives the right scaling with
t and the correct general mechanism. However, the constant
κIGL obtained from this generic argument does not coincide
with the prefactor in the exponent of (11): obtaining that result
requires the more detailed (model-dependent) calculation of
Sec. III B.

We note in passing that some arguments of Ref. [25] are
similar to those of this section, but the connection between the
giant leap and the reduced speed of the LDP was neglected in
that work. In particular, the requirement that (36) must hold as
q∗ → ∞ means that some care is required when applying the
arguments of Ref. [25] to generic models; they are not valid
in the ERW, for example.

C. Generic LIE mechanism

The LIE mechanism is generically associated with excur-
sions that have finite q∗ but diverging τ ∗ (proportional to
t). This may be compared with the IGL, which has fixed
τ ∗ and diverging q∗. The LIE mechanism has two central
requirements, which must hold for some q∗, different from
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q∞. First, (36) must hold asymptotically for 1 � τ ∗ � t .
Second,

f‡(q∗) = lim
τ ∗→∞

F (q∗, τ ∗) (40)

must be strictly positive. Comparing with (38), the roles of
q∗, τ ∗ are reversed.

Under these conditions, we assume that there is an LDP
with speed t as in (3), verify the self-consistency of this
assumption, and establish a bound on the rate function I (q)
for |q − q∞| � 1. Since τ ∗ is proportional to t , this means
that

P(qτ ∗ � q∗) � exp[−τ ∗I (q∗)], (41)

which is analogous to (37). Using this with (34) and (36)
yields

− log pt (q) � tκLIE|q − q∞|1/(1−a) (42)

with

κLIE = I (q∗)

[
1

|q∗ − q∞| f‡(q∗)

]1/(1−a)

. (43)

The result (42) is consistent with the assumption of an LDP
with speed t , but it shows (for a > 1/2) that the rate function
increases from zero more slowly than any quadratic function.
As noted above, this means that I ′′(0) = 0, corresponding to
superdiffusive scaling.

In addition, by Varadhan’s lemma [a standard result in
large deviation theory [18,21], which amounts to the inverse
Legendre transform of (7)], one obtains

ψ (λ)� sup
q

[
λq − |q − q∞|1/(1−a)κLIE

]
, (44)

which gives

ψ (λ) � λq∞ + |λ|1/acLIE (45)

with

cLIE = a

(
1 − a

κLIE

)(1/a)−1

. (46)

All these generic arguments are consistent with the behavior
of the ERW, which has q∞ = 0. In particular, the requirement
for (36) to hold asymptotically follows from (19).

Moreover, the results of Sec. III C indicate that the true
fluctuation mechanism for the ERW is an LIE with q∗ = 1.
Also pt (1) = (1 + a)t−1/2t because all hops have �xt = 1
in this case, so I (1) = log[2/(1 + a)]. The coefficient in (19)
is η � τ 1−a as τ → ∞, which means f‡(q∗) = 1. Hence the
bound (39) holds with κLIE = log[2/(1 + a)]. The exact result
for the ERW can be obtained from κE = (1 − a)(a/cE)a/(1−a)

as quoted in Sec. III A, together with (B10).
For the representative case a = 0.7, we find κE = 0.04

while κLIE = 0.16. Given that the generic LIE argument is
much simpler than the full calculation of κE, this level of
agreement is reasonable. The generic LIE argument is based
on a simple path (or equivalently a simple controlled process)
that includes a long excursion: the path is illustrated in Fig. 3,
where it is compared with the optimal LIE path discussed in
Sec. III C. The generic LIE path captures the correct quali-
tative behavior and matches the optimal path for small and

100 101 102 103 104 105 106

τ

0.0

0.2

0.4

0.6

0.8

1.0

〈q τ
〉 co

n

ERW

min(1, qt(t/τ)1−a)

FIG. 3. Comparison between the optimally controlled path for
the ERW (similar to Fig. 2) and the corresponding generic LIE path
used to derive (42). We take a = 0.7 with qt = 0.15 and t = 106. The
generic LIE path has an excursion with q∗ = 1, after which qτ relaxes
back towards zero, as the system follows its natural dynamics (19).
The generic LIE path does not capture the details of the optimally
controlled (instanton) path, which means that the coefficient κLIE

does not match κE in (16), but the generic LIE argument is sufficient
to capture the nonquadratic form of the rate function at q = 0.

large times. However, the agreement is not quantitative, and
the difference between κLIE and κE reflects this.

D. Discussion of generic IGL and LIE mechanisms

We summarize the difference between the IGL and LIE
mechanisms. The IGL makes a giant (divergent) excursion in
a finite time and leads to an LDP with reduced speed. The LIE
makes a finite excursion over a long (divergent) time period;
it leads to an LDP with speed t , and to a rate function with
I ′′(q∞) = 0 which is (generically) nonanalytic at q∞. In all
the examples that we have managed to construct, the IGL
mechanism relies on microscopic transition rates that diverge
as qt → ∞, in order to satisfy (36).

The IGL mechanism has an interesting analogy with con-
densation in interacting-particle systems [52,53]: to achieve
qt = q the system must support an excess current, which may
be distributed over a macroscopic fraction of the time period
(as in the LIE), or condensed into a finite time interval (the
IGL). A similar phenomenon is described by the “single-
big-jump” principle for sums of random variables (including
certain types of correlated process) [54]; the particular history
dependence in our models, with a > 0, constrains the conden-
sation to take place at the beginning of the time period.

We close this section by noting that (39) and (42) are both
lower bounds on the probability pt (q). Physically, this means
that fluctuations can take place by IGL and LIE mechanisms,
so fluctuations of a given size q are at least as likely as (39) and
(42) predict. We have not ruled out competing mechanisms
that might allow fluctuations of the same size to occur in a
more likely way. As a simple example, an LIE bound can be
obtained for the GERW but does not accurately describe the
probability of rare fluctuations, because the IGL mechanism is
available and occurs with (much) higher probability. [Indeed,
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it is easy to see that the IGL mechanism, if available, will
always dominate the LIE mechanism if β(1 − a) < 1.] To rule
out competing mechanisms, one would need a matching upper
bound on the probability; this seems to require more detailed
(model-dependent) analysis.

V. EXAMPLE MODELS EXHIBITING IGLs AND LIEs

By considering IGLs and LIEs, we have established sim-
ple and generic requirements which enable bounds on the
probabilities of large-deviation events. It is straightforward to
construct (or identify) other models that exhibit these mecha-
nisms. In this section we give a brief discussion of three such
cases. Similar to the ERW in Sec. III C, we establish bounds
on the probabilities of large excursions by using arguments
based on optimal control theory, these computations then en-
able us to check conditions for the IGL and LIE mechanisms.
Our main purpose here is not to describe the model behavior
in detail, but rather to illustrate the general relevance of the
identified mechanisms.

A. IGL in unidirectional hopping model

As an example in continuous time, we modify the unidi-
rectional walker model of Ref. [24]. Similarly to the ERW, we
consider a particle with integer-valued position xt which we
identify with the configuration Ct . The particle always hops in
the same direction so �xt = 1. We define qt as the total time-
averaged displacement which corresponds to (8) with α j = 1
for all jumps. In the variant of the model that we consider,
the particle makes its first jump at time t0; subsequent jumps
occur with rate

r(qt ) = aqt , (47)

where 0 < a < 1. The regularization parameter t0 is important
because if one allows jumps to occur at arbitrarily early times
then qt in (8) can become arbitrarily large after just one jump;
combined with (47), this can lead to pathological fluctuations.

The results of Ref. [24] indicate that large deviations with
qt > 0 involve a giant leap of size q∗ ∼ t1−a, leading to an
LDP with speed t1−a. However, that work made an assumption
of temporal additivity which (strictly speaking) is valid only
for t0 
 1. Here we discuss the case where t0 takes any
positive value; we show that the IGL mechanism operates, and
pt (q) can be bounded as in (39), which is consistent with an
LDP with speed t1−a.

To analyze the IGL we take τ ∗ = 2t0. In this case we show
in Appendix D that

log P(qτ ∗ � q∗) � −γuniq
∗t0, (48)

with γuni = O(1) as q∗ → ∞. That is, the probability of a
large excursion to q∗ in a finite time decays at most expo-
nentially in q∗. This establishes the requirement (37) for an
IGL.

Moreover, after the excursion the average displacement
obeys

τ
∂

∂τ
〈qτ 〉q∗,τ ∗ = (a − 1)〈qτ 〉q∗,τ ∗ , (49)

which follows directly from the master equation of the model.
Similar to (19), integrating this equation yields 〈qτ 〉q∗,τ ∗ =

q∗(τ ∗/τ )1−a, which is exactly the required condition (36) with
q∞ = 0 and F (q∗, τ ∗) = 1. Note that this holds even as q∗ →
∞, which is related to the fact that r(q∗) diverges in this limit.
To apply (34) requires that the conditional distribution of qt

after the excursion is sharply peaked: this is easily verified.
Hence, the conditions for an IGL are in place, and we have

established (39) with β = 1 and f∗(τ ∗) = 1, that is,

− log pt (q) � t1−aκuniq, (50)

with κuni = 2a−1γunit a
0 , using τ ∗ = 2t0, from above. This cor-

responds to an LDP with speed t1−a as shown in Refs. [24,25]
by arguments based on an assumption of temporal additivity.
Our analysis avoids any such assumption; it also shows that
the unusual speed of the LDP arises because the fluctuation
mechanism is an IGL.

The result (50) applies to the unidirectional model with
r(q) = aq, but, in fact, the main ingredient required in
the analysis was limq→∞[r(q)/q] = a (with 0 < a < 1). We
therefore expect the IGL mechanism to operate for a broad
class of models where this assumption holds.

B. LIE in cluster growth models

We consider a model of a growing cluster as in
Refs. [14–16]. The cluster contains two types of particles
(for example, red and blue) whose numbers at time t are nR

t
and nB

t . The cluster evolves in discrete time, and a single
particle is added on each step, so nR

t + nB
t = t . (This is the

irreversible model of Ref. [14], in that particles are added but
never removed.) The configuration is given by Ct = (nR

t , nB
t )

and we take qt = (nR
t − nB

t )/t , which means that αt = ±1 in
(8) according to whether a red or blue particle is added.

On step t , the added particle is red (+) or blue (−) with
probability (1 ± tanh Jqt−1)/2 where J > 0 is a parameter
that reflects the difference in energy on adding either a red or
blue particle. In this case, the dynamics of the quantity mt =
(nR

t − nB
t ) is similar to that of the ERW position xt , but with

the nonlinear tanh function replacing the linear function in
(2). This nonlinearity leads to a symmetry-breaking transition:
for J < 1 then qt ≈ 0 at long times (“mixed” clusters), but
for J > 1 then qt ≈ ±m̄, which corresponds to spontaneous
demixing. Here m̄ is the order parameter for the underlying
phase transition [14]. Large deviations in this model were dis-
cussed previously in Refs. [15,16], it may be also formulated
as an urn model so the results of Ref. [28] are applicable.

In the mixed (one-phase) regime, the behavior of this
model is qualitatively similar to the ERW. It can be analyzed
similarly to Sec. III C, using the same (general) controlled
model: red and blue particles are added with probabilities
(1 ± bt )/2. The theoretical arguments of Appendix C1 can
then be applied. Indeed, these ideas were already applied to
the growth model in Ref. [16]: for 1/2 < J < 1 this led to a
result analogous to (13), with a = J . However, that paper did
not come to a definitive conclusion about the speed of the LDP
in this regime. The general results of the present work can
be used to resolve this open question and to understand the
rare-event mechanism. We outline the argument below (again
for 1/2 < J < 1).

The results of Ref. [28] prove that the LDP for this model
must have speed t , so one may expect an LIE mechanism,
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similar to the ERW. Moreover, Ref. [16] showed that (19)
holds in this system for relaxation as t → ∞ after an initial
excursion. However, contrary to the ERW, this result is now
valid only for 〈qt 〉qτ

� 1. This establishes that (36) holds, but
only for small values of q∗.

We therefore fix some small value for this parameter and
construct the LIE, using (36) as in Sec. IV C to fix τ ∗ =
t (q∗ f‡(q∗)/qt )−1/(1−a) so that the natural dynamics after the
excursion arrives at qt with probability 1. By Ref. [28], this
excursion has Prob(qτ ∗ � q∗) � exp[−τ ∗I (q∗)], although the
rate function I is not known explicitly. These results can be
used with (34) to obtain

− log pt (q) � tκLIE|q|1/(1−a), (51)

as in (42). Since the validity of (36) is restricted to small
q∗, this construction is restricted to small q (strictly positive
and fixed as t → ∞). Still, this generic bound is sufficient
to establish the nonanalytic behavior of the rate function at
q = 0. The use of a fixed small value of q∗ is convenient for
this argument but is not expected to be optimal for the large-
deviation mechanism; in fact we anticipate the true large-
deviation mechanism to involve an excursion with q∗ = 1, as
for the ERW. This means that the prefactor κLIE is likely to be
far from optimal, but the scaling (51) is expected to be robust.

The overall picture is that for small values of qt (fixed as
t → ∞), the cluster growth model with 1/2 < J < 1 behaves
similarly to an ERW with a = J , exhibiting an LIE fluctua-
tion mechanism and a rate function that increases from zero
with exponent 1/(1 − a). Physically, the similarity can be
explained by an argument similar to the fixed-point stability
analysis of Ref. [25], because the exponent that appears in
the LIE bound depends only on the asymptotic (long-time)
dynamics close to the fixed point. For models that can be
formulated as urns [28], we therefore expect these similarities
with the ERW to be generic, based on an expansion of the urn
function about the fixed point.

C. LIE in a non-Markovian exclusion process

We consider a non-Markovian simple exclusion process
(SEP) where N particles hop in continuous time on a periodic
one-dimensional lattice of L sites, subject to the constraint that
each site may contain at most one particle. We define ni = 1
if site i contains a particle and ni = 0 otherwise. A configu-
ration is specified as C = (n1, n2, . . . , nL ). The time-averaged
current is qt = (Lt )−1 ∑

jumps j �x j , as in (8), where the sum
is over all particle hops, with �x j = ±1 according to whether
the hop is to the right or the left. Large deviations of qt have
been studied extensively in the Markovian case [55,56]. For
non-Markovian models, similar quantities have been studied
in Refs. [25,57]. Given the connections between exclusion
processes and traffic modeling [58], the generalization of such
models to include memory of previous flow (current) is quite
natural [25].

We introduce here a memory of mean-field type, so that
every particle hops either right (+) or left (−) with rate w± =
[1 ± tanh(νqt )]/2, as long as the destination site is empty.
The nonlinearity in this model is similar to that of the cluster
growth model, which leads to some similar phenomenology.

It is useful to note that detailed balance is broken in this
model (except for qt = 0), but the dynamical rules for any
given qt correspond to an asymmetric simple exclusion pro-
cess with periodic boundaries, whose stationary state has all
particles distributed independently (subject to the exclusion
constraint). Assuming that the system is in such a stationary
state at time t , and its time-averaged current is qt , the (aver-
age) rate for accepted particle hops is

〈
L

d

dt
(tqt )

〉
qt

= N
L − N

L − 1
tanh(νqt ). (52)

Here the factor of (L − N )/(L − 1) is the probability that
a site adjacent to a given particle is vacant. Expanding the
tanh about qt = 0 shows that the zero-current state 〈qt 〉 = 0 is
stable only if ν < νc with

νc = L(L − 1)

N (L − N )
. (53)

We identify νc as a phase-transition point, directly analogous
to the cluster-growth model.

For ν < νc, expansion of (52) about qt = 0 yields (36)
with a = ν/νc, which is again similar to the growth model
and indicates that the LIE scenario is applicable, at least for
small q∗. As a controlled model, we consider a (Markovian)
asymmetric simple exclusion process with a time-dependent
asymmetry parameter, so hops in the (±) direction have
w± = (1 ± bt )/2. This controlled model also has particles
distributed independently at all times. In this case the KL
divergence may be computed similarly to (C9). This allows
numerical optimization of the controlled dynamics—the opti-
mal behavior is similar to the ERW and cluster growth models,
showing an LIE mechanism. An explicit LIE bound may also
be derived by following exactly the same steps as used for the
cluster growth model in Sec. V B.

Contrary to the other models considered here, we do
not expect this controlled model to fully capture the large-
deviation mechanism, because it neglects interparticle corre-
lations, which are important for large deviations in exclusion
processes [55]. This effect might be captured by combining
the temporal additivity principle [25] with results for large
deviations in Markovian exclusion processes [55], but such
an analysis is beyond the scope of the present work. However,
we expect the general features to be robust: a large excursion
at early times and a rate function scaling as (42). Numerical
results confirming the similarity between this non-Markovian
SEP and other LIE models are shown in Fig. 4. This analysis
illustrates that the generic fluctuation mechanisms described
in this paper are not limited to simple one-particle systems.

As a final observation, note that since particles do not
pass each other in exclusion processes, trajectories with time-
averaged current qt = c at long times must have single-
particle currents whose time averages all converge to c also.
For this reason, we would expect similar behavior if each
particle had an individual memory of its own individual
displacements, in contrast to the simple (mean-field) case
considered here, where the motion of each particle is affected
by the memory of the whole system.
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FIG. 4. Numerical results for a non-Markovian simple exclusion
process with (N, L) = (8, 16), so νc = 3.75. (a) For ν = 2.4, 2.8,
particle motion is superdiffusive so the variance of qt decays as
a power law consistent with (10), dashed lines indicate power-law
behavior with the theoretically predicted exponent a = ν/νc. For
ν = 1.5 the behavior is diffusive, 〈q2

t 〉 ∝ t−1, since ν < νc/2. (b) The
distribution of qt for ν = 2.8 at t = 105 is similar to the ERW in
Fig. 1, the dashed line is a fit to (16) with a = ν/νc.

VI. OUTLOOK

We have presented two mechanisms by which large de-
viations can occur in non-Markovian processes, leading to
generic bounds (39) and (42) on the probabilities of these
rare events. To prove that these bounds give the right scaling
in specific cases requires more detailed analysis, as illus-
trated here for the simple ERW and GERW models. (Such
analyses are necessary to rule out competing mechanisms
with larger probability then the IGL and LIE.) Our results
indicate that the LIE mechanism operates in a non-Markovian
exclusion process, and the general mechanistic insights have
enabled us to clarify and extend several other results from
the literature [16,24,25]. This understanding is also relevant
in socioeconomic decision models that can be approximated
by generalized urn or elephant models [17]; by revealing
fluctuation mechanisms in these systems, our analysis may be
utilized to predict and control their long-term fluctuations. We
look forward to future work exploiting these insights, in order
to elucidate the rich fluctuation behavior of non-Markovian
systems.
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APPENDIX A: TYPICAL FLUCTUATIONS IN THE GERW

We derive (10) for the GERW. Suppose that after t steps
Qt = tqt has a Gaussian distribution with mean zero and
variance vt . Then Qt+1 − Qt is normally distributed with
mean aqt and variance 1 so the distribution of Qt+1 is

p(Qt+1) = 1

zt

∫
exp

[
− [Qt+1 − (1 + a

t )Qt ]2

2
− Q2

t

2vt

]
dQt

(A1)

with zt =
√

4π2vt . This distribution is normal with mean zero
and variance vt+1 = 1 + vt (1 + a/t )2. From this recursion
relation one finds a series solution for vt in terms of the
gamma function:

vt = 	(a + t )2

	(a + 1)2	(t )2

[
t−1∑
n=1

	(a + 1)2	(n + 1)2

	(a + n + 1)2
+ 1

]
. (A2)

The form of the large-t behavior can be obtained directly
from the recursion by writing vt = v(t ) so that v′(t ) ≈ 1 +
2av(t )/t . Hence v(t ) ≈ t/(1 − 2a) + cat2a, and so the vari-
ance of qt is

Var(qt ) = v(t )

t2
≈ 1

t (1 − 2a)
+ cat−2(1−a), (A3)

where subleading terms at higher order in t−1 have been
omitted. The second term is dominant for a > 1/2, and the
constant ca corresponds to χG in the asymptotic variance; its
value can be extracted as a limit from the series solution. For
a = 0.7 as used in Fig. 1 numerical evaluation of the limit
yields χG ≈ 3.4.

APPENDIX B: LARGE DEVIATIONS IN ERW BY
MAPPING TO URN MODEL

For large deviations of qt in the ERW, the SCGF ψ (λ) can
be obtained exactly by adapting results of Ref. [28]. We state
the equations and characterize the behavior at small λ.

The ERW can be interpreted as an urn model [10]. If the
fraction of + steps before time t is st then the probability that
�xt+1 = +1 is π (st ) where

π (s) = 1 + a(2s − 1)

2
(B1)

is the corresponding urn function [28]. Given this urn func-
tion, the parameters (a, b) of Corollary 12 of Ref. [28] cor-
respond to ((1 − a)/2, a) in the notation of this work. Since
qt = 2st − 1 then

G(λ, t ) = log〈eλt (2st −1)〉. (B2)

Define ψ̃ (μ) = limt→∞ t−1 log〈eμtst 〉 as the SCGF of
Ref. [28], denoted in that work by ψ . Then (6) and (B2) yield

ψ (λ) = ψ̃ (2λ) − λ. (B3)

Hence by Corollary 12 of Ref. [28] one has for λ > 0 that

ψ (λ) = − log
[
1 − we−2wλy1/aB(w,−2w, y)

] − λ, (B4)

where we introduced shorthand notation w = 1−a
2a and y =

1 − e−2λ (used only within this Appendix), and where

B(w, v, y) =
∫ 1

y
(1 − t )w−1tv−1 dt (B5)

is a particular case of the incomplete beta function.
We now compute the behavior of ψ at small λ, observing

that y � 2λ in this limit. Our regime of interest is 1/2 < a < 1
so that 0 < w < 1/2. In this case B(w,−2w, y) diverges as
y → 0. To extract the nature of this divergence, introduce a
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factor of 1 = t + (1 − t ) into the integrand of (B5) to yield

B(w, v, y) =
∫ 1

y

[
(1 − t )w−1tv + (1 − t )wtv−1

]
dt

= v + w

v

∫ 1

y
(1 − t )w−1tv dt − yv (1 − y)w

v
, (B6)

where the second line used an integration by parts, with the
assumption that w > 0. There is no such assumption on v, the
case of interest is −1 < v < 0. The limiting behavior at small
y can now be extracted: for v > −1 and y → 0 then

B(w, v, y) � v + w

v
B(w, 1 + v) − yv

v
+ o(1). (B7)

Here B(x, y) is the (complete) beta function, which is given
for x, y > 0 by

∫ 1
0 t x−1(1 − t )y−1 dt ; it is finite and positive.

Moreover, the relation B(w, v) = v+w
v

B(w, 1 + v) extends
the beta function to negative arguments. Using these results
with (B4) and identifying −2w = (a − 1)/a gives

ψ (λ) = − log

[
1 − wy1/a

(
B(w,−2w) + y(a−1)/a

2w
+ o(1)

)]

− λ. (B8)

Finally, noting that y � 2λ and using that ψ is an even
function:

ψ (λ) = 1 − a

2a
|2λ|1/aB

(
1 − a

2a
,

a − 1

a

)
[1 + o(1)]. (B9)

Hence

cE = 2(1/a)−1(1 − a)

a
B

(
1 − a

2a
,

a − 1

a

)
(B10)

in (15) and (31). Analyzing the subleading term shows that in
fact the first correction to (B8) is ψ (λ) = cE|λ|1/a + O(λ2).

Recall that we assumed here 1/2 < a < 1, since this is the
regime of interest for this work. However, (B4) also applies for
0 < a < 1/2; similar analysis can also be carried out in that
case. For a < 0 the corresponding result is given in Ref. [28];
the resulting ψ is analytic.

APPENDIX C: CONTROLLED DYNAMICS

1. Outline of general theory

As discussed in the main text, one method for analyzing
fluctuation mechanisms is to construct controlled processes
whose typical trajectories reproduce the rare-event behavior
of interest. Such processes can be analyzed variationally.

We work in the generic framework where the configuration
of the system at time t is Ct . A trajectory or sample path
is denoted C and its probability C in the original model is
denoted by P(C). Throughout our analysis, we fix t as the
trajectory length, and we use τ to indicate a generic time
within the trajectory. Now let Pcon(C) be the probability of
C in some controlled model, which has different dynamics.
Optimal-control theory provides the following general in-
equality [43]:

G(λ, t ) � λt〈qt 〉con − D(Pcon||P), (C1)

where 〈·〉con indicates an average in the controlled model, and
D(Q||P) is the Kullback-Leibler (KL) divergence between the
distributions Q and P. To prove (C1) define

Pcano(C) = eλtqt −G(λ,t )P(C), (C2)

which is a normalized probability distribution, by definition of
G. (The subscript “cano” indicates that this definition is anal-
ogous to that of the canonical ensemble in thermodynamics.)
Then by definition of the KL divergence, the right-hand side
of (C1) can be expressed as

λt〈qt 〉con − D(Pcon||P) = G(λ, t ) − D(Pcon||Pcano). (C3)

The KL divergence is non-negative so the right-hand side is
less than or equal to G(λ, t ), and (C1) follows. Moreover,
there is equality in (C1) if and only if Pcon = Pcano.

In addition, setting θ = 1 in the definition (6) we obtain
ψ (λ) = limt→∞ t−1G(λ, t ) so (C1) yields

ψ (λ) � lim
t→∞

[
λ〈qt 〉con − 1

t
D(Pcon||Pcano)

]
. (C4)

If this bound is saturated, then the controlled process gives
an accurate representation of the rare event of interest; see
also below. We emphasize that for non-Markovian processes
as considered here, the limit in (C4) involves controlled
processes where the dynamical rule at time τ depends both on
τ and on the total trajectory length t ; accurate bounds require
controlled processes with time-dependent rates.

2. GERW

We construct the optimally controlled process for large
deviations of qt in the GERW. Using (C2) one obtains a
distribution for the trajectory X , as defined in Sec. III B:

Pcano(X ) ∝ exp

[
λtqt − G(λ, t ) − S (X )

2

]
, (C5)

where qt also depends on X though (1). This distribution is
Gaussian for the increments and for the qτ , and one has an
analog of (25), which is

〈qτ 〉cano = μτ 〈qt 〉canoh, (C6)

where h, μτ are the same quantities that appear in (25). That
is, choosing λ in the canonical ensemble fixes 〈qt 〉cano. Then
the average path in this ensemble coincides with the average
path in a corresponding microcanonical ensemble with qt =
〈qt 〉cano.

Since Pcano in (C5) is Gaussian, it is possible to construct
exactly an optimally controlled process that generates trajec-
tories according to this distribution. This process achieves
equality in (C1) and captures the mechanism by which large
rare fluctuations occur in the GERW. This is similar to
the Doob transform, as discussed in Ref. [22], with time-
dependent rates as in Ref. [16]. Within the controlled system,
the displacement on step τ is Gaussian with mean aqτ−1 + bτ

and variance unity. This means that Pcon(X ) = exp(−S̃(X )/2)
with

S̃ (X ) =
t−1∑
τ=0

[(τ + 1)qτ+1 − qτ (τ + a) − bτ+1]2, (C7)
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analogous to (21). Hence

S̃ (X ) = S (X ) − 2tqt bt + 2
t−1∑
τ=1

qτ [(τ + a)bτ+1 − τbτ ]

+
t∑

τ=1

b2
τ . (C8)

The optimally controlled process has Pcon = Pcano [recall
(C3)], which is achieved by setting bt = λ and using bτ−1 =
bτ (1 + a

τ−1 ) iteratively to fix the bτ . For the CGF this identi-
fication yields G(λ, t ) = 1

2

∑t
τ=1 b2

τ .

3. ERW

For the ERW, a variational characterization of ψ (λ) is
available following Ref. [28]. This construction also allows
computation of the dominant paths shown in Fig. 2.

We outline the approach, which is to define a controlled
process that almost achieves equality in (C1), up to a correc-
tion that vanishes on taking the limit in (C4). The typical path
of this controlled model captures the mechanism of the (rare)
fluctuations that achieve qt = q in the ERW. (Specifically, for
large t and any u > 0, the conditional distribution of qut for
paths that achieve qt = q is sharply peaked at 〈qut〉con; see
Ref. [28].)

We use (C1) with the controlled dynamics described in the
main text for which (b1, b2, . . . , bt ) are variational parame-
ters. The KL divergence between Pcon and P is

D = 1

2

t∑
τ=1

[
(1 + bτ ) log(1 + bτ ) + (1 − bτ ) log(1 − bτ )

]

− 1

2

t∑
τ=1

(1 + bτ )〈log(1 + aqτ−1)〉con

− 1

2

t∑
τ=1

(1 − bτ )〈log(1 − aqτ−1)〉con, (C9)

and we have

〈qτ 〉con = 1

τ

τ∑
k=1

bk . (C10)

Moreover, the variance of qτ in this controlled process is at
most 1/τ , so it is consistent to assume that qτ is sharply
peaked for almost all terms in the sums in (C9). Hence D ≈ D̂
with

D̂ = 1

2

∑
τ

[
(1 + bτ ) log(1 + bτ ) + (1 − bτ ) log(1 − bτ )

]

− 1

2

∑
τ

(1 + bτ ) log(1 + 〈aqτ−1〉con)

− 1

2

∑
τ

(1 − bτ ) log(1 − 〈aqτ−1〉con). (C11)

Using (C10) this is an explicit function of the bτ variables,
so the right-hand side of (C1) can be maximized numerically,
which yields a numerical estimate of G(λ, t ), and hence (by
considering large but finite t) one may estimate ψ (λ).

For numerical work we use a similar method to that for
the GERW: we split the sums in (C11) into contributions
from small τ and large τ , and we approximate the sum over
large-τ contributions by an integral (which is also estimated
numerically). This combination of sum and integral is max-
imized numerically to obtain estimates of ψ (λ) and of the
corresponding (average) path (C10). This yields the results of
Fig. 2.

APPENDIX D: IGL MECHANISM IN UNIDIRECTIONAL
HOPPING MODEL

This Appendix establishes (48), which means that (37)
holds for the model of Sec. V A, with β = 1. For this condi-
tion, it is sufficient to consider a finite-time interval between
t0 and τ ∗ (there is no large-time limit because we are focusing
on the excursion that occurs at early times). For a compact
notation we work on the interval (t0, τ ], and we write k for a
generic time within this interval.

Consider a controlled process where the first hop is at time
t0 (as for the original model), after which hops take place with
a time-dependent rate b(τ ). Then (τqτ − 1) is Poissonian with
mean

∫ τ

t0
b(k)dk and so

τ 〈qτ 〉con = 1 +
∫ τ

t0

b(k) dk. (D1)

The KL divergence of (C1) is

D =
∫ τ

t0

{
b(k)

〈
log

b(k)

aqk

〉
con

− b(k) + 〈aqk〉con

}
dk, (D2)

similar to (C9). In addition to (C1), the KL divergence also
allows a bound on the probability distribution of qt . Roughly
speaking, if one can construct a controlled process such
that the large-deviation event occurs with probability one,
Pcon(qτ � q) = 1, then the probability of this event in the
original model can be bounded from below:

− log P(qτ � q) � D(Pcon||P). (D3)

This may be proved by Jensen’s inequality; a more precise
statement is given (for example) in Eqs. (14) and (15) of
Ref. [16]. Hence we seek an upper bound on D.

To achieve this, we use log(1/x) � (1/x) − 1 with x =
qk/〈qk〉con to write

D �
∫ τ

t0

{
b(k) log

b(k)

〈aqk〉con
− 2b(k) + 〈aqk〉con + b(k)〈qk〉con

〈
1

qk

〉
con

}
dk. (D4)
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For a Poisson random variable X with mean x, one has 〈 1
1+X 〉 = e−x

∑∞
n=0 xn/(n + 1)! = (1 − e−x )/x. Since (kqk − 1) is

Poissonian, we obtain

D �
∫ τ

t0

{
b(k) log

b(k)

〈aqk〉con
− 2b(k) + 〈aqk〉con + b(k)〈kqk〉con

1 − e−〈kqk−1〉con

〈kqk − 1〉con

}
dk. (D5)

To recover the results of Ref. [25] one should assume that kqk 
 1 throughout the integration range, so that the last term in
the integrand reduces to b(k). This is valid for t0 
 1. Then one sets τ = t and minimizes the resulting KL divergence over
the path q̂(k) = 〈qk〉con, using (D1) to replace b(k) → (∂/∂k)[kq̂(k)]. The optimal path behaves for short times as kq̂(k) =
1 + A[(k/t0) − 1] where A is proportional to the size of the giant excursion [25].

Our approach here does not require t0 to be large: we retain all terms in (D5) and use (D3) with τ = τ ∗ to establish (37). To
obtain a convenient bound we set τ ∗ = 2t0 and choose b(k) such that 〈kqk〉con = 1 + Ax with x = (k/t0) − 1 and A = 2q∗t0 −
1. This requires b(k) = A/t0 and ensures that 〈qτ ∗ 〉con = q∗. [Note, b(k) is only independent of k for k < τ ∗ (i.e., during the
excursion), the controlled process reverts to the natural dynamics of the model for k > τ ∗.] Then (D5) with τ = τ ∗ becomes

D � A
∫ 1

0

{
log

A(1 + x)

a(Ax + 1)
− 2 + a(Ax + 1)

A(1 + x)
+ (1 + Ax)

1 − e−Ax

Ax

}
dx. (D6)

We are concerned with the limit q∗ → ∞, which corresponds to A → ∞. The integral can be evaluated in this limit, and the KL
divergence scales as

D � γuniq
∗t0 (D7)

with γuni = 2[log(4/a) + a(1 − log 2) − 1]. To apply (D3) we require additionally that Pcon(qτ ∗ � q∗) → 1 as q∗ → ∞: this
holds because the distribution of qτ ∗ is Poissonian with a diverging mean equal to q∗, so it is sharply peaked at q∗. Hence (D3)
is applicable with KL divergence (D7), and the probability of the excursion obeys (48), as required.
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