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Dynamical large deviations of reflected diffusions

Johan du Buisson*

Institute of Theoretical Physics, Department of Physics, Stellenbosch University, Stellenbosch 7600, South Africa

Hugo Touchette †

Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa

(Received 4 May 2020; revised 4 July 2020; accepted 7 July 2020; published 27 July 2020)

We study the large deviations of time-integrated observables of Markov diffusions that have perfectly
reflecting boundaries. We discuss how the standard spectral approach to dynamical large deviations must
be modified to account for such boundaries by imposing zero-current conditions, leading to Neumann or
Robin boundary conditions, and how these conditions affect the driven process, which describes how large
deviations arise in the long-time limit. The results are illustrated with the drifted Brownian motion and the
Ornstein-Uhlenbeck process reflected at the origin. Other types of boundaries and applications are discussed.

DOI: 10.1103/PhysRevE.102.012148

I. INTRODUCTION

The use of stochastic differential equations (SDEs) for
modeling noisy diffusive systems often requires that we spec-
ify the location of boundaries or “walls” when the system
of interest evolves in a confined space or has a state that
is inherently bounded [1–3]. Examples include molecules
diffusing in cells [3–5], particle transport in porous media
[4], as well as diffusive limits of population [3] and queueing
dynamics [6–8] which have a positive state. In each case, one
must also define what happens when a boundary is reached
by specifying a boundary type or condition on the density
ρ and current J entering in the Fokker-Planck equation [1].
Reflecting boundaries, for instance, are defined by requiring
J = 0 at the boundary, whereas absorbing boundaries, related
to extinctions in population models, are such that ρ = 0 at the
boundary. Other types of boundaries are possible, including
partially reflective [9], reactive [10–12], and sticky [13–15],
and arise in biological and chemical applications.

Many studies, starting with Feller [16–18], have looked at
the effect of boundaries on SDEs at the level of probability
distributions (time-dependent or stationary) and mean first-
passage times [2–4]. In this paper, we investigate this effect
on the long-time large deviations of time averages of the form

ST = 1

T

∫ T

0
f (Xt )dt, (1)

where f is some function of the state Xt of a bounded SDE.
The random variable ST can be related, depending on the
system considered, to various physical quantities that are
integrated over time and for this reason is called a dynamical
observable [19–21]. For simplicity, we study one-dimensional
systems, so that Xt evolves in a closed interval [a, b] of R
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and consider perfect reflections at the endpoints a and b [22].
Other types of boundaries are discussed in the conclusion.

Large deviations have been studied before for reflected
SDEs, in particular, by Grebenkov [23], Forde et al. [24],
and Fatalov [25], who obtain the rate function of various
functionals of reflected Brownian motion, including its area
and the residence time at a reflecting point. Pinsky [26–29]
and Budhiraja and Dupuis [30] also study the large deviations
of bounded diffusions, but do so at the level of empirical
densities, the “level 2” of large deviations, rather than time
averages, which corresponds to “level 1” [31]. Finally, many
studies [32–37] consider escape-type events occurring in the
low-noise limit, which fall within the Freidlin-Wentzell theory
of large deviations [38]. In this case, the rare events of interest
typically involve the state Xt at a fixed or random time rather
than time averages of Xt , as in (1).

In this work, we focus on the long-time limit and extend the
studies above by deriving the reflective boundary conditions
of the spectral problem that underlies the calculation of dy-
namical large deviations [21]. Our results clarify the source of
the boundary conditions used in Refs. [23,25] and extend them
to more general SDEs and observables. We also investigate
how the presence of reflecting boundaries affects the driven
process, introduced in Refs. [39–41] to explain, via a modified
SDE, how fluctuations of ST away from its typical value are
created in time. The main result that we obtain for this process,
which is also called the auxiliary or effective process [42–44],
is that its drift generally differs from the drift of the original
SDE everywhere except at the boundaries, due to the J = 0
condition which is also satisfied by the driven process.

These results can be applied to study the large deviations
of many equilibrium and nonequilibrium diffusions, including
manipulated Brownian particles, which necessarily evolve in a
confined environment and so can interact with walls. As illus-
trations, we consider two simple reflected diffusions, namely,
the reflected Ornstein-Uhlenbeck process, which models
the dynamics of an underdamped Brownian particle pulled
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linearly toward a reflecting wall as well as the dynamics of
queueing systems in the heavy-traffic regime [7], and the
reflected Brownian motion with negative drift, which models
a Brownian particle pulled to a wall by a constant force
such as gravity. Other applications, boundary types, and open
problems are discussed in the conclusion.

II. REFLECTED DIFFUSIONS

We consider a one-dimensional Markov diffusion (Xt )t�0

defined by the SDE

dXt = F (Xt )dt + σdWt , (2)

which we restrict to the interval [a, b] with a < b and either a
or b (or both) finite. The function F (x) is called the force or
drift and is assumed to be such that the boundaries of [a, b]
are reachable in finite time from the interior of this interval
(regular boundaries) [45]. The constant σ > 0 is the noise
amplitude multiplying the increments of the Brownian motion
Wt ∈ R, representing in SDE form a Gaussian white noise.
The more general case where σ depends on Xt can be covered
using the methods explained in Ref. [40].

To complete the model, we must specify the behavior of the
process at the boundaries of [a, b]. Mathematically, this can
be done at the level of the SDE or at the level of the Fokker-
Planck equation

∂tρ(x, t ) = −∂xF (x)ρ(x, t ) + σ 2

2
∂xxρ(x, t ), (3)

which governs the evolution of the time-dependent probability
density ρ(x, t ) of Xt , starting from some initial density ρ(x, 0)
for X0. Rewriting this equation as a conservation equation

∂tρ(x, t ) = −∂xJF,ρ (x, t ), (4)

we identify the probability current

JF,ρ (x, t ) = F (x)ρ(x, t ) − σ 2

2
∂xρ(x, t ). (5)

Perfect reflections are then imposed by requiring that this
current vanish at a and b (approaching these points from the
interior). Thus,

JF,ρ (a+, t ) = 0 = JF,ρ (b−, t ) (6)

at all times t , where a+ = a + 0 and b− = b − 0. This fol-
lows, as is well known [1], because a reflecting boundary
cannot be crossed, so the normal component of the probability
current at the boundary, which in one dimension is simply the
current itself, must be equal to zero.

If Xt is ergodic, then we also have in the long-time limit

JF,ρ∗ (a+) = 0 = JF,ρ∗ (b−), (7)

where ρ∗(x) is the unique stationary distribution of the
Fokker-Planck equation [46]. For one-dimensional diffusions,
we have in fact JF,ρ∗ (x) = 0 not just at the boundary points
but for all x ∈ [a, b], since the stationary current is constant
throughout space in this case. As a result, ρ∗ must be an
equilibrium density having the Gibbs form

ρ∗(x) = c e−2U (x)/σ 2
, (8)

FIG. 1. Mechanical reflection of the Langevin dynamics at a
boundary. If the state Xt crosses the boundary a during one time step,
then it is reflected back to [a, b] in a mirrorlike way with respect to
a. A similar reflection is applied to the boundary at b. This reflection
rule assumes that the reflected point still falls within [a, b], which is
the case if �t is sufficiently small. The boundary layer is shown in
gray.

where U (x) is the potential associated with the force by
F (x) = −U ′(x) and c is a normalization constant.

Perfect reflections at the boundaries can also be imposed
directly at the level of Xt by adding to the SDE a new “noise”
term given by the increment of the “local time” at the bound-
aries, which essentially represents the amount of time that Xt

spends near a or b [2]. This mathematical construction, due to
Skorokhod [47], provides a rigorous way to study reflections
in diffusions but will not be used here as it is too abstract
for our purposes. Instead, we think of Xt as evolving on R
in discrete time according to the Euler-Maruyama scheme

Xt+�t = Xt + F (Xt )�t + σ
√

�tZ, (9)

and we simply reflect the update Xt+�t back inside [a, b]
whenever it falls outside this interval [2], as illustrated in
Fig. 1. Here �t is the discretized time step while Z ∼ N (0, 1)
is a standard normal random variable.

The typical distance �x from a boundary within which Xt

can cross it in a single time step defines an exclusion zone,
called the boundary layer, which represents an artefact or error
of the Euler-Maruyama scheme. A similar boundary layer
is found if one simulates the reflections in a “soft” way by
adding a fictitious potential to U (x) to create strong repulsive
walls at a and b [48–50]. In both cases, the thickness of
the layer generally decreases to 0 as �t → 0, so they give
a good approximation of the dynamics of Xt when �t is
sufficiently small. In this limit, it should also be clear that
a “particle” with state Xt entering the boundary layer will
leave it instantaneously, so that the net number of crossings
at the layer is 0. Viewing ρ(x, t ) as representing the density
of an ensemble of such particles and JF,ρ (x, t ) as their flux,
we then recover the zero-current condition (6) when the layer
disappears.

III. MARKOV OPERATORS

For the results to come, it is important to rewrite the
Fokker-Planck equation in operator form as

∂tρ(x, t ) = L†ρ(x, t ) (10)

in order to identify the Fokker-Planck operator

L† = −∂xF + σ 2

2
∂xx (11)
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as the generator of the time evolution of ρ(x, t ), starting from
some initial density ρ(x, 0). The domain D(L†) of this linear
operator is naturally the set of all probability densities that
(i) can be normalized on [a, b]; (ii) satisfy the zero-current
condition (6), which has the form of a Robin (mixed) bound-
ary condition on ρ; and (iii) are twice-differentiable, since L†

is a second-order differential operator.
Dual to L† is the Markov generator

L = F∂x + σ 2

2
∂xx, (12)

which governs the evolution of expectations according to

∂t E [g(Xt )] = E [Lg(Xt )], (13)

where g is a test function and E [·] denotes the expectation
with respect to ρ(x, t ). The two generators are dual or adjoint
to each other in the sense that

〈L†ρ, g〉 = 〈ρ,Lg〉 (14)

with respect to the standard inner product used in the theory
of Markov processes, namely

〈ρ, g〉 =
∫ b

a
ρ(x)g(x) dx = E [g(X )], (15)

where ρ is an arbitrary density in D(L†) and g is a test
function. From this definition, as well as the expressions (11)
and (12) for L† and L, we find

〈L†ρ, g〉 = 〈ρ,Lg〉 − g(x)JF,ρ (x)
∣∣b

a
− σ 2

2
ρ(x)g′(x)

∣∣b

a
(16)

via integration by parts. Given that the current JF,ρ vanishes at
the boundaries, we must then require that the test functions g
acted on by L satisfy

g′(a+) = 0 = g′(b−) (17)

in order for the boundary term in (16) to vanish and, thus, for
the operators L and L† to be proper duals defined indepen-
dently of any specific ρ or g [51]. From this result, the domain
D(L) of L is then defined to be the set of test functions that
(i) have finite expectation (finite inner product); (ii) satisfy the
zero-derivative condition (17), which is a Neumann boundary
condition; and (iii) are twice differentiable.

IV. LARGE DEVIATIONS

We now come to the main point of our work, namely
to understand how reflecting boundaries determine the large
deviations of dynamical observables. To this end, we briefly
recall the definition of the rate function, which characterizes
the probability distribution of ST in the long-time limit, and
present the spectral problem underlying the calculation of
this function. We then explain how the boundary conditions
normally applied to this spectral problem in the case of
unbounded diffusions must be modified to account for perfect
reflections and how these new boundary conditions affect
the properties of the driven process, which explains how
fluctuations of ST arise in time.

A. Large deviation functions

We consider an ergodic reflected diffusion Xt , as defined
in the previous section, and a dynamical observable ST of this
process having the form (1). We are interested in finding the
rate function of ST , defined by the limit

I (s) = lim
T →∞

− 1

T
ln PT (s), (18)

where PT (s) is the probability distribution of ST . In practice,
it is very difficult to obtain this distribution exactly, which is
why the rate function is sought instead. Indeed, for a large
class of Markov processes and observables, it can be shown
that PT (s) ≈ e−T I (s) with subexponential corrections in T , so
that I (s) effectively describes the shape of PT (s) at leading
order in T [31]. This holds in the limit of large integration
times T , typically much longer than the relaxation timescale
of Xt .

To calculate the rate function, we use the fact that it is dual
to another large deviation function, called the scaled cumulant
generating function (SCGF) [52] and defined as

λ(k) = lim
T →∞

1

T
ln E [eT kST ], k ∈ R. (19)

Using the Feynman-Kac formula, it can be shown [21] that
this function coincides with the dominant (real) eigenvalue of
a linear operator, called the tilted generator, having the form

Lk = L + k f , (20)

where L is the generator of Xt and f is the function appearing
in the definition (1) of the observable ST . Having the SCGF,
we then obtain I (s) by taking a Legendre transform, so that

I (s) = k(s)s − λ(k(s)), (21)

where k(s) is the unique root of λ′(k) = s. This essentially
holds if λ(k) is differentiable and strictly convex.

The calculation of the rate function thus reduces to solving
the spectral problem

Lkrk (x) = λ(k)rk (x), (22)

where rk is the eigenfunction of Lk corresponding to the
dominant eigenvalue λ(k). Given that Lk is not in general Her-
mitian, this spectral problem must be solved in conjunction
with its dual,

L†
k lk (x) = λ(k)lk (x), (23)

where lk is the eigenfunction of L†
k = L† + k f with the same

dominant eigenvalue λ(k). The boundary conditions that we
must impose on these two spectral equations to obtain λ(k)
are discussed next. Independently of these conditions, rk and
lk are dual functions with respect to the standard inner product
(15), so they must satisfy 〈lk, rk〉 < ∞. They are also positive
functions, since they are the dominant modes of Lk and L†

k ,
respectively. In the literature [40], it is common to normalize
them in such a way that∫ b

a
lk (x)rk (x) dx = 〈lk, rk〉 = 1 (24)
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and ∫ b

a
lk (x) dx = 〈lk, 1〉 = 1. (25)

The latter integral is consistent, as we will see, with the fact
that L†

k is related to the Fokker-Planck operator acting on
normalized densities.

B. Boundary conditions

The boundary conditions that must be imposed on rk and
lk to solve the spectral equations (22) and (23) are determined
by considering, as done before, the boundary term that arises
when transforming Lk to its dual L†

k . Since these operators
differ from L and L†, respectively, only by the constant term
k f , which produces no boundary terms of its own, the result
of (16) can readily be used to obtain

〈L†
k lk, rk〉 = 〈lk,Lkrk〉 − rk (x)JF,lk (x)

∣∣b

a − σ 2

2
lk (x)r′

k (x)
∣∣b

a,

(26)

where

JF,lk (x) = F (x)lk (x) − σ 2

2
l ′
k (x) (27)

is the probability current associated with lk .
For diffusions evolving in R without boundaries, we see

that the boundary term in (26) vanishes for any rk (x) and
lk (x) if the latter eigenfunction decays to 0 sufficiently fast as
|x| → ∞. This is consistent with the normalization integral
in (25) and implies with lk > 0 that both l ′

k (x) and JF,lk (x)
vanish as |x| → ∞. There is no condition on rk alone, as
such, since the Markov generator L, and by extension Lk , have
no natural boundary conditions, except for the fact that both
act on functions that have finite inner product, which for Lk

translates into the integral condition in (24), normalized to 1.
For reflected diffusions, the normalization integrals (24)

and (25) are no longer sufficient on their own to define
boundary conditions on rk and lk . Instead, we must impose

JF,lk (a+) = 0 = JF,lk (b−) (28)

and

r′
k (a+) = 0 = r′

k (b−) (29)

in order for the boundary term in (26) to vanish and, im-
portantly, for L†

k and Lk to have boundary conditions that
are consistent with those imposed on L† = L†

k=0 and L =
Lk=0, respectively, when k = 0. The same conditions also
follow by noticing again that the boundary term in the duality
of L†

k and Lk does not depend on k f , so that (28) simply
extends the zero-current condition of L† to L†

k , while (29)
extends the Neumann boundary condition of L to Lk . As a
result, D(L†

k ) = D(L†) and D(Lk ) = D(L). These boundary
conditions must be imposed, incidentally, not just on the
eigenfunctions related to the dominant eigenvalue, but to all
eigenfunctions, thereby determining the full spectrum of Lk

which is conjugate to the spectrum of L†
k . For large deviation

calculations, however, we only need the dominant eigenvalue,

which is real, and the corresponding eigenfunctions, which are
positive.

C. Driven process

While the SCGF and the rate function describe the fluc-
tuations of ST , they do not provide any information about
how these fluctuations are created in time. Recently, it has
been shown [39–41] that this information is provided by a
modified Markov process X̂t , called the effective or driven
process, which represents in some approximate way the orig-
inal diffusion Xt conditioned on the fluctuation ST = s and so
describes the paths of Xt that lead to or create that fluctuation.

The details of this process can be found in many stud-
ies [39–41], which provide a full derivation of its properties
and interpretation. In the context of ergodic diffusions, the
driven process satisfies the new SDE,

dX̂t = Fk (X̂t )dt + σdWt , (30)

where the driven force Fk is a modification of the force F given
in terms of the dominant eigenfunction rk by

Fk (x) = F (x) + σ 2 r′
k (x)

rk (x)
. (31)

The parameter k is the same as that entering in the SCGF:
its value is set for a given fluctuation ST = s according to
the Legendre transform (21) as the root of λ′(k) = s or,
equivalently, as k = I ′(s) [53]. With this choice, the stationary
density of the driven process, which is known to be given [40,
Sec. 5.4] by

ρ∗
k (x) = rk (x)lk (x), (32)

is such that ∫ b

a
ρ∗

k (x) f (x) dx = s. (33)

This shows that we can also interpret the driven process as a
change of process that transforms the fluctuation ST = s into
a typical value realized by X̂t in the ergodic limit. The change
of drift and density also modifies the stationary current to

JFk ,ρ
∗
k
(x) = Fk (x)ρ∗

k (x) − σ 2

2
ρ∗

k (x)′. (34)

Note that for k = 0, rk=0 = 1 while lk=0 = ρ∗, leading to
Fk=0 = F , ρ∗

k=0 = ρ∗ and JFk=0,ρ
∗
k=0

= JF,ρ∗ .
For an ergodic diffusion Xt evolving on [a, b] with reflect-

ing boundaries, the driven process X̂t also evolves on [a, b],
since it represents a conditioning of Xt , and inherits for the
same reason a zero-current boundary conditions at x = a+ and
x = b−, given in terms of the driven current by

JFk ,ρ
∗
k
(a+) = 0 = JFk ,ρ

∗
k
(b−). (35)

This can be verified, in fact, independently of the interpre-
tation of X̂t by applying the boundary conditions on rk and
lk discussed previously to the driven process. First, note that
the Neumann boundary conditions (29) on rk implies with the
definition of the driven force (31) that the latter is constrained
to satisfy

Fk (a+) = F (a+) and Fk (b−) = F (b−). (36)
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Hence, the drift at the boundaries is not modified at the level
of the driven process, although it is modified in the interior
of [a, b], as we will see in the next section with specific
examples. This is a significant result of our work, which also
implies that any density ρ satisfying a zero-current condition
at the boundaries with respect to the original drift must also
satisfy a zero-current condition at the boundaries with respect
to the driven force. In other words, JF,ρ (a+) = 0 is equivalent
to JFk ,ρ (a+) = 0 and similarly for x = b−.

Next we note that the boundary conditions (28) and (29)
can be combined as

rk (x)JF,lk (x)
∣∣
x=a+,b− = 0 (37)

and

σ 2

2
lk (x)r′

k (x)
∣∣
x=a+,b− = 0. (38)

We recognize these as the boundary terms arising from the
two integration by parts leading to (26). We can combine the
above two relations to obtain[

rk (x)JF,lk (x) − σ 2

2
lk (x)r′

k (x)

]
x=a+,b−

= 0. (39)

On expanding the expression of the current associated with lk
and combining terms, we then obtain[

F (x)rk (x)lk (x) − σ 2

2
[rk (x)lk (x)]′

]
x=a+,b−

= 0, (40)

which is a zero-current condition for the product rklk . From
this result, we finally recover (35) using (36) and the fact that
rklk is the stationary density of the driven process, as shown
in (32).

This confirms in a more direct way that the driven process
also evolves in [a, b] with perfect reflections at the bound-
aries. Of course, since we are dealing with one-dimensional
diffusions, the stationary current of the driven process must
vanish not just at the boundaries but over the whole of [a, b],
similarly to the original diffusion. This is a known result in the
theory of the driven process: if the original Markov process
is reversible, then so is the driven process in the case where
the dynamical observable has the form of (1) [40]. This does
not mean that ρ∗ and ρ∗

k are the same in [a, b]—we will see
illustrations of this point in the next section. Moreover, note
that requiring JFk ,ρk = 0 at the boundaries is not sufficient
to define boundary conditions for rk and lk since the driven
current mixes both Fk and ρk . These conditions are determined
again by studying the boundary term arising in the duality
between Lk and L†

k .

D. Symmetrization

The spectral calculation of the SCGF is complicated by the
fact that the tilted generator Lk is not Hermitian in general.
A significant simplification is possible when the spectrum of
Lk is real, as is the case, for example, when Xt is an ergodic,
gradient diffusion characterized by the Gibbs stationary dis-
tribution (8) and ST is defined as in (1). Then it is known [21]
that Lk can be transformed in a unitary way to the following

Hermitian operator:

Hk = √
ρ∗Lk

1√
ρ∗ = σ 2

2
∂xx − Vk, (41)

which involves a quantumlike potential given by

Vk (x) = |U ′(x)|2
2σ 2

− U ′′(x)

2
− k f , (42)

where U is the potential of the gradient force and f the
function defining the observable ST .

This new operator has the same spectrum as Lk and,
therefore, the same dominant eigenvalue λ(k), so that the
spectral problem associated with the SCGF becomes

Hkψk = λ(k)ψk, (43)

where ψk is the corresponding eigenfunction related to rk and
lk by

ψk (x) =
√

ρ∗(x)rk (x) = lk (x)/
√

ρ∗(x). (44)

From (24), ψk thus satisfies the normalization condition∫ b

a
ψk (x)2 dx = 1, (45)

similarly to that found in quantum mechanics but for a real
eigenfunction. Moreover, using ψ2

k = rklk = ρ∗
k we find with

(40) that ψk must satisfy for reflected diffusions the zero-
current boundary conditions

JF,ψ2
k
(a+) = 0 = JF,ψ2

k
(b−). (46)

This can be expressed more explicitly as

ψ ′
k (a+) = F (a+)

σ 2
ψk (a+), (47)

with a similar expression holding for x = b−.

V. EXAMPLES

We illustrate in this section the results derived before by
applying them to two simple reflected diffusions obtained by
constraining the Brownian motion with negative drift and the
Ornstein-Uhlenbeck process on the half line. Each of these
diffusions can be solved exactly and give rise to interesting
properties for the driven process in the presence of a reflect-
ing boundary. Further applications for diffusions evolving in
higher dimensions are mentioned in the conclusion.

A. Reflected Ornstein-Uhlenbeck process

The first example that we consider is the reflected Ornstein-
Uhlenbeck process (ROUP) satisfying the SDE

dXt = −γ Xt dt + σdWt (48)

with γ > 0, σ > 0, Xt ∈ [0,∞), and perfect reflection at x =
0. This diffusion is used in engineering as a continuous-space
model of queues in the heavy-traffic regime [6–8] and repre-
sents, more physically, the dynamics of a Brownian particle
attracted to a reflecting wall by a linear force induced, for
example, by laser tweezers [54] or an ac trap [55]. For this
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process, we consider the observable

ST = 1

T

∫ T

0
Xt dt, (49)

which for laser tweezers is related to the mechanical power
expended by the lasers on the particle [56].

The tilted generator Lk associated with this process and
observable is given from (12) and (20) by

Lk = −γ x∂x + σ 2

2
∂xx + kx (50)

and is clearly non-Hermitian. However, because the ROUP is
gradient and ergodic on [0,∞), we can apply the symmetriza-
tion transform described before by substituting the potential
U (x) = γ x2/2 in (42) to obtain from (41)

Hk = σ 2

2
∂xx − γ 2x2

2σ 2
+ γ

2
+ kx. (51)

This defines with (43) the spectral problem that we need to
solve in order to obtain the SCGF. The boundary condition
(47) reduces in this case to the simple Neumann condition

ψ ′
k (0) = 0. (52)

For x = ∞, the normalization (45) requires that ψk (x)2 → 0
as x → ∞ and, therefore, ψk (x) → 0 as x → ∞.

The spectral problem (43) defines for Hk above a differ-
ential equation whose solutions are taken from the class of
parabolic cylinder functions Dν (z), the dominant solution ψk

having the form

ψk (x) = Dξ (k)

(√
2γ x

σ
−

√
2kσ

γ 3/2

)
(53)

up to a normalization constant, where we have defined

ξ (k) = k2σ 2 − 2γ 2λ(k)

2γ 3
. (54)

This solution decays to 0 at infinity. By imposing the bound-
ary condition (52) and using well-known properties of the
parabolic cylinder functions, we find that λ(k) is determined
implicitly by the transcendental equation

kσ√
2γ 3/2

Dξ (k)

(
−

√
2kσ

γ 3/2

)
+ Dξ (k)+1

(√
2kσ

γ 3/2

)
= 0. (55)

To be more precise, λ(k) is the largest root of this equation;
the other roots, which are all real, give the rest of the spectrum
of Hk and therefore of Lk .

We show in Fig. 2 the plot of λ(k) obtained by solving
the transcendental equation numerically for a given set of
parameters γ and σ and different values of k. We can see
that λ(0) = 0, as follows from the definition of the SCGF, and
that λ(k) appears to be differentiable and strictly convex. As
a result, we can take the Legendre transform (21) to obtain
the rate function I (s), shown in Fig. 3. There we see that I (s)
has two very different branches on either side of the minimum
and zero s∗, corresponding to the most probable value of ST

at which PT (s) concentrates exponentially as T → ∞. The
left branch, related to the k < 0 branch of the SCGF, is steep
and therefore indicates that small fluctuations of ST close to 0,
produced by paths that stay close to the reflecting boundary,

FIG. 2. SCGF λ(k) for the ROUP with linear observable. Param-
eters: σ = 1 and γ = 1.

are very unlikely. The right branch, on the other hand, is less
steep and has overall the shape of a parabola, signaling that
the large fluctuations of ST are Gaussian distributed.

This is confirmed by comparing I (s) with the rate function
of ST for the normal Ornstein-Uhlenbeck process (OUP)
evolving on the whole of R, which is known to be

IOUP(s) = γ 2s2

2σ 2
. (56)

This rate function is shown with the dashed line in Fig. 3
and closely approximates, as can be seen, the upper tail of
the rate function obtained with reflection. This is explained
by noting that large fluctuations of ST arise from paths that
venture far from the reflecting boundary, and so do not “feel”
its influence. The zero at s∗ is itself a product of the boundary,
since s∗ = 0 in the normal OUP. We can determine its value
by noting from the ergodic theorem that the most probably
value of ST is the stationary expectation

s∗ =
∫ ∞

0
xρ∗(x) dx. (57)

Here ρ∗(x) is a truncated Gaussian density with potential
U (x) = γ x2/2 restricted to x ∈ [0,∞), leading in the integral
above to s∗ = σ/

√
πγ , which gives s∗ = 1/

√
π ≈ 0.564 for

the parameters used in Fig. 3.

FIG. 3. Rate function I (s) for the ROUP with linear observable,
compared with the rate function of the normal OUP. Parameters: σ =
1 and γ = 1.
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FIG. 4. (a) Drift Fk (x) of the driven process for the ROUP with linear observable plotted for different values of k (see legend).
(b) Corresponding stationary density ρ∗

k (x). Parameters: σ = 1 and γ = 1.

The large Gaussian fluctuations of ST are also confirmed by
analyzing the driven force Fk , which we find from (31) using
the expression (53) for ψk and the relation (44), yielding

Fk (x) =
√

2γ σ

1
2ηDξ (k)(η) − Dξ (k)+1(η)

Dξ (k)(η)
, (58)

where

η =
√

2γ x

σ
−

√
2kσ

γ 3/2
. (59)

To obtain this expression, we have also used some identities
of the parabolic cylinder functions [57]. The result is plotted
in Fig. 4(a) for different values of k, together with the properly
normalized ρ∗

k (x) = ψk (x)2 in Fig. 4(b).
Comparing the two plots, we see that Fk (x) has two zeros

for k > 0 and, therefore, two critical points: one at x = 0,
which gives rise to a local minimum in ρ∗

k (x), and another at
some value x > 0, which is responsible for the maximum of
ρ∗

k (x). Around the latter critical point, Fk (x) is approximately
linear with slope −γ , implying that ρ∗

k (x) is approximately
Gaussian around its maximum. Moreover, as k is increased,
we see that the maximum of ρ∗

k (x) moves away from x = 0,
showing that the driven process is repelled from the boundary,
thus creating larger typical values of ST , similarly to the driven
process of the normal OUP [40]. The difference between the
two processes is that the driven force of the ROUP is “bent”
near the boundary so as to have Fk (0) = F (0), consistently
with (36), whereas that of the OUP is always linear [40].

For k < 0, the picture is different. The driven force Fk (x)
only has a single critical point at x = 0, creating the maximum
of ρ∗

k (x) seen in Fig. 4(b). As k → −∞, ρ∗
k (x) gets more

concentrated at x = 0, as the driven process is attracted to
the reflecting boundaries, creating smaller fluctuations of ST .
Such a behavior is very unlikely in the ROUP, which is why
the rate function is steep close to s = 0. In fact, it is steeper
than a parabola because Fk (x) is not linear away from x = 0:
its curvature becomes more pronounced for large negative
values of k, leading ρ∗

k (x) to be non-Gaussian. Note in all
cases that Fk (0) = F (0) = 0, consistently again with (36).

This analysis of Fk (x) is useful not only to understand
the different stochastic mechanisms underlying or “produc-
ing” different fluctuations of ST , but also to derive accurate

approximations of the rate function by following three steps
[41]. First, approximate Fk by some function, say F̃θ , where
θ denotes a set of parameters. Second, calculate the stationary
distribution ρ̃∗

θ that results from this approximation. Third and
finally, calculate the ergodic expectation of ST with respect
to ρ̃∗

θ :

sθ =
∫ b

a
f (x)ρ̃∗

θ (x) dx, (60)

as well as the integral

Kθ = 1

2σ 2

∫ b

a
[F (x) − F̃θ (x)]2ρ̃∗

θ (x) dx. (61)

Then

I (sθ ) � Kθ (62)

with equality if and only if F̃θ = Fk at sθ [41].
It is beyond this paper to prove this result (see Ref. [41]).

At this point we only want to use it to find useful upper bounds
on I (s), beginning with the left branch of this function, related
as mentioned before to the k < 0 branch of λ(k). In this case,
we know that Fk (x) has a single critical point at x = 0, so we
approximate it in a simple way as

F̃θ (x) = −θx. (63)

Only θ � γ need be considered, since it is clear from Fig. 4(b)
that F ′

k (0) � −γ for k � 0. This approximation retains the
linear form of F (x), which means that ρ̃∗

θ (x) is the same
truncated Gaussian density as the ROUP but with γ replaced
by θ . As a result, we have sθ = σ/

√
πθ and obtain

Kθ = (θ − γ )2

4θ
(64)

by direct integration of (61). Changing the θ variable to s with
sθ = s, we then find

Ĩ (s) = Kθ (s) = π

4

(
σ

πs
− γ s

σ

)2

(65)

as our approximation of I (s) for s ∈ (0, s∗].
We do not compare this result with the exact rate function

obtained from the spectral calculation, as the two are nearly
indistinguishable [57]. They agree exactly at s∗, since θ = γ
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recovers the drift of the ROUP, and start to differ only close
to s = 0 because Fk is curved there, as we noticed, whereas F̃θ

is not. Note that the divergence of I (s) near s = 0 predicted
by the approximation above is Ĩ (s) ∼ σ 2/(4πs2) as s → 0,
which is independent of γ .

Similar calculations can be carried out for k > 0 to approx-
imate I (s) for s > s∗. In that case, the form of Fk suggests that
we use

F̃θ (x) = −γ x + θ (66)

as an approximate drift parameterized by θ > 0. The associ-
ated stationary density ρ̃∗

θ can also be obtained in closed form
and yields, after solving a number of Gaussian integrals [57],

sθ =
√

σ 2

πγ

e−θ2/(γ σ 2 )

1 + erf[θ/(
√

γ σ )]
+ θ

γ
(67)

and

Kθ = θ2

2σ 2
. (68)

The presence of the error function in sθ prevents us from
expressing Kθ in closed form as a function of s, as in (65).
However, the result clearly shows that the rate function be-
comes a parabola as θ → ∞, for in that limit, sθ ∼ θ/γ ,
leading to Ĩ (s) = Kθ (s) = IOUP(s) as s → ∞.

B. Reflected Brownian motion with drift

The second example we consider is the reflected Brownian
motion with drift (RBMD) governed by the SDE

dXt = −μdt + σdWt , (69)

where μ > 0, σ > 0, and Xt ∈ [0,∞), with reflection im-
posed at x = 0 [8]. This process was studied by Fatalov [25]
and models, similarly to the ROUP, the dynamics of a particle
attracted by a force to a reflecting wall. The force is now
constant and can be viewed, for instance, as the gravity pulling
vertically on a Brownian particle in a container. As for the
ROUP, we consider the linear observable defined in (49).

The tilted generator associated with the large deviations of
ST for this process is given by (12) with F (x) = −μ and leads,
after symmetrization with the corresponding potential U (x) =
μx, to the Hermitian operator

Hk = σ 2

2
∂xx − μ2

2σ 2
+ kx. (70)

This defines with (43) the spectral problem that gives the
SCGF, which needs to be solved with the Robin boundary
condition (47)

ψ ′
k (0) = − μ

σ 2
ψk (0) (71)

at x = 0 and ψk (x) → 0 as x → ∞.
The eigenfunctions of Hk satisfying these conditions are

now expressed in terms of Airy functions of the first kind.
The dominant eigenfunction is

ψk (x) = Ai

{(
−σ 2

2k

)2/3[
− 2kx

σ 2
+ 2σ 2λ(k) + μ2

σ 4

]}
, (72)

FIG. 5. SCGF λ(k) for the RBMD with linear observable (inset)
and corresponding rate function I (s). Parameters: σ = 1 and μ =
1. The rate function is defined by spectral means for 0 < s � s∗ =
σ 2/(2μ); it is unknown above s∗, as indicated by the question mark.

while λ(k) is given by the largest root λ of the following
transcendental equation:(

− 2k

σ 2

)1/3

Ai′
[(

− σ 2

2k

)2/3 2σ 2λ + μ2

σ 4

]

+ μ

σ 2
Ai

[(
−σ 2

2k

)2/3 2σ 2λ + μ2

σ 4

]
= 0. (73)

As before, we can solve this equation numerically for given
values of μ and σ as well as various values of k so as to
build an interpolation of λ(k), from which we obtain the
rate function by computing the Legendre transform (21). The
resulting functions are shown in Fig. 5. Unlike the ROUP, λ(k)
is now defined only for k � 0 because the potential

Vk (x) = μ2

2σ 2
− kx, (74)

which is related to the classic quantum triangular well, is
confining only for k < 0, and so has bound states only for this
range of parameters. This implies that the Legendre transform
of λ(k) gives I (s) only for s ∈ (0, s∗], as shown in Fig. 5,
where s∗ is again the typical value of ST , found here from
(8) and (57) to be s∗ = σ 2/(2μ).

Above this value, ST does have fluctuations, but its large
deviations are not covered by the spectral calculation, which
is a sign generally that PT (s) scales weaker than exponentially
in T . An example of such a scaling was discussed recently
for the OUP [58] using path integral techniques that predict
a stretched exponential scaling in T , although the exact rate
function cannot be found. The application of these techniques
is beyond the scope of this paper, so we leave the study of the
fluctuation region ST > s∗ as an open problem [59].

Note, incidentally, that for μ = 0, ST has no large devia-
tions at the scale T because Brownian motion is nonergodic.
The confining force produced by the negative drift along with
the reflecting boundary makes that motion ergodic and creates
fluctuations ST < s∗ that are exponentially unlikely with T ,
though it is not strong enough, somehow, to constrain the
fluctuations ST > s∗ in the same exponential way. A similar
effect is seen for the Brownian motion with reset [60].
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FIG. 6. Driven force Fk (x) for the RBMD with linear observable
for various values of k. Parameters: σ = 1 and μ = 1.

To understand how the fluctuations of ST arise below its
mean s∗, where PT (s) scales exponentially, let us analyze the
driven process [61]. The explicit expression of Fk (x) for the
RBMD is too long to show here, so we provide only the
formula

Fk (x) = σ 2 ψ ′
k (x)

ψk (x)
, (75)

which follows from (31) and (44), and which leads with (72)
to a ratio of the derivative of the Airy function and the Airy
function. The result, plotted in Fig. 6 for various values of k,
is similar to the driven force found for the ROUP when k < 0.
Its shape shows that small fluctuations of ST are created, as
expected, by squeezing the process close to the reflecting
boundary by two forces: the negative constant drift −μ of
the original RBMD and an added nonlinear force, which can
be approximated near x = 0 as a linear force with varying
“friction” coefficient γk = −F ′

k (0+). The action of these two
forces creates a stationary density ρ∗

k (not shown) which is
approximately a shifted Gaussian density truncated at the
boundary and increasingly concentrated there as k → −∞ or,
equivalently, ST → 0 [57].

These results suggest that we approximate Fk (x) for k � 0
to first order in x as

F̃θ (x) = −θx − μ, (76)

where θ � 0. This has the same form as the ansatz (66) used
for the ROUP, with obvious replacements for the parameters,
so we can find ρ̃∗

θ and sθ from the results obtained before.
The integral (61) of Kθ , however, is different because of the
different F for the RBMD and leads now to

Ĩ (sθ ) =
(

θ

4
+ μ2

2σ 2

)
− μ

2σ

√
θ

π

e−μ2/(θσ 2 )

1 − erf[μ/(
√

θσ )]
. (77)

It can be checked that the limit θ → 0 of this approximation
gives Ĩ (s0) = 0 at s0 = s∗, as expected, whereas θ → ∞ gives
a scaling near s = 0 similar to the ROUP, namely Ĩ (s) ∼
σ 2/(8πs2).

VI. CONCLUSION

We have shown how reflecting boundaries enter in the cal-
culation of large deviation functions describing the likelihood

of fluctuations of integrated quantities defined for Langevin-
type processes. We have illustrated with basic examples the
influence of such boundaries, particularly at the level of the
driven process, which provides a mechanism for understand-
ing how large deviations arise in the long-time limit. Our
results pave the way for studying more general diffusions
that evolve in confined domains of R2 or R3 with reflecting
boundaries, as well as other observables, including particle
currents, worklike quantities, and the entropy production,
which are defined in terms of the increments of Xt in addition
to Xt [20]. The study of such diffusions should bring many
new interesting results, as they may have nonzero station-
ary currents [62] circulating parallel to a reflecting surface.
Observables involving increments of Xt are also expected to
change the boundary term in the duality between Lk and L†

k
in a nontrivial way, giving rise to more complicated boundary
conditions for rk and lk .

In principle, our results can also be applied, as mentioned,
to SDEs with multiplicative noise, that is, SDEs in which the
noise amplitude σ depends on the state Xt . These often arise
in diffusion limits of population models [63], as well as in
finance, and should be treated in the same way as described
here [64], assuming that their boundaries are reachable and
that they are ergodic. The geometric Brownian motion, for
example, is such that Xt � 0 but the boundary x = 0 cannot
be reached in finite time [65], so it does not make sense to
define reflections there. This process is also not ergodic, so
we do not expect a priori large deviations to exist.

Similar considerations apply to other boundary types: they
should be treated in the same way as reflective boundaries by
considering the boundary term arising in the duality of Lk and
L†

k . However, as for multiplicative SDEs, we must ensure that
the process considered with its boundary behavior is ergodic,
for otherwise the distribution of observables is not expected
to have a large deviation form. This prevents us, in general,
from considering absorbing boundary conditions, which lead
(without re-entry) to singular distributions concentrated on
boundaries and for which, therefore, observables do not fluc-
tuate in the infinite-time limit.

To conclude, we remark that our results could be obtained
in a different way by using the contraction principle, which
establishes a link between the large deviations of empirical
densities and sample means, and which effectively replaces
the spectral problem studied here by a minimization prob-
lem [41]. The boundary conditions that must be imposed
on the latter problem are discussed for reflected diffusions
by Pinsky [26–29] and can be shown to be equivalent to
the zero-current conditions imposed on ρ∗

k , which represents
in the contraction principle the optimal stationary density
leading to a given fluctuation of ST . This follows by gen-
eralizing a previous equivalence established for unbounded
diffusions [41].

In principle, one could also approach the large deviation
problem by expressing the expectation E [ekT ST ] of the SCGF
as a path integral restricted on an interval. Such integrals have
been studied in quantum mechanics in the context of the free
quantum particle evolving on the half-line [66–68], but they
are not expected to be solvable, except for simple systems. In
any case, the main property of E [ekT ST ] that underlies dynam-
ical large deviations is its exponential behavior in T , which,
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as we know from the Feynman-Kac equation, is determined
by the dominant eigenvalue of the tilted generator Lk . Path
integral techniques only confirm this result and have proved to
be useful in large deviation theory mainly when considering
the low-noise limit.
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