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Correlations and responses for a system of n coupled linear oscillators with asymmetric interactions
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We focus on the asymmetry of the interaction in the optimal velocity (OV) model, which is a model
of self-driven particles, and analytically investigate the effects of the asymmetry on the fluctuation-response
relation, which is one of the remarkable relationships in statistical physics. By linearizing a modified OV model,
i.e., the backward-looking optimal velocity model, which can easily control the magnitude of asymmetry in
the interaction, we derive n coupled linear oscillators with asymmetric interactions. We analytically solve the
equations of the n coupled linear oscillators and calculate the response and correlation functions. We find that
the fluctuation response relation does not hold in the n coupled linear oscillators with asymmetric interactions.
Moreover, as the magnitude of the asymmetry increases, the difference between the response and correlation
functions increases .
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I. INTRODUCTION

A myriad of collective motions arise from groups of living
organisms such as cells, animals, and human beings. Many
of such collective motions are produced by self-organization,
which is governed by local interactions between parts of a sys-
tem. The topic of collective motions is important in nonequi-
librium physics, and the properties of collective dynamics
have been studied from the statistical physics perspective [1].

A mathematical model reproducing a moving cluster of
many particles was introduced as a model for traffic flow in
1994 and called the optimal velocity (OV) model [2–4]. The
OV model is a model of a nonequilibrium dissipative system
with an asymmetric interaction. The asymmetric interaction
means that a particle only interacts with the particle in front of
it in the direction of motion. In the OV model, the asymmetry
of the interaction is explicitly represented in the equation of
motion. Varying the magnitude of the asymmetry, Nakayama
et al. studied how this asymmetry affects the condition of
generating a moving cluster [5]. Moreover, asymmetric inter-
actions have been elucidated to be the central cause of traffic
jams [6,7].

We address the following question: How does the asym-
metry in the interaction of the OV model affect the physical
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nature? To answer this question, we focus on the fluctuation-
response relation (FRR) [8,9]. We note that the FRR is the
relation between the response function and the correlation
function. When a system is in a steady-state equilibrium,
where the detailed-balance condition is satisfied, we can de-
fine the temperature as the coefficient connecting the response
and correlation functions [9,10]. In contrast, when a system is
far from equilibrium, such a system trivially does not satisfy
the FRR.

The FRR must be broken in a dissipative system with
an asymmetric interaction when the force produced by the
asymmetric interaction is not a conservative force. We are
interested in studying how the asymmetry in the interaction
of the OV model leads to the FRR violation. Thus, we use
n coupled linear oscillators with asymmetric interactions as
in the OV model. To elucidate the relation, we analytically
calculate the linear response and correlation functions in
this model. Moreover, we evaluate both functions in several
cases and investigate the effects of asymmetry on the FRR
violation.

In Sec. II, we introduce the n coupled oscillators by lin-
earizing the OV model. In Sec. III, we solve the equations of
motion of the n coupled oscillators and calculate the response
function and correlation function. In Sec. IV, to discuss the
effect of the asymmetry on the FRR violation, we compare
the response and correlation functions. In Sec. V, we provide
conclusions regarding the results and some perspectives.

II. MODEL

In this section, we introduce the n coupled oscillators.
In Sec. II A, we review the extended OV model, i.e., the
backward-looking OV (BL-OV) model [5]. In Sec. II B, we
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derive the n coupled linear oscillators with asymmetric inter-
actions from the BL-OV model.

A. BL-OV model

We briefly review the BL-OV model [5], which can easily
control the magnitude of asymmetry in the interaction rather
than other many-particle models. In the original OV model,
each particle interacts with only the particle in front of it. In
the BL-OV model, each particle interacts with two particles
in front of and behind it. The model with n particles is
represented by a system of n equations of motion; the motion
of the jth particle is governed by the following equation:

d2x j

dt2

= a

{
[VF(�x j+1) + VB(�x j )] − dx j

dt

}
, ( j = 1, . . . , n),

(1)

where a is the “sensitivity,” which represents the response
speed. �x j+1 := x j+1 − x j and �x j := x j − x j−1 are the
distances to the particles in the front and the rear, re-
spectively. VF and VB are called OV functions, which
are expressed by VF(x) = αF[tanh(x − β ) + �] and VB(x) =
−αB[tanh(x − β ) + �], respectively. αF and αB are positive
constants that determine the interaction strengths; β deter-
mines the inflection point of tanh functions. � is a positive
constant, with � ≡ tanh β. In this study, the model employs
periodic boundary conditions, x0 = xn and xn+1 = x1.

The BL-OV model has a homogeneous solution, where
particles are uniformly distributed, x j+1 − x j = b, j =
1 . . . n, and moving with the same velocity, VF(b) + VB(b).
We set the left-hand side of Eq. (1) to 0 and set the distance
between neighbors to b. Then, the homogeneous solution of
the jth particle is written as

x̃ j (t ) = b j + [VF(b) + VB(b)]t . (2)

B. n coupled linear oscillators with asymmetric interactions

We briefly review the derivation of the linearized BL-OV
model. We write the position of each particle as the sum of the
homogeneous solution Eq. (2) and a small deviation y j , x j =
x̃ j + y j . Substituting this equation into Eq. (1) and ignoring
terms in y j+1 − y j or y j − y j−1 whose order is greater than
one, we rewrite y j as x j . We obtain the n coupled linear
oscillators with asymmetric interactions:

d2x j

dt2
= a

{
[V ′

F(b)�x j+1 + V ′
B(b)�x j] − dx j

dt

}
, (3)

where x j is the small deviation; V ′
F(b) = dVF(x)

dx |
x=b

, V ′
B(b) =

dVB(x)
dx |

x=b
, �x j+1 ≡ x j+1 − x j , �x j ≡ x j − x j−1, and xn = x0.

The homogeneous flow is stable for the small deviation under
the following condition (the detailed process is shown in
Appendix A):

a > 2
[V ′

F(b) + V ′
B(b)]2

V ′
F(b) − V ′

B(b)
. (4)

For convenience, we rewrite the constants as kL/m =
aV ′

F(b), −kR/m = aV ′
B(b), and γ /m = a. We obtain the cou-

pled oscillatorlike equation as follows:

m
d2x j

dt2
=kL(x j+1 − x j ) − kR(x j − x j−1) − γ

dx j

dt
. (5)

In this equation, we control the magnitude of the asymmetry
by changing the values of kL and kR. When we set kL = kR, we
obtain the equation of damped coupled oscillators. Substitut-
ing a = γ

m , V ′
F(b) = kL/γ , and V ′

B(b) = −kR/γ into Eq. (4),
we transform the stability condition into the following:

γ 2

m
> 2

(kL − kR)2

kL + kR
. (6)

Hereafter, in this paper, we set m, γ , kL, and kL to satisfy
Eq. (6).

In the next section, we calculate the response and correla-
tion functions.

III. RESPONSE FUNCTION AND CORRELATION
FUNCTION

To investigate the response and correlation functions, we
add a small external force, f j , and Gaussian white noise, Rj .
In short, we consider the response and correlation function of
following system of equations:

m
d2x j

dt2
= kL(x j+1 − x j ) − kR(x j − x j−1)

− γ
dx j

dt
+ Rj (t ) + f j (t ), (7)

where Rj (t ), j = 1, . . . , n, satisfies 〈Rj (t )〉0 = 0 and
〈Rj (t )Rk (s)〉0 = 2γ kBT δ j,kδ(t − s), with 〈·〉0 indicating
the ensemble average without applying the external force. We
suppose that each external force f j is sufficiently small and
expressed as

f j (t ) =
{

0 (t < 0),
f j (t ) (t � 0).

We can solve Eq. (7) (the detailed process is given in
Appendix B), and we obtain the solution for the given explicit
number n by the following recursive calculations:

xi(t ) = 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)

[
uk (t0) − λ

( j)
B xk (t0)

]
(
λ

( j)
A − λ

( j)
B

) eλ
( j)
A (t−t0 )

− 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)

[
uk (t0) − λ

( j)
A xk (t0)

]
(
λ

( j)
A − λ

( j)
B

) eλ
( j)
B (t−t0 )

+ 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)
∫ t

t0

ds

[
Rk (s) + fk (s)

]
eλ

( j)
A (t−s)

m
(
λ

( j)
A − λ

( j)
B

)

− 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)
∫ t

t0

ds

[
Rk (s) + fk (s)

]
eλ

( j)
B (t−s)

m
(
λ

( j)
A − λ

( j)
B

) ,

(8)
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where

λ
( j)
A = −γ +

√
γ 2 + 4mg(c j−1)

2m
, (9)

λ
( j)
B = −γ −

√
γ 2 + 4mg(c j−1)

2m
. (10)

The complex constant c and function g(c j ), j = 1, . . . , n − 1
are given by the following:

c := ei 2π
n ,

g(c0) = g(1) = 0,

g(c) = −(kL + kR) + kLc + kRc−1,

g(c2) = −(kL + kR) + kLc2 + kRc−2,

...

g(c j ) = −(kL + kR) + kLc j + kRc− j

...

g(cn−1) = −(kL + kR) + kLc−1 + kRc.

A. Response function

Using the solution of Eq. (7), we derive the response
function of the velocity u j (t ) = dx j

dt (t ). When we apply the
external forces to the system, we can expect that the velocity
u j (t ) will respond to the given forces as

〈u j (t )〉 �f − 〈u j〉0 =
n∑

k=1

∫ t

−∞
ds φ jk (t − s) fk (s), (11)

where 〈·〉 �f represents the ensemble average with applying the

external force �f ; 〈u j〉0 represents the steady current of the jth
particle; and φ jk is the response function for the velocity of

the jth particle when we apply the external force to the kth
particle.

When we set the external force to �f =
(0, . . . , 0, fk (t ), 0 . . . , 0)�, we have the following:

〈u j (t )〉 fk
− 〈u j〉0 =

∫ t

t0

ds fk (s)φ jk (t − s),

where 〈·〉 fk
represents the ensemble average when applying

the external force �f = (0, . . . , 0, fk (t ), 0 . . . , 0)�. With such
an external force, the ensemble average of uj is obtained as

〈u j (t )〉 fk
− 〈u j〉0

= 1

n

n∑
p=1

n∑
q=1

δqkc(p−1)( j−q)λ
(p)
A

∫ t

t0

ds
fq(s)eλ

(p)
A (t−s)

m
(
λ

(p)
A − λ

(p)
B

)
−1

n

n∑
p=1

n∑
q=1

δqkc(p−1)( j−q)λ
(p)
B

∫ t

t0

ds
fq(s)eλ

(p)
B (t−s)

m
(
λ

(p)
A − λ

(p)
B

) .

(12)

Comparing Eqs. (11) and (12), we obtain the following
response function for u j with fk (we show the detailed cal-
culation in Appendix C):

φ jk (t ) =
n∑

p=1

c(p−1)( j−k)

nm

[
λ

(p)
A eλ

(p)
A t − λ

(p)
B eλ

(p)
B t

λ
(p)
A − λ

(p)
B

]
. (13)

B. Correlation function

We derive a correlation function for the velocity. The
correlation function is defined as

Cjk (t − s) = 〈(u j (t ) − u j )(uk (s) − uk )〉0,

where u j = 〈u j〉0 and uk = 〈uk〉0. In the case of s � t , we
obtain the explicit form of the correlation function for the
linearized BL-OV model (we show the detailed calculation in
Appendix D):

Cjk (t − s) = 1

2γ

2γ kBT

n2

1

m

n∑
p=1

c(p−1)( j−o)

[
λ

(p)
A eλ

(p)
A (t−s) − λ

(p)
B eλ

(p)
B (t−s)

λ
(p)
A − λ

(p)
B

]
+ 2γ kBT

n2

1

m2

n∑
p=1

∑
q 	= j

c(p−1)( j−k)(
λ

(p)
A − λ

(p)
B

)

×
[

−λ
(p)
A λ

(p)
A eλ

(p)
A (t−s)(

λ
(p)
A + λ

(q)
A

)(
λ

(p)
A + λ

(q)
B

) + λ
(p)
B λ

(p)
B eλ

(p)
B (t−s)(

λ
(p)
B + λ

(q)
A

)(
λ

(p)
B + λ

(q)
B

)
]

+ 2γ kBT

n2

1

m2

n∑
p=1

n∑
q=1

∑
l 	=k

c(p−1)( j−l )+(q−1)(k−l )(
λ

(p)
A − λ

(p)
B

)

×
[

−λ
(p)
A λ

(p)
A eλ

(p)
A (t−s)(

λ
(p)
A + λ

(q)
A

)(
λ

(p)
A + λ

(q)
B

) + λ
(p)
B λ

(p)
B eλ

(p)
B (t−s)(

λ
(p)
B + λ

(q)
A

)(
λ

(p)
B + λ

(q)
B

)
]
. (14)

For the case of t � s, we obtain the correlation function in the same form (we show the explicit form Eq. (D4) in Appendix D).
Comparing the response function and the first term of the right-hand side of the correlation function Eq. (14), we find that

these terms are the same except for the constant multiplier. In other words, we can express the correlation function as

Cjk (t − s) = kBT

n
φ jk (t − s) + 2γ kBT

n2

1

m2

n∑
p=1

∑
q 	=k

c(p−1)( j−k)(
λ

(p)
A − λ

(p)
B

)
[

−λ
(p)
A λ

(p)
A eλ

(p)
A |t−s|(

λ
(p)
A + λ

(q)
A

)(
λ

(p)
A + λ

(q)
B

) + λ
(p)
B λ

(p)
B eλ

(p)
B |t−s|(

λ
(p)
B + λ

(q)
A

)(
λ

(p)
B + λ

(q)
B

)
]

+ 2γ kBT

n2

1

m2

n∑
p=1

n∑
q=1

∑
l 	=k

c(p−1)( j−l )+(q−1)(k−l )(
λ

(p)
A − λ

(p)
B

)
[

−λ
(p)
A λ

(p)
A eλ

(p)
A |t−s|(

λ
(p)
A + λ

(q)
A

)(
λ

(p)
A + λ

(q)
B

) + λ
(p)
B λ

(p)
B eλ

(p)
B |t−s|(

λ
(p)
B + λ

(q)
A

)(
λ

(p)
B + λ

(q)
B

)
]
. (15)
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In the case of kL = kR, the correlation function is reduced
to the FRR:

Cjk (t − s) = kBT
n∑

p=1

c(p−1)( j−k)

nm

[
λ

(p)
A eλ

(p)
A |t−s|− λ

(p)
B eλ

(p)
B |t−s|

λ
(p)
A − λ

(p)
B

]

= kBT φ jk (t − s).

When the interaction is symmetric, by comparing this correla-
tion function and response function Eq. (13), we can confirm
that the FRR is satisfied as a matter of course (we show the
detailed calculation in Appendix E). From relation Eq. (15),
we find that the FRR is violated in the asymmetric case.
In Sec. IV, we show that the magnitude of the asymmetry
increases the difference between correlations and responses.

IV. EFFECT OF ASYMMETRY ON THE FRR

From Eq. (15), the magnitude of the asymmetry and the
number of particles affect the difference between correlations
and responses. Thus, we evaluate these effects in this section.

Plotting the response and correlation functions, we show
the time variation of the response function Eq. (13) and
correlation function Eq. (14). We consider the case in which
the observed particle is the same as a particle to which an
external force is applied. Hereafter, we set m = 1, γ = 1.5,
and kBT = 1 for convenience. Moreover, because velocities
ui are real observables, we neglect the imaginary part of the
response and correlation functions in this section.

In Fig. 1, we present the differences between the response
and correlation functions considering the magnitude of the
asymmetry. Comparing Figs. 1(a) and 1(b), we see that as
the magnitude of the asymmetry increases, the difference
between the response and correlation functions increases. In
addition, we find oscillations in the response and correlation
functions. These oscillatory behaviors should originate from
the oscillation of the force caused by the interactions.

We show the effect of asymmetry in the frequency do-
main. We define the Fourier transform of the response and
correlation functions as φ̂11(l ) := ∑n

k=1 exp[−ikω(l )]φ11(t )
and Ĉ11(l ) := ∑n

k=1 exp[−ikω(l )]C11(t ), where t = kh, k =
1, . . . , N , and ω(l ) := 2π l

N (h represents the time step). As
seen in Figs. 2(a) and 2(b), the difference between correlations
and responses is maximized in the low frequency range.
Moreover, as the number of particles increases, the frequency
at which the difference is maximized becomes lower.

V. DISCUSSION

In the present study, we investigated the effects of the
asymmetry on the interaction of the OV model using n cou-
pled linear oscillators with asymmetric interactions. We eval-
uated the response function and the correlation function in the
n-body case. We found that the asymmetric interaction causes
FRR violation. We also numerically compared the response
and correlation functions for several numbers of particles
and magnitudes of the asymmetry. Moreover, comparing the
response and correlation functions in the frequency domain,
we found that the difference between the correlation and
response is maximized at low frequencies.
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FIG. 1. Time evolution of response function �11(t ) and correla-
tion function C11(t ) for kL = 1.0, n = 9, and kR = 0.25 and 0.05.
Solid and dashed curves represent the response function φ11 and
correlation function C11, respectively. Gray regions represent the
difference between the response and correlation. (a) kR = 0.25. (b)
kR = 0.05.

We should discuss the FRR violation from physical
viewpoints. Harada and Sasa provided a physical justifica-
tion for the FRR violation [10,11]. In Ref. [10], Harada
and Sasa showed that the FRR violation is related to
the energy dissipation Ji defined by Ref. [12]: 〈Ji(t )〉0 =
γi{〈ui〉2

0 + ∫ ∞
−∞

dω
2π

[Ĉii(ω) − 2kBT φ̂′
ii(ω)]}. Such a relation be-

tween the FRR violation and energy dissipation is beneficial
for understanding the nature of the asymmetric interaction.
Even if applying the original definition of energy dissipation,
Ji(t )�t ≡ ∫ t+�t

t [γiui(s) − Ri(s)] ◦ dxi(s), which is difficult
for the dissipative system with the asymmetric interaction, we
may be able to find another definition of energy dissipation
that corresponds to the FRR violation. Moreover, we suppose
that such a definition of energy dissipation will help us un-
derstand the physical mechanism of pattern formation in the
dissipative system with the asymmetric interaction. Since a
generalized relation connecting the response function due to
a small perturbation and a suitable correlation exists [13], we
may be able to find such a connecting relation.

In the present study, we focused only on the asymmetry and
considered only the trivial steady-state solution. However, the
equation of motion of the BL-OV model (and the OV model)
has a jam flow solution that represents the dynamic state in
which particles form a moving cluster. In previous studies
[6,7,14–16], the analysis focused on the jam flow elucidated
the relation between the pattern formation and the asymmetry
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FIG. 2. Fourier transform of the response and correlation func-
tions. Solid and dashed curves are amplitudes of the response and
correlation functions, respectively. We set kL = 1 and kR = 0.25. (a)
n = 9. (b) n = 18.

of the interaction. Therefore, investigating the FRR based on
the jam flow solution may be worthwhile. Moreover, in the
nonequilibrium states such as jam flow, we should also use
the fluctuation theorem to clarify between the asymmetry and
pattern [17,18].
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APPENDIX A: THE STABILITY CONDITION OF THE
HOMOGENEOUS FLOW

We briefly review the stability condition of the homo-
geneous flow in the BL-OV model [5]. We obtained the
linearized BL-OV model Eq. (3).

We use the Fourier expansion for calculating the stability
condition of the variations y j . Then, the variation is expressed
as

x̂k (t ) :=
n∑

j=l

exp[−ikθ (l )]xl (t ),

xl (t ) := 1

n

n∑
k=1

exp[ikθ (l )]x̂k (t ),

where k = 1, . . . , n and θ (l ) := 2π l
n . We express the mode as

x̂k (t ) = exp[iω(k)t]. Substituting these equations into Eq. (3),
we obtain the following:

1

n

n∑
k=1

eiθ ( j)k+iω(k)t [−ω2(k)]

=
n∑

k=1

eiθ ( j)k+iω(k)t

× a[V ′
F(b)(eikθ (1) − 1) + V ′

B(b)(1 − e−ikθ (1) ) − iω(k)].

Given the orthogonality of the Fourier basis, we find the
equation for ω(k):

ω2 − iaω + a[V ′
F(eiθ − 1) + V ′

B(1 − e−iθ )] = 0,

where V ′
F ≡ V ′

F(b), V ′
B ≡ V ′

B(b), θ ≡ kθ (1), and ω := ω(k).
The solution of ω is obtained as

ω = ia

2

{
1 ±

√
1 + 4

a
[V ′

F(eiθ − 1) + V ′
B(1 − e−iθ )]

}
. (A1)

When the imaginary part of ω is negative, the mode x̂k (t )
increases with the lapse of time. Therefore, the stability
condition is given as �(ω) > 0.

We note that
√

a + ib, (a, b ∈ R) can be transformed into√
a + ib = A + iB, (a, b, A, B ∈ R) as follows:

A = ±
√

a + √
a2 + b2

2
,

B = ±
√

−a + √
a2 + b2

2
. (A2)

Using Eq. (A1), we can rewrite the stability condition as 1 ±
A > 0. From Eqs. (A1) and (A2), we can express A as:

A = ±
[

1

2a

(
a + 4(cos θ − 1)(V ′

F − V ′
B)

+{
a2 + 8a(V ′

F − V ′
B)(cos θ − 1)

− 32(cos θ − 1)(V ′
F − V ′

B)2

− 16
[
(V ′

F + V ′
B)2 − (V ′

F − V ′
B)2]

−64V ′
FV ′

B cos2 θ
} 1

2
)] 1

2

.

As a result, we find the stability condition as follows:

a > (1 + cos θ )
[V ′

F(b) + V ′
B(b)]2

V ′
F(b) − V ′

B(b)
, (A3)

Considering that −1 � cos θ � 1, we can rewrite the stability
condition as

a > 2
[V ′

F(b) + V ′
B(b)]2

V ′
F(b) − V ′

B(b)
. (A4)
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APPENDIX B: SOLUTION
OF THE LINEARIZED BL-OV MODEL

We rewrite the equation of motion in vector form:

m
d2�x
dt2

(t ) = M�x(t ) − γ
d�x
dt

(t ) + �R(t ), (B1)

where

�x(t ) :=

⎛
⎜⎜⎜⎝

x1(t )
x2(t )

...
xn(t )

⎞
⎟⎟⎟⎠, �R(t ) :=

⎛
⎜⎜⎜⎝

R1(t ) + f1(t )
R2(t ) + f2(t )

...
Rn(t ) + fn(t )

⎞
⎟⎟⎟⎠,

M :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−kL − kR kL 0 0 kR

kR −kL − kR kL · · · 0
...

...
...

. . .
...

...
...

...
...

kL 0 · · · kR −kL − kR

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

To solve Eq. (B1), we diagonalize the matrix M and derive the
eigenvalues along with the corresponding eigenvectors. We
note that M is a circulant matrix [19].

From the properties of the circulant matrix, we can easily
find the eigenvalues,

g(1), g(c), g(c2), . . . , g(cn−1),

where c, g(1), g(c), . . . , g(c j ), . . . , g(cn−1), j = 1, . . . , n − 1,

are given as

c := ei 2π
n ,

g(c0) = g(1) = 0,

g(c) = −(kL + kR) + kLc + kRcn−1

= −(kL + kR) + kLc + kRc−1,

g(c2) = −(kL + kR) + kLc2 + kRc2(n−1)

= −(kL + kR) + kLc2 + kRc−2,

...

g(c j ) = −(kL + kR) + kLc j + kRc j(n−1)

= −(kL + kR) + kLc j + kRc− j,

...

g(cn−1) = −(kL + kR) + kLc(n−1) + kRc(n−1)2

= −(kL + kR) + kLc−1 + kRc.

A square matrix P, whose columns are the n independent
eigenvectors of M, is obtained as

P = 1√
n

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 c c2 · · · c(n−1)

1 c2 . . .
...

...
...

. . .
...

1 c(n−1) · · · · · · c(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B2)

Moreover, the inverse of matrix P can be expressed as

P−1 = 1√
n

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 c−1 c−2 · · · c−(n−1)

1 c−2 . . .
...

...
...

. . .
...

1 c−(n−1) · · · · · · c−(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1√
n

( �p1 �p2 · · · · · · �pn).

Using these matrices, we can rewrite Eq. (B1) as

m
d2P−1�x

dt2
(t ) = P−1MPP−1�x(t ) − γ

dP−1�x
dt

(t ) + P−1R(t ).

(B3)

1. Solution of the system of mode equations

Next, we define new variables as follows:

qi(t ) = 1√
n

�pi · �x(t ), i = 1, . . . , n. (B4)

From Eq. (B3), the equation of qi(t ) can be expressed as

m
d2qi

dt
(t ) = g(ci−1)qi(t ) − γ

dqi

dt
(t ) + Rq

i (t ), (B5)

where Rq
i is Rq

i (t ) = �pi · �R(t ), i = 1, 2, . . . , n.
We use variation of parameters and solve the equation for

each mode. First, we consider the corresponding homoge-
neous equation of Eq. (B5):

m
d2qi

dt
(t ) = g(ci−1)qi(t ) − γ

dqi

dt
(t ). (B6)

We obtain the homogeneous solution as follows:

qi,1(t ) = eλ
(i)
A t ,

qi,2(t ) = eλ
(i)
B t ,

λ
(i)
A = −γ +

√
γ 2 + 4mg(ci−1)

2m
, (B7)

λ
(i)
B = −γ −

√
γ 2 + 4mg(ci−1)

2m
. (B8)

Next, we assume that a particular solution to the nonhomoge-

neous equation is given by

qi,p(t ) = Ai(t )qi,1(t ) + Bi(t )qi,2(t ), (B9)

where Ai(t ) is a differential function satisfying

A′
i(t )qi,1(t ) + B′

i(t )qi,2(t ) = 0, (B10)

where A′
i(t ) = dAi

dt (t ) and B′
i(t ) = dBi

dt (t ). Substituting
Eq. (B9) into Eq. (B5) and applying Eq. (B10), we find

m
[
λ

(i)
A A′

i(t )eλ
(i)
A t + λ

(i)
B B′

i(t )eλ
(i)
B t

] = Rq
i (t ). (B11)
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Using condition Eq. (B10), we obtain the following system of
equations:

A′
i(t ) = Rq

i (t )e−λ
(i)
A t

m
(
λ

(i)
A − λ

(i)
B

) ,

B′
i(t ) = − Rq

i (t )e−λ
(i)
B t

m
(
λ

(i)
A − λ

(i)
B

) .

We integrate these equations and find the solutions as follows:

Ai(t ) = Ai(t0) +
∫ t

t0

ds
Rq

i (s)e−λ
(i)
A s

m
(
λ

(i)
A − λ

(i)
B

) ,

Bi(t ) = Bi(t0) −
∫ t

t0

ds
Rq

i (s)e−λ
(i)
B s

m
(
λ

(i)
A − λ

(i)
B

) .

Substituting these solutions into Eq. (B9), we obtain the
solution:

qi(t ) = Ai(t0)eλ
(i)
A t + Bi(t0)eλ

(i)
B t +

∫ t

t0

ds
Rq

i (s)eλ
(i)
A (t−s)

m
(
λ

(i)
A − λ

(i)
B

)
−

∫ t

t0

ds
Rq

i (s)eλ
(i)
B (t−s)

m
(
λ

(i)
A − λ

(i)
B

) , (B12)

where we rewrite qi,p as qi for convenience. Moreover, we
differentiate qi(t ) to obtain

q′
i(t ) = λ

(i)
A Ai(t0)eλ

(i)
A t + λ

(i)
B Bi(t0)eλ

(i)
B t

+ Rq
i (t )eλ

(i)
A (t−t )

m
(
λ

(i)
A − λ

(i)
B

) + λ
(i)
A

∫ t

t0

ds
Rq

i (s)eλ
(i)
A (t−s)

m
(
λ

(i)
A − λ

(i)
B

)
− Rq

i (t )eλ
(i)
B (t−t )

m
(
λ

(i)
A − λ

(i)
B

) − λ
(i)
B

∫ t

t0

ds
Rq

i (s)eλ
(i)
B (t−s)

m
(
λ

(i)
A − λ

(i)
B

) . (B13)

We set t to t0 and transform Eqs. (B12) and (B13) into the
following:

qi(t0) = Ai(t0)eλ
(i)
A t0 + Bi(t0)eλ

(i)
B t0 ,

q′
i(t0) = λ

(i)
A Ai(t0)eλ

(i)
A t0 + λ

(i)
B Bi(t0)eλ

(i)
B t0 .

Using these equations, we express Ai(t0) and Bi(t0) as

Ai(t0) = q′
i(t0) − λ

(i)
B qi(t0)(

λ
(i)
A − λ

(i)
B

) e−λ
(i)
A t0 ,

Bi(t0) = −q′
i(t0) − λ

(i)
A qi(t0)(

λ
(i)
A − λ

(i)
B

) e−λ
(i)
B t0 .

We finally obtain

qi(t ) =q′
i(t0)− λ

(i)
B qi(t0)(

λ
(i)
A − λ

(i)
B

) eλ
(i)
A (t−t0 ) − q′

i(t0) − λ
(i)
A qi(t0)(

λ
(i)
A − λ

(i)
B

) eλ
(i)
B (t−t0 )

+
∫ t

t0

ds
Rq

i (s)eλ
(i)
A (t−s)

m
(
λ

(i)
A − λ

(i)
B

) −
∫ t

t0

ds
Rq

i (s)eλ
(i)
B (t−s)

m
(
λ

(i)
A − λ

(i)
B

) ,

(B14)

q′
i(t ) =q′

i(t0) − λ
(i)
B qi(t0)(

λ
(i)
A − λ

(i)
B

) λ
(i)
A eλ

(i)
A (t−t0 )

− q′
i(t0) − λ

(i)
A qi(t0)(

λ
(i)
A − λ

(i)
B

) λ
(i)
B eλ

(i)
B (t−t0 )

+ λ
(i)
A

∫ t

t0

ds
Rq

i (s)eλ
(i)
A (t−s)

m
(
λ

(i)
A − λ

(i)
B

)
− λ

(i)
B

∫ t

t0

ds
Rq

i (s)eλ
(i)
B (t−s)

m
(
λ

(i)
A − λ

(i)
B

) . (B15)

2. Solution of the equation for each particle

The original variables and transformed variables have the
relation

�x(t ) = P �q(t ),

�q(t ) = P−1�x(t ).

We note that �x(t ) and �q(t ) can be expressed as

�x(t ) = 1√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 c c2 · · · c(n−1)

1 c2 . . .
...

...
...

. . .
...

1 c(n−1) · · · · · · c(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

q1(t )
q2(t )
q3(t )

...
qn(t )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�q(t ) = 1√
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 c−1 c−2 · · · c−(n−1)

1 c−2 . . .
...

...
...

. . .
...

1 c−(n−1) · · · · · · c−(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x1(t )
x2(t )
x3(t )

...
xn(t )

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We show the explicit form of each element:

xi(t ) = 1√
n

n∑
j=1

c(i−1)( j−1)q j (t ), i = 1, 2, . . . , n, (B16)

qk (t ) = 1√
n

n∑
l=1

c−(k−1)(l−1)xl (t ), k = 1, 2, . . . , n.

(B17)

We also transform dqi

dt (t0) and Rq
i (t ) into the following:

dqi

dt
(t0) = 1√

n

n∑
j=1

c−(i−1)( j−1)u j (t0), (B18)

Rq
i (t ) = 1√

n

n∑
j=1

c−(i−1)( j−1)[Rj (t ) + f j (t )], (B19)
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where ui(t ) := dxi
dt (t ). Substituting Eqs. (B16), (B17), (B18),

and (B19) into Eqs. (B14) and (B15), we obtain the following
equations:

qi(t ) = 1√
n

n∑
j=1

c−(i−1)( j−1)
[
u j (t0) − λ

(i)
B x j (t0)

]
(
λ

(i)
A − λ

(i)
B

) eλ
(i)
A (t−t0 )

− 1√
n

n∑
j=1

c−(i−1)( j−1)
[
u j (t0) − λ

(i)
A x j (t0)

]
(
λ

(i)
A − λ

(i)
B

) eλ
(i)
B (t−t0 )

+ 1√
n

n∑
j=1

c−(i−1)( j−1)
∫ t

t0

ds
[Rj (s) + f j (s)]eλ

(i)
A (t−s)

m
(
λ

(i)
A − λ

(i)
B

)
− 1√

n

n∑
j=1

c−(i−1)( j−1)
∫ t

t0

ds
[Rj (s) + f j (s)]eλ

(i)
B (t−s)

m
(
λ

(i)
A − λ

(i)
B

) ,

(B20)
dqi

dt
(t )

= 1√
n

n∑
j=1

c−(i−1)( j−1)
[
u j (t0) − λ

(i)
B x j (t0)

]
(
λ

(i)
A − λ

(i)
B

) λ
(i)
A eλ

(i)
A (t−t0 )

− 1√
n

n∑
j=1

c−(i−1)( j−1)
[
u j (t0) − λ

(i)
A x j (t0)

]
(
λ

(i)
A − λ

(i)
B

) λ
(i)
B eλ

(i)
B (t−t0 )

+ 1√
n

n∑
j=1

c−(i−1)( j−1)λ
(i)
A

∫ t

t0

ds
[Rj (s) + f j (s)]eλ

(i)
A (t−s)

m
(
λ

(i)
A − λ

(i)
B

)
− 1√

n

n∑
j=1

c−(i−1)( j−1)λ
(i)
B

∫ t

t0

ds
[Rj (s)+ f j (s)]eλ

(i)
B (t−s)

m
(
λ

(i)
A − λ

(i)
B

) .

(B21)

Thus, we obtain the solution of Eq. (B1), which is ex-
pressed as

xi(t ) =1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)

[
uk (t0) − λ

( j)
B xk (t0)

]
(
λ

( j)
A − λ

( j)
B

) eλ
( j)
A (t−t0 )

− 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)

[
uk (t0) − λ

( j)
A xk (t0)

]
(
λ

( j)
A − λ

( j)
B

) eλ
( j)
B (t−t0 )

+ 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)
∫ t

t0

ds

[
fk (s) + Rk (s)

]
eλ

( j)
A (t−s)

m
(
λ

( j)
A − λ

( j)
B

)

− 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)
∫ t

t0

ds

[
fk (s) + Rk (s)

]
eλ

( j)
B (t−s)

m
(
λ

( j)
A − λ

( j)
B

) .

(B22)

The differentiation of the solution, ui(t ), can be expressed as

ui(t )

= 1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)

[
uk (t0) − λ

( j)
B xk (t0)

]
(
λ

( j)
A − λ

( j)
B

) λ
( j)
A eλ

( j)
A (t−t0 )

−1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)

[
uk (t0) − λ

( j)
A xk (t0)

]
(
λ

( j)
A −λ

( j)
B

) λ
( j)
B eλ

( j)
B (t−t0 )

+1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)λ
( j)
A

∫ t

t0

ds
[ fk (s)+Rk (s)]eλ

( j)
A (t−s)

m
(
λ

( j)
A −λ

( j)
B

)
−1

n

n∑
j=1

n∑
k=1

c( j−1)(i−k)λ
( j)
B

∫ t

t0

ds
[ fk (s)+Rk (s)]eλ

( j)
B (t−s)

m
(
λ

( j)
A −λ

( j)
B

) .

(B23)

APPENDIX C: LINEAR RESPONSE FUNCTION

We derive the response function of Eq. (B23). When we set
the external forces to

�R(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

R1(t )
...

fk (t ) + Rk (t )
...

Rn(t )

⎞
⎟⎟⎟⎟⎟⎟⎠

, (k = 1, 2, . . . , n),

we can transform Eq. (B23) into the following:

〈ui(t )〉 fk

= 1

n

n∑
p=1

n∑
q=1

c(p−1)(i−q)

[
uq(t0) − λ

(p)
B xq(t0)

]
(
λ

(p)
A − λ

(p)
B

) λ
(p)
A eλ

(p)
A (t−t0 )

−1

n

n∑
p=1

n∑
q=1

c(p−1)(i−q)

[
uq(t0) − λ

(p)
A xq(t0)

]
(
λ

(p)
A − λ

(p)
B

) λ
(p)
B eλ

(p)
B (t−t0 )

+1

n

n∑
p=1

n∑
q=1

δqkc(p−1)(i−q)λ
(p)
A

∫ t

t0

ds
fq(s)eλ

(p)
A (t−s)

m
(
λ

(p)
A − λ

(p)
B

)
−1

n

n∑
p=1

n∑
q=1

δqkc(p−1)(i−q)λ
(p)
B

∫ t

t0

ds
fq(s)eλ

(p)
B (t−s)

m
(
λ

(p)
A − λ

(p)
B

) .

Using �(λ(i)
A ) � 0 and �(λ(i)

B ) � 0(i = 1, 2, . . . , n), we

rewrite the terms that involve eλ
( j)
A (t−t0 ) or eλ

( j)
B (t−t0 ) as

〈ui〉0 ≡ ui.
Thus, we obtain the following response function:

〈ui(t )〉 fk
− 〈ui〉0

= 1

n

n∑
p=1

c(p−1)(i−k)λ
(p)
A

∫ t

t0

ds
fk (s)eλ

(p)
A (t−s)

m
(
λ

(p)
A − λ

(p)
B

)
−1

n

n∑
p=1

c(p−1)(i−k)λ
(p)
B

∫ t

t0

ds
fk (s)eλ

(p)
B (t−s)

m
(
λ

(p)
A − λ

(p)
B

) .

=
∫ t

t0

ds fk (s)φik (t − s),

φik (t ) := 1

n

n∑
p=1

c(p−1)(i−k)

[
λ

(p)
A eλ

(p)
A t − λ

(p)
B eλ

(p)
B t

m
(
λ

(p)
A − λ

(p)
B

)
]
,

where φik (t ) is the linear response function for velocity ui(t )
with external force fk (t ).

012150-8



CORRELATIONS AND RESPONSES FOR A SYSTEM OF … PHYSICAL REVIEW E 102, 012150 (2020)

APPENDIX D: CORRELATION FUNCTION

We derive the correlation function of Eq. (B23). We set the
external forces to independent white noise:

�R(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

R1(t )
R2(t )

...

...
Rn(t )

⎞
⎟⎟⎟⎟⎟⎟⎠

,

〈Ri(t )〉0 = 0,

〈Ri(t )Rj (s)〉0 = 2γ kBT δi jδ(t − s)
= Dδi jδ(t − s).

In Eq. (B23), we set t0 to −∞ and obtain

ui(t ) = 1

n

n∑
p=1

n∑
q=1

c(p−1)(i−q)λ
(p)
A

∫ t

−∞
dr

Rq(r)eλ
(p)
A (t−r)

m
(
λ

(p)
A − λ

(p)
B

)
− 1

n

n∑
p=1

n∑
q=1

c(p−1)(i−q)λ
(p)
B

∫ t

−∞
dr

Rq(r)eλ
(p)
B (t−r)

m
(
λ

(p)
A − λ

(p)
B

)
= 1

n

n∑
p=1

n∑
q=1

c(p−1)(i−q)

×
∫ t

−∞
dr

Rq(r)
[
λ

(p)
A eλ

(p)
A (t−r) − λ

(p)
B eλ

(p)
B (t−r)

]
m

(
λ

(p)
A − λ

(p)
B

) . (D1)

Using Eq. (D1), we obtain the following correlation function:

Ci j (t − s) = 〈(ui(t ) − ui )(u j (s) − u j )〉0

= D

n2

n∑
k=1

n∑
l=1

n∑
p=1

c(k−1)(i−l )+(p−1)( j−l )

m2
(
λ

(k)
A − λ

(k)
B

)(
λ

(p)
A − λ

(p)
B

)
×

[
− λ

(k)
A λ

(p)
A

λ
(k)
A + λ

(p)
A

eλ
(k)
A t+λ

(p)
A se−

(
λ

(k)
A +λ

(p)
A

)
min(t,s)

+ λ
(k)
A λ

(p)
B

λ
(k)
A + λ

(p)
B

eλ
(k)
A t+λ

(p)
B se−

(
λ

(k)
A +λ

(p)
B

)
min(t,s)

+ λ
(k)
B λ

(p)
A

λ
(k)
B + λ

(p)
A

eλ
(k)
B t+λ

(p)
A se−(λ(k)

B +λ
(p)
A ) min(t,s)

− λ
(k)
B λ

(p)
B

λ
(k)
B + λ

(p)
B

eλ
(k)
B t+λ

(p)
B se−

(
λ

(k)
B +λ

(p)
B

)
min(t,s)

]
.

(D2)

In the case of t � s, we obtain

Ci j (t − s) = D

n2

n∑
k=1

n∑
l=1

n∑
p=1

c(k−1)(i−l )+(p−1)( j−l )

m2
(
λ

(k)
A − λ

(k)
B

)(
λ

(p)
A − λ

(p)
B

)
×

[(
− λ

(k)
A λ

(p)
A

λ
(k)
A + λ

(p)
A

+ λ
(k)
A λ

(p)
B

λ
(k)
A + λ

(p)
B

)
eλ

(k)
A (t−s)

+
(

λ
(k)
B λ

(p)
A

λ
(k)
B + λ

(p)
A

− λ
(k)
B λ

(p)
B

λ
(k)
B + λ

(p)
B

)
eλ

(k)
B (t−s)

]
.

(D3)

Defining

�(k, p; t − s) := 1(
λ

(k)
A − λ

(k)
B

)[ −λ
(k)
A λ

(k)
A eλ

(k)
A (t−s)(

λ
(k)
A + λ

(p)
A

)(
λ

(k)
A + λ

(p)
B

)
+ λ

(k)
B λ

(k)
B eλ

(k)
B (t−s)(

λ
(k)
B + λ

(p)
A

)(
λ

(k)
B + λ

(p)
B

)]
,

we can express correlation function Eq. (D3) as

Ci j (t − s) = −Deλ
(1)
B (t−s)

2nm2λ
(1)
B

+ D

nm2

n∑
k=2

ci(k−1)− j(k−1)�(k, n + 2 − k; t − s).

In the case of s � t , we obtain

Ci j (t − s) = D

n2

n∑
k=1

n∑
l=1

n∑
p=1

c(k−1)(i−l )+(p−1)( j−l )

m2
(
λ

(k)
A − λ

(k)
B

)(
λ

(p)
A − λ

(p)
B

)
×

[(
− λ

(k)
A λ

(p)
A

λ
(k)
A + λ

(p)
A

+ λ
(k)
B λ

(p)
A

λ
(k)
B + λ

(p)
A

)
eλ

(p)
A (s−t )

+
(

λ
(k)
A λ

(p)
B

λ
(k)
A + λ

(p)
B

− λ
(k)
B λ

(p)
B

λ
(k)
B + λ

(p)
B

)
eλ

(p)
B (s−t )

]
.

(D4)

Using �(k, p; t ), we can also rewrite this result as

Ci j (t − s) = −Deλ
(1)
B (s−t )

2nm2λ
(1)
B

+ D

nm2

n∑
p=2

c−i(p−1)+ j(p−1)�(p, n + 2 − p; s − t ).

APPENDIX E: CASE OF THE SYMMETRIC INTERACTION

We show the FRR in the case of the symmetric interaction,
kL = kR = κ .

1. Case of t > s

We rewrite the correlation function as

Ci j (t − s) = D

n2

1

m2

n∑
k=1

n∑
p=1

n∑
l=1

c(k−1)(i−l )(p−1)( j−l )

×�(k, p; t − s),

where

�(k, p; t − s) := 1(
λ

(k)
A − λ

(k)
B

)[ −λ
(k)
A λ

(k)
A eλ

(k)
A (t−s)(

λ
(k)
A + λ

(p)
A

)(
λ

(k)
A + λ

(p)
B

)
+ λ

(k)
B λ

(k)
B eλ

(k)
B (t−s)(

λ
(k)
B + λ

(p)
A

)(
λ

(k)
B + λ

(p)
B

)]
.
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We change the orders of summations and obtain

Ci j (t − s) = D

n2

1

m2

n∑
k=1

n∑
p=1

ci(k−1)+ j(p−1)�(k, p; t − s)

×
n∑

l=1

c−l (k+p−2). (E1)

We note that c has the following property:

1 + cy + c2y + · · · + c(n−1)y = 0, y 	= nx, x ∈ Z. (E2)

This property is shown by multiplying cy and

1 + cy + c2y + · · · + c(n−1)y = z, z ∈ C.

Then, we obtain

1 + cy + c2y + · · · + c(n−1)y = cyz.

We recall that ay 	= 1 and obtain z = 0.
In addition, we note that

g(ck ) = 2[cos(kθ ) − 1].

Then, part of λ
( j)
A and λ

( j)
B ,

√
γ 2 + 4mg(c j−1), is transformed

into the following:√
γ 2 + 4mg(c j−1) =

√
α( j),

α( j) = γ 2 + 8mκ{cos[( j − 1)θ ] − 1}.

λ
( j)
A and λ

( j)
B are rewritten as

λ
( j)
A = −γ +

√
α( j)

2m
,

λ
( j)
B = −γ −

√
α( j)

2m
.

Since α( j) can be rewritten as

α( j) = γ 2 + 8mκ{cos[( j − 1)θ ] − 1}
= γ 2 + 8mκ (cos{[(n − j + 2) − 1]θ} − 1)

= α(n− j+2),

λ
( j)
A and λ

( j)
B satisfy

λ
( j)
A = λ

(n+2− j)
A , λ

( j)
B = λ

(n+2− j)
B . (E3)

When the index is other than k + p − 2 = 0 or k + p −
2 = n, from Eq. (E2), the summation

∑n
l=1 c−l (k+p−2) van-

ishes. In other words, Eq. (E1) is reduced to

Ci j (t − s) = D

n2

n

m2

n∑
k=1

n∑
p=1

(δk,1δp,1 + δp,n+2−k )

× ci(k−1)+ j(p−1)�(k, p; t − s).

We expand this expression to

Ci j (t − t ′) = D

n2

n

m2

1∑
k=1

�(k, k; t − s)

+ D

n2

n

m2

n∑
k=2

ci(k−1)− j(k−1)�(k, n + 2 − k; t − s).

Using Eq. (E3), we reduce �(k, n + 2 − k; t − s) to

�(k, n + 2 − k; t − s) = m

2γ

[
λ

(k)
A eλ

(k)
A (t−s) − λ

(k)
B eλ

(k)
B (t−s)

]
λ

(k)
A − λ

(k)
B

= �(k, k; t − s),

where we use the following: (λ(k)
A + λ

(k)
B ) = − γ

m . Thus, the
correlation function is reduced to

Ci j (t − s) = kBT
n∑

k=1

c(k−1)(i− j)

nm

×
[
λ

(k)
A eλ

(k)
A (t−s) − λ

(k)
B eλ

(k)
B (t−s)

]
λ

(k)
A − λ

(k)
B

.

2. Case of s > t

Similar to the case of t > s, Ci j (t − s) is reduced to

Ci j (t − s) = 1

2γ

D

n

1

m

n∑
k=1

c(k−1)(i− j)

×
[
λ

(k)
A eλ

(k)
A (s−t ) − λ

(k)
B eλ

(k)
B (s−t )

]
λ

(k)
A − λ

(k)
B

.
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