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The standard phase-ordering process is obtained by quenching a system, like the Ising model, to below
the critical point. This is usually done with periodic boundary conditions to ensure ergodicity breaking in
the low-temperature phase. With this arrangement the infinite system is known to remain permanently out
of equilibrium, i.e., there exists a well-defined asymptotic state which is time invariant but different from the
ordered ferromagnetic state. In this paper we establish the critical nature of this invariant state by demonstrating
numerically that the quench dynamics with periodic and antiperiodic boundary conditions are indistinguishable
from each other. However, while the asymptotic state does not coincide with the equilibrium state for the periodic
case, it coincides instead with the equilibrium state of the antiperiodic case, which in fact is critical. The specific
example of the Ising model is shown to be one instance of a more general phenomenon, since an analogous
picture emerges in the spherical model, where boundary conditions are kept fixed to periodic, while the breaking
or preserving of ergodicity is managed by imposing the spherical constraint either sharply or smoothly.
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I. INTRODUCTION

Macroscopic systems, in the absence of an external drive,
equilibrate with the environment. However, relaxation may
be slow, i.e., with a relaxation time which exceeds any at-
tainable observation time [1]. In that case, only dynamical
properties are accessible to observation and the question
naturally arises of what can be learned about equilibrium
from dynamics. Paradigmatical examples of slow relaxation
are glassy systems [2] or systems undergoing phase ordering
after a sudden temperature quench from above to below the
critical point [2,3]. Here we shall look at the problem in the
latter context, whose prototypical instance is the quench of
a ferromagnetic system. In order to make the presentation as
simple as possible, we shall mostly concentrate on the Ising
model. The extension to other phase-ordering systems will
be discussed at the end of the paper, with the example of the
spherical model.

Phase ordering in the Ising model by now is a mature sub-
ject, generally considered to be well understood. For reviews
see Refs. [3–6]. Among the many interesting features of the
process, in this paper we shall be primarily concerned with the
lack of equilibration in any finite time if the system is infinite.
This is frequently referred to with the catchy expression that
the system remains permanently out of equilibrium, whose
meaning, however, has never been fully clarified. For instance,
a similar circumstance arises also when the quench is made to
the critical temperature Tc, because, due to critical slowing
down, again equilibrium is not reached in any finite time.
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Nonetheless, in that case, the process cannot be regarded as
substantially different from one of equilibration, because as
time grows the system gets closer and closer to the equi-
librium critical state, which is unique in the sense that in
the thermodynamic limit it is independent of the boundary
conditions (BC). Instead, in the quench to below Tc the
picture is qualitatively different, because, although the state
extrapolated from dynamics is unique, the same cannot be said
of the equilibrium state, which depends on BC even in the
thermodynamic limit. This we have shown in Ref. [7] (to be
referred to as I in the following), where we have investigated
the nature of the equilibrium state in the Ising model below
Tc under different symmetry-preserving BC. We have found
that while periodic boundary conditions (PBC) lead to the
usual ferromagnetic ordering, due to the breaking of ergod-
icity with the consequential spontaneous breaking of the Z2

up-down symmetry, the scenario changes dramatically with
antiperiodic boundary conditions (APBC), because ergodicity
breaking is precluded. Then, the system cannot order and
complies with the requirement of the transition by remaining
critical also below Tc, all the way down to T = 0. We have ar-
gued that this new transition, without spontaneous symmetry
breaking and without ordering, consists of the condensation of
fluctuations. In the 1d case, since Tc = 0, the low-temperature
phase is shrunk to just T = 0.

Motivated by the existence of such diversity in the equi-
librium properties, in this paper we address the next natural
question, formulated in the title of the paper, of matching stat-
ics and dynamics. Using the equal-time correlation function as
the probing observable, we shall see that the asymptotic state,
extrapolated from dynamics, that is, by taking the t → ∞
limit after the thermodynamic limit, is unique and critical.
Now the point is that this, which we may call the time-
asymptotic state and which, we emphasize, is the same for
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both choices of BC, is found to coincide with the bona fide
equilibrium state, i.e., the one computed from equilibrium
statistical mechanics, in the APBC case but to be remote from
it in the PBC case. Thus, we have the one and the same dy-
namical evolution which, although not reaching equilibrium
in any finite time, turns out to be informative of the true
equilibrium state in one case (APBC) but not in the other
(PBC). It is, then, appropriate to regard the APBC case as one
in which equilibrium is approached, just as in a quench to Tc,
while the PBC case offers an instance of a system remaining
permanently out of equilibrium. The poor performance in
approaching equilibrium with PBC is traceable to the presence
of ergodicity breaking at the working temperature, which,
instead, is preserved when APBC are applied. At the end
of the paper we shall argue that the connection between the
presence or absence of ergodicity breaking and the absenc or
presence of equilibration goes beyond the Ising example by
showing that it takes place with the same features in the rather
different context of the spherical and mean-spherical model.

The paper is organized as follows: In Sec. II we formulate
the problem. In Sec. III the relation between equilibrium and
relaxation in the quench to above Tc is analyzed by using
scaling arguments. The cases of the quench to Tc with d = 2,
to T = 0 with d = 1, and to below Tc with d = 2 are analyzed
in Secs. IV, V, and VI, respectively. The spherical and mean
spherical model are introduced and investigated in Sec. VII.
Concluding remarks are made in Sec. VIII.

II. THE PROBLEM

We are concerned with the relaxation dynamics of a system
initially prepared in an equilibrium state at the temperature
TI and suddenly quenched to the lower temperature TF . We
consider the Ising model on a lattice of size V = Ld , with the
usual nearest-neighbors interaction

H(s) = −J
∑
〈i j〉

sis j, (1)

where J > 0 is the ferromagnetic coupling, s = [si] is a
configuration of spin variables si = ±1, and 〈i j〉 is a pair of
nearest neighbors. We shall study the d = 1 and d = 2 cases,
where in the thermodynamic limit there is a critical point at
Tc = 0 and Tc = 2.269J , respectively. Since the system’s size
is finite, BC must be specified and, because of the major role
that these will play in the following developments, it is neces-
sary to enter in some detail from the outset. As anticipated in
the Introduction, we shall consider PBC and APBC (precisely
cylindrical antiperiodic BC) implemented by adding to the
interaction an extra term B(s) with couplings among spins on
the boundary [7–9]. In the d = 2 case spins on opposite edges
are coupled ferromagnetically, just like spins in the bulk if
PBC are applied. Instead, in the APBC case, spins on one pair
of opposite edges are coupled ferromagnetically, while those
on the other pair antiferromagnetically. Hence, the boundary
term reads

Hb(s) = −J
L∑

y=1

s1,ysL,y − bJ
L∑

x=1

sx,1sx,L, (2)

where we have denoted by b = ± the sign of J , which
identifies PBC (+) or APBC (−). In the d = 1 case this term

simplifies to

Hb(s) = −bJs1sL, (3)

where L is the length of the chain. It is important to note that
both these BC preserve the up-down symmetry of the Ising
interaction.

Taking as it is customary TI = ∞ in order to have an
uncorrelated initial state, the system is put in contact with
a thermal reservoir at the lower and finite temperature TF

and let to evolve according to a dynamical rule which does
not conserve the order parameter, like Glauber or Metropo-
lis. This simply corresponds to running a Markov chain at
the fixed temperature TF , with the so-called hot start, that
is, with a uniformly random initial condition. The relax-
ation process is monitored through the equal-time spin-spin
correlation function

C(r, ε, t−1, L−1; b) = [〈si(t )s j (t )〉 − 〈si(t )〉〈s j (t )〉], (4)

where the angular brackets denote averages taken over the
noisy dynamics and the initial conditions, while the square
brackets denote the average over all pairs of sites (i, j)
keeping fixed the distance r between i and j. In the set of
control parameters, ε = TF − Tc is the temperature difference
from criticality, t−1 is the inverse time, and L−1 is the inverse
linear size.

We are interested in taking both the large-time and the ther-
modynamic limit of the above quantity and then to comparing
the outcomes, depending on the order in which these two
limits have been taken. Letting t−1 → 0 first, while keeping
L fixed, the equilibrium correlation function is obtained,

lim
t−1→0

C(r, ε, t−1, L−1; b)

= Ceq(r, ε, L−1; b) = [〈sis j〉eq − 〈si〉eq〈s j〉eq], (5)

where now the angular brackets stand for the Gibbs ensemble
average and the square brackets have the same meaning
as in Eq. (4). Then the subsequent thermodynamic limit
implements the prescription [8] for the construction of the
equilibrium correlation function in the infinite system

lim
L−1→0

lim
t−1→0

C(r, ε, t−1, L−1; b) = Ceq(r, ε; b). (6)

The crux of the matter is that, after reversing the order of these
limits, the end result might not be the same as the one above,
because the large-time limit of the time-dependent correlation
function for the infinite system,

lim
t−1→0

lim
L−1→0

C(r, ε, t−1, L−1; b) = C∗(r, ε; b), (7)

exists but does not necessarily coincide with Ceq(r, ε; b).
Referring to C∗(r, ε; b) as the time-asymptotic correlation
function, if it matches Ceq(r, ε; b), then the infinite system
equilibrates. If not, then it remains permanently out of equi-
librium. Which is the case depends on TF and on the choice
of BC. In the quench to TF � Tc both Ceq(r, ε) and C∗(r, ε)
are independent of the BC choice and do coincide, signaling
equilibration. Instead, in the quench to below Tc, as we shall
see, C∗(r, ε) does not depend on b, while Ceq(r, ε; b) retains
this dependence, implying that equilibration can be achieved
at most with one of the two BC, but certainly not with both.
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(a) (b)

FIG. 1. Parameter space of the 1d model (a) and of the 2d
model (b).

As anticipated in the Introduction, the equilibration condition
is fulfilled with APBC, but not with PBC.

In the next section we shall substantiate the above state-
ments with results for the 1d and 2d Ising models. We shall
take the aforementioned limits, after setting up the general
scaling scheme which unifies static and dynamic phenomena
into one single framework encompassing both. In order to do
this, it is convenient to treat separately the three cases: ε > 0,
ε = 0, and ε < 0.

III. STATICS AND DYNAMICS: ε > 0

Let us assume that at a generic point in the ε > 0 sector of
the three-dimensional space of the parameters (ε, t−1, L−1),
depicted in Fig. 1, the correlation function obeys scaling in
the form [10]

C(r, ε, t−1, L−1; b) = 1

ra
F

(
r

�
,

�

R
,

R

L
; b

)
, (8)

where the exponent a is related to the anomalous dimen-
sion exponent η by a = d − 2 + η and to the fractal dimen-
sionality D of the Coniglio-Klein (CK) [12,13] correlated
clusters [14] by

a = 2(d − D). (9)

From the exact results [15,16]

η =
{

1, for d = 1

1/4, for d = 2
, (10)

follows

a =
{

0, for d = 1

1/4, for d = 2
, (11)

and

D =
{

1, for d = 1

15/8, for d = 2
, (12)

which shows that the CK clusters are compact in 1d and frac-
tals in 2d . To a proportionality constant, the scaling variable
� is the equilibrium correlation length of the infinite system,
given by [15]

�(ε) =
{

−[ln tanh(J/ε)]−1, for d = 1

ε−ν, with ν = 1 for d = 2
. (13)

(a) (b)

FIG. 2. Schematic representation of the saturation of ξ vs. R for
� � L (a) and for � � L (b).

The other characteristic length R(t ) obeys the power law [11]

R(t ) = t1/z, (14)

with the dynamical exponent [17,18]

z =
{

2, for d = 1

2.16, for d = 2
. (15)

The connection between R(t ) and the time-dependent corre-
lation length will be clarified shortly and is summarized in
Fig. 2. Both lengths diverge as the critical point, which is at
the origin of the reference frame in Fig. 1, is approached along
the ε axis and the t−1 axis, respectively.

The scaling ansatz (8) is dense of information and allows
to predict what should be expected in different regions of
the parameter space. The foremost relevant features are the
power-law decay 1/ra of correlations at short distance and
the large-distance cutoff enforced by the scaling function. The
separation between short and large distances is fixed by the
correlation length

ξ (ε, t−1, L−1; b) =
[∫ L

0 dr r2 C(r, ε, t−1, L−1; b)∫ L
0 dr C(r, ε, t−1, L−1; b)

]1/2

, (16)

which scales as

ξ (ε, t−1, L−1; b) = R f

(
R

�
,

�

L
; b

)
. (17)

The behavior of ξ , as parameters are changed, can be unrav-
eled by the following argument. Suppose that � and L are fixed
in a region where � � L and let us survey what happens as
the quench unfolds and R grows. Approximating the above
equation by

ξ (ε, t−1) 	 R f

(
R

�
, 0

)
, (18)

in the early stage of the quench, when R � �, it can be further
reduced to

ξ ∼ R, (19)

because the system behaves as if it was approaching the
critical point along the t−1 axis. As R is let to grow further,
equilibrium is eventually reached when R ∼ � and the corre-
lation length saturates to the limiting value

ξ ∼ �, (20)
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as illustrated in the left panel of Fig. 2, with the equilibration
time given by teq = �z. The BC are immaterial throughout,
because ξ remains always much smaller than L so that the
system as a whole behaves as a collection of independent finite
systems, on which the far away BC have no effect. By the
same reasoning, in the region where � � L we still have ξ ∼
R in the early stage, when R � L, with independence from
BC. But then BC come into play when the system equilibrates
and ξ saturates to the limiting value L, as illustrated in the
right panel of Fig. 2, since correlations extend up to distances
where the BC are effective. In this connection see Ref. [19].
Summarizing, ξ is given by the shortest of the three lengths
(�, R, L), that is,

ξ (ε, t−1, L−1) ∼ min(�, R, L), (21)

in the regions of the parameter space where one of the three
is considerably shorter than the other two, with crossovers
connecting these regions. It is clear from Fig. 2 that ξ and
R coincide at all times if both � and L are infinite. Next to
the correlation length, it is useful to keep track also of the
susceptibility

χ (ε, t−1, L−1; b) =
∫

dd r C(r, ε, t−1, L−1; b), (22)

which is related to the correlation length by

χ ∼ ξ 2D−d . (23)

This is an important relation, because it is independent of the
direction of approach to the critical point and depends only on
the geometrical nature of the correlated clusters through D.

According to the above reasoning, when the limits t−1 → 0
and L−1 → 0 are taken in the ε > 0 sector, we necessarily
have ξ ∼ �, independently of the order in which these limits
are taken, because � is finite. Moreover, the finite correlation
length guarantees that the system equilibrates with indepen-
dence from BC,

lim
L−1→0

lim
t−1→0

F
(

r

�
,

�

R
,

R

L
; b

)
= lim

t−1→0
lim

L−1→0
F

(
r

�
,

�

R
,

R

L
; b

)

= Feq

( r

�

)
. (24)

Example: 1d system

As an example, let us check the above statements against
exact results in the particular case of the t−1 → 0 limit of the
1d model with finite L. The equilibrium correlation function
is given by

Ceq(r, ε, L−1; b) = 1

ra
Feq

(
r

L
,

L

�
; b

)
, (25)

where a = 0 according to Eq. (11), while the two explicit
forms of the scaling function (see I and Ref. [9]) read

F (p)
eq (z, ζ ) = cosh[ζ (1 − z)]

cosh(ζ )
, (26)

F (a)
eq (z, ζ ) = sinh[ζ (1 − z)]

sinh(ζ )
, (27)

where we have set

z = r/L, ζ = L/�. (28)

We have considered a chain of length 2L in order to simplify
notation. The superscripts (p) and (a) have been used for
PBC and for APBC, respectively. The equilibrium correlation
length, defined through the second moment as in Eq. (16),
scales as

ξeq(ε, L−1; b) = � feq(ζ ; b), (29)

with the scaling functions

f (p)
eq (ζ ) =

[
2 − 2ζ

sinh(ζ )

]1/2

,

(30)

f (a)
eq (ζ ) =

[
2 − ζ 2

cosh(ζ ) − 1

]1/2

,

from which follows

ξ (p)
eq (ε, L−1) =

{√
2 � for � � L

1√
3

L for L � �

ξ (a)
eq (ε, L−1) =

{√
2 � for � � L

1√
6

L for L � �
, (31)

showing that in the regimes � � L and � � L, indeed one
has ξ ∼ min(�, L). Completing, next the sequence of limits
by letting L−1 → 0, it is straightforward to check that the
dependence on BC disappears, yielding

lim
L−1→0

F (p)
eq (z, ζ ) = lim

L−1→0
F (a)

eq (z, ζ ) = e−r/�. (32)

Using the definition, it is immediate to verify that also χ ∼ �

and, therefore, that moving toward the critical point along the
ε axis one has

χ ∼ ξ, (33)

in agreement with Eq. (23), because D = 1 when d = 1.

IV. STATICS AND DYNAMICS: ε = 0, d = 2

When ε = 0, the 1d and 2d cases are quite different and
need to be treated separately. In the latter one, which we shall
now consider, Tc > 0 and ergodicity does not break. In the
former, instead, Tc = 0 and ergodicity may break, depending
on BC. This makes it more akin to the 2d quench to below Tc.
So it will be dealt with in the next section.

The specificity of the quench to ε = 0 is that � diverges
and, consequently, that ξ can be limited only by R or L. Thus,
when the t−1 → 0 limit is taken first and L is kept fixed, ξ

crosses over from R to L in the finite time teq ∼ Lz, as in the
right panel of Fig. 2, and the system equilibrates to

Ceq(r, L−1; b) = 1

r1/4
Feq

( r

L
; b

)
, (34)

which depends on BC because correlations extend up to
the boundary. Letting next L−1 → 0, the BC dependence
disappears from the critical correlation function of the
infinite system

Ceq(r) ∼ 1

r1/4
. (35)

Instead, if the L−1 → 0 limit is taken first, then R is the
only length left in the problem. This implies ξ ∼ R at all
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FIG. 3. Scaling function of the time-dependent correlation func-
tion in the quench to Tc of the 2d model, demonstrating independence
from BC, in the system with L = 256. PBC (solid symbols) and
APBC (empty symbols).

times, so that there is no finite equilibration time. However,
the time-dependent correlation function

C(r, t−1) = 1

r1/4
Fc(r/R), (36)

which is BC independent (see Fig. 3), gets arbitrarily close
to the equilibrium counterpart (35) as time grows, because
the limit

lim
t−1→0

C(r, t−1) = C∗(r) ∼ 1

r1/4
, (37)

coincides with it. In summary, in the quench to ε = 0 of the 2d
system, like in the ε > 0 case previously considered, the equi-
librium correlation function of the infinite system Ceq(r) does
not depend on BC and coincides with the time-asymptotic
one C∗(r), warranting the conclusion that the system can get
arbitrarily close to equilibrium by waiting long enough.

Comparing Eqs. (34) and (36), it is evident that the scaling
structure is the same, the only difference being in the specific
forms of the scaling functions, which is inessential for the
present considerations. This shows that the time direction
along the t−1 axis, as far as scaling is concerned, is just
another direction of approach to the critical point, on the same
footing with the other two. In addition, from the formal simi-
larity of the two scaling expressions follows straightforwardly
that the susceptibility satisfies Eq. (23) in the form

χ ∼ ξ 7/4, (38)

irrespective of the direction of approach, with ξ ∼ L along the
L−1 axis and ξ ∼ R along the t−1 axis.

FIG. 4. Magnetization density distributions at ε = 0 in the 1d
Ising model, with m± = ±1. The spikes in the panel (a) stand for
δ functions.

V. STATICS AND DYNAMICS: ε = 0, d = 1

As mentioned above and explained at length in I, in the 1d
system at ε = 0 we are confronted with a radically different
situation, because ergodicity, which holds for both BC above
Tc, is now broken with PBC but not with APBC. In order to
ease the comparison, and to highlight the contrast, with the
less familiar case of a transition without ergodicity breaking,
let us first briefly summarize the well-established concept
of ergodicity breaking [1]. In the PBC case there are two
degenerate ground states: the two ordered configurations with
all spins either up s+ = [si = +1] or down s− = [si = −1].
These, by themselves, form two absolutely-confining ergodic
components, which are dynamically disconnected because
the activated moves needed to go from one to the other are
forbidden at zero temperature. Consequently, time averages
coincide with ensemble averages taken with either one of
the two broken-symmetry ferromagnetic pure states P−(s) =
δs,s− , P+(s) = δs,s+ and do not coincide with the symmetric
ensemble averages taken in the Gibbs state, which is the even
mixture of the pure states

P(p)(s) = 1
2 [P−(s) + P+(s)]. (39)

In such a situation, only time averages are physically mean-
ingful. Conversely, in the APBC case all the 4L degenerate
ground-state configurations with one defect (or domain wall)
belong to the same ergodic component, because the defect can
freely sweep the whole system at no energy cost. Then, in
this case time and ensemble averages coincide. The qualitative
difference between the two zero-temperature states is well
illustrated (see Fig. 4) by the probability distribution Pb(m)
of the magnetization density m = 1

2L

∑
i si, which is demon-

strated [9] to be double peaked in the PBC case

P(p)(m) = 1
2 [δ(m + 1) + δ(m − 1)], (40)

and uniform over the [−1, 1] interval in the APBC case

P(a)(m) →
{

1/2 for m ∈ [−1, 1]

0 for m /∈ [−1, 1]
. (41)

So if we now take the t−1 → 0 limit while keeping L−1

fixed, then we find BC-related differences in the results. With
PBC, as explained above, the meaningful averages are those
in the broken symmetry pure states, yielding

C (p)
eq (r, L−1) = [〈sis j〉± − 〈si〉±〈s j〉±] = 0, (42)
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where the angular brackets stand for the average with respect
to P−(s) or P+(s). The vanishing of correlations for any r
holds independently of L and clearly implies that also the
correlation length vanishes. Notice that if the correlation
function had been extracted by taking the ε → 0 limit of the
Gibbs average taken with the distribution (39), as in Eq. (26),
then the result would have been

C (p)
eq (r, L−1) = 1, (43)

which is independent of r and does not decay. However, this
would have been just an artefact of the mixture.

Conversely, in the APBC case the ensemble Gibbs average,
as calculated in Eq. (27), gives the correct time-average result
because ergodicity is not broken. Hence, in the ε → 0 limit,
from Eq. (27) one has

C (a)
eq (r, L−1) = (1 − r/L). (44)

The dependence on r/L in the above expression reveals that
correlations extend over a distance of order L in agreement
with the general argument expounded in Sec. III. Hence, by
letting L−1 → 0 the correlation length diverges, leading to the
conclusion that the state at the origin of the parameter space
is a critical point for the APBC system, where the correlation
function displays the constant behavior

C(a)
eq (r) = 1. (45)

Contrary to Eq. (43), now the lack of decay is a real physical
effect, which corresponds to the critical power-law decay 1/ra

with a vanishing exponent a, due to the compactness of the CK
correlated clusters.

When the sequence of limits is reversed, after taking the
thermodynamic limit we are again in the situation in which R
is the only length in the problem. Therefore ξ ∼ R, as in the
previous section, and we get the BC independent result

C(r, t−1) = 1

ra
F (r/R), (46)

with a = 0. The function F (x) is known from exact analytical
computation with PBC [3,17] and is given by

F (x) = erfc (x), with x = r/2R. (47)

That the same scaling function applies also to the case of
APBC is demonstrated by the numerical data displayed in
Fig. 5, which have been obtained by simulating the quench
dynamics with the Metropolis algorithm on a system with
L = 105, after imposing PBC and APBC. The plot shows
that the above result indeed holds irrespective of the BC
choice, because the PBC and APBC data superimpose to the
theoretical curve of Eq. (47) with great accuracy, as long as
R(t ) � L. The existence of an endlessly growing correlation
length R(t ) means that the relaxation dynamics along the t−1

axis drives both systems, with PBC and with APBC, toward
the same asymptotic critical state at the origin with the unique
time-asymptotic correlation function given by

lim
t−1→0

C(r, t−1) = C∗(r) = 1, (48)

which coincides with the APBC equilibrium result in Eq.(45).
So if we compare the asymptotic result of Eq. (48) with the
APBC static one of Eq. (45), and with the PBC equilibrium

FIG. 5. Collapse on the master curve of Eq. (47) of the data for
C(r, t−1, L−1) in the time regime R � L. PBC (solid symbols) and
APBC (empty symbols). The data for R/L = 10−4, 10−3 have been
obtained with L = 105 and those with R/L = 10−2 with L = 104.

result of Eq. (42), we see, as stated in the Introduction, that
the APBC system tends toward equilibrium, although with
an infinite relaxation time, while the PBC system remains
permanently out of equilibrium. It is evident that the origin
of the diversity of behaviors is in the presence or absence of
ergodicity breaking. In fact, we shall see in the next section
that the same behavior occurs in the quench of the 2d system
to below the critical point.

In order to complete the picture of critical behavior, let
us check on the validity of Eq. (23). From Eqs. (32), (44),
and (47) follows that along the three directions one has ξ ∼
�, ξ ∼ R, ξ ∼ L, as well as χ ∼ �, χ ∼ R, χ ∼ L, yielding

χ ∼ ξ, (49)

independently of the direction of approach to the critical point,
as it should be since D = 1.

VI. STATICS AND DYNAMICS: ε < 0, 2d

As in the previous case, the nature of the equilibrium state
of the 2d model below Tc depends strongly on BC, even in the
thermodynamic limit. In I we have shown that the segment
with ε < 0 in the parameter space (see right panel of Fig. 1)
is the coexistence line of states spontaneously magnetized in
opposite directions, when PBC are imposed, while it is a line
of critical points with APBC. Since this is a crucial point,
let us overview the equilibrium picture before turning to the
discussion of the quench dynamics.
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FIG. 6. Typical equilibrium configurations below Tc. In the PBC
case (a) one black domain of up spins fills the entire systems.
Thermal fluctuations produce the small white domains of down spins.
In the APBC case (b) there are two large domains separated by one
interface cutting across the system. Within each domain there are the
small patches of reversed spins due to thermal fluctuations.

A. Equilibrium with PBC

When PBC are imposed, two confining components of
spins aligned either prevalently up or prevalently down, are
formed in phase space. A configuration typical of the up
component is shown in the left panel of Fig. 6. In the
thermodynamic limit these components become absolutely
confining, ergodicity breaks down, and, therefore, we are
confronted with the same situation discussed in the 1d case
at T = 0. Namely, the Gibbs state becomes the even mixture
of the two broken-symmetry pure states like in Eq. (39),
that is,

P(p)
eq (s) =

∑
α

p(α)Pα (s). (50)

Here α = ± is the component label, the mixing probability is
uniform p(α) = 1/2 and Pα (s) is the ferromagnetic pure state.
The nonvanishing spontaneous magnetization density mα is
given by

m− = −m+, |mα| = |ε|β, β = 1/8. (51)

Using the above definitions and rewriting the Gibbs average in
terms of the component averages, i.e., 〈·〉eq = ∑

α p(α)〈·〉α ,
the equilibrium correlation function can be rearranged in
the form

C(p)
eq (r, ε) = 〈(si − mα )(si+r − mα )〉α

+ [〈si〉α − mα][〈si+r〉α − mα], (52)

where the overline denotes averaging with respect to p(α).
The first contribution is the average over components of the
intracomponent correlation function 〈ψiψi+r〉α , where the
variables ψi = si − mα represent the thermal fluctuations in
the pure state Pα (s). As it is intuitively clear, deviations
from the average by symmetry do not depend on α, so we
shall use the notation Geq(r, ε) for 〈ψiψi+r〉α . At low TF this
quantity is short ranged, since in the broken-symmetry state
the correlation length ξψ of the ψ variables vanishes as TF →
0. The second term, instead, represents the intercomponents
contribution, which reduces to m2

α , since mα = 0 and m2
α is

independent of α. Thus, in the end, from the Gibbs average
we have

C(p)
eq (r, ε) = Geq(r, ε) + m2

α. (53)

It is important, for what follows, to keep in mind that the
constant term m2

α , which is the variance of the variable mα

distributed according to p(α), arises exclusively from the
mixing as the constant term in Eq. (43). Therefore, in the PBC
case the only dynamical variables are the ψi, which means that
the dynamical rule updates ψi but not mα . The magnetization
distribution exhibits the double peak structure [20,21] which,
in the thermodynamic limit, becomes the sum of the two δ

functions,

P(p)(m|ε) = 1
2 [δ(m − m−) + δ(m − m+)]. (54)

Hence, as explained in the 1d case, the meaningful averages
are those taken with the broken symmetry ensembles Pα (s),
which coincide with time averages and give

C(p)
α,eq(r, ε) = Geq(r, ε). (55)

B. Equilibrium with APBC

When APBC are imposed, like in the 1d case ergodicity
does not break. As explained in I, there is only one ergodic
component, whose typical configurations at sufficiently low
TF are composed of two large ordered domains, separated by
one interface cutting across the system and sweeping through
it, as illustrated in the right panel of Fig. 6. This suggests
to split the spin variable into the sum of two independent
components,

si = mα(i) + ψi, (56)

where α(i) = ± is the label of the domain to which the
site i belongs and ψi = si − mα(i) is, as before, the thermal
fluctuation variable. The significant difference with respect to
the previous case is that now ψi and mα(i) are both dynamical
variables, since the fluctuations of the latter one are not due to
the mixing of pure states, but to the transit of the interface
through the site i, which means that the dynamical rule
updates both ψi and mα(i). Using the independence of these
variables and the vanishing of averages 〈si〉eq = 〈mα(i)〉eq =
〈ψi〉eq = 0, the correlation function can be written as the sum
of two contributions,

C(a)
eq (r, ε, L−1) = Geq(r, ε) + Deq(r, ε, L−1), (57)

which have quite different properties. The first one, which is
the same as in Eq. (53), is short ranged. The L dependence
has been neglected, because we may always assume that
the conditions for ξψ � L are realized. The second one,
which contains the correlations of the background variables
mα(i), i.e.,

Deq(r, ε, L−1) = 1

V

∑
i

〈mα(i)mα(i+r)〉eq, (58)

has been studied numerically in I and scales as

Deq(r, ε, L−1) = 1

ra
Y (ε, r/L),

where Y (ε, x) = m2
α (1 − x). (59)
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FIG. 7. The two panels show the sequence of snapshots taken at t = 1, 10, 100, 105 with PBC (a) and APBC (b), after a quench at TF = 1.8,
with L = 256. Time increases from left to right. The first three configurations belong to the coarsening regime and show independence from
BC. The last pair of configurations is morphologically similar to those in Fig. 6 and shows that at t = 105 the system has equilibrated.

We have retained the power-law prefactor r−a in front, even
though now a = 0 because the correlated clusters of the
background variables are compact in order to emphasize the
similarity with Eq. (34) and to render it evident by inspection
that the correlation length ξm of these variables coincides with
L. Notice that ε does not enter the scaling function but only
its amplitude through m2

α .
From the divergence of ξm in the thermodynamic limit,

there follows that the whole segment on the ε axis with ε < 0
is a locus of critical points, as anticipated above. The cor-
responding critical properties can be extracted by using L−1

as the parameter of approach to criticality. It should be clear
that this is bulk criticality, in no way related to the properties
of the interface, to which the attention of previous studies
of the APBC model was primarily directed. In I we have
shown that the exponents satisfy the relations β̇/ν̇ = 0 and
γ̇ /ν̇ = d , where the dots identify the exponents with respect
to L−1, e.g., from ξm ∼ L, follows ν̇ = 1. This implies β̇ = 0
and γ̇ = d . Hence, the hyperscaling relation 2β̇ + γ̇ = ν̇d
is satisfied, suggesting that the upper critical dimensionality
might diverge. So if now we take the thermodynamic limit,
from Eqs. (57) and (59) we get

C(a)
eq (r, ε) = Geq(r, ε) + m2

α

ra
, (60)

and, consequently, the susceptibility of the background vari-
ables χ (a)

m diverges like

χ (a)
m (ε, L−1) ∼ Ld , (61)

in agreement with Eq. (23), the m-CK clusters being com-
pact. The strong magnetization fluctuations, implied by the
divergence of the susceptibility, are indeed exhibited by the
distribution P(a)(m) which, instead of being double peaked
like in Eq. (54), has been shown in I to be uniform over
the interval [m−, m+]. The qualitative difference between
P(p)(m) and P(a)(m) is the same previously analyzed in the 1d
case and schematically represented in Fig. 4. The uniformity
of P(a)(m) is the distinctive feature which highlights the

difference between condensation of fluctuations and the usual
ordering transition associated to the double-peak structure of
Eq. (54).

C. Relaxation dynamics

When the relaxation of the infinite system is studied by
taking first the thermodynamic limit, the dependence on BC
is expected to disappear, because at any finite time the cor-
relation length is limited by R. This is confirmed by the
snapshots of the typical configurations (see Fig. 7) taken after
the quench to TF /Tc = 0.79. The top panel depicts the PBC
case and the bottom panel the APBC one. In each panel
time increases from left to right. The first three snapshots,
taken at t = 1, 10, 100, display the self-similar morphology
characteristic of coarsening domains, which does not show to
be affected by the type of the imposed BC, because R � L.
The BC influence is evident, instead, in the fourth snapshot
taken at t = 105, when R � L and the system has equilibrated.

The configurations morphology, with large compact grow-
ing domains containing in their interior small patches of ther-
mal fluctuations, suggests to generalize to the off-equilibrium
regime the split of variables (56) by si(t ) = mα(i,t ) + ψi(t ),
where α(i, t ) is the label of the domain to which the site i
belongs at the time t . Then, as in Eq. (57), the correlation
function separates into the sum of two contributions

C(r, ε, t−1) = Geq(r, ε) + D(r; ε, t−1), (62)

where the first one is BC independent, time independent,
and identical to the analogous term appearing in Eqs. (53)
and (57), because thermal fluctuations equilibrate quickly.
The second contribution contains the correlations of the back-
ground variables and obeys scaling in the form

D(r, ε, t−1) = m2
α

ra
F (r/R), (63)

where a = 0, due to the compactness of domains, the growth
law R(t ) = t1/z is the same of Eq. (14) with z = 2 and
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FIG. 8. Collapse on the master curve of Eq. (47) of the data for
C(r, t−1, L−1) in the time regime R � L, system size L = 256. PBC
(solid symbols) and APBC (empty symbols). The continuous line is
the plot of the Ohta-Jasnow-Kawasaki function defined in Eq. (64).

the ε dependence has been factorized in the amplitude m2
α .

Comparing with Eq. (36), we see that the same behavior as
in the quench to Tc is obtained, apart for the change of the
exponents z and a, and for the specific forms of the functions
Fc(x) and F (x).

The above statements are substantiated by the plot in Fig. 8
of the numerical data for the equal-time correlation function,
generated for a quench to TF /Tc = 0.666, which corresponds
to ε = −0.9, with L = 256 and with both PBC and APBC.
The APBC data have been circularly averaged to smooth
out the anisotropy induced by the cylindrical BC. The good
collapse of the data, in the time regime such that R � L,
shows that for the chosen value of TF the thermal fluctuations
contribution is negligible. Moreover, the master curve F (x)
compares well with the Otha-Jasnow-Kawasaki [22] approxi-
mate result

F (x) =
(

2

π

)
arcsin(γ ), γ = exp(−x2/b), (64)

where b is a constant, as is demonstrated in Fig. 8. Therefore,
the relaxation to below Tc is not qualitatively different from
the one to Tc. Both are coarsening processes and both do not
depend on the imposed BC. Differences between the two are
in the quantitative details, like the values of the z exponent,
the dimensionality of correlated clusters and the shape of the
scaling functions. The implication is that also in the quench
to below Tc the system tends toward a critical state, because
the time-dependent correlation length R diverges, eventually
yielding the time-asymptotic critical correlation function

C∗(r, ε) = Geq(r, ε) + m2
α

ra
. (65)

It is then evident, according to the discussion made at the end
of Sec. VI B that this asymptotic form, which we emphasize
once more is the same for both choices of BC, matches
C(a)

eq (r; ε) but not C(p)
eq (r; ε). Finally, recalling that a = 0, it

is straightforward to see from Eq. (63) that the background
susceptibility scales like

χ (ε, t−1) ∼ Rd , (66)

in agreement with the result (61) for χ (a)
m (ε, L−1).

In conclusion, in the PBC case, as anticipated in the
Introduction, the asymptotic state and the equilibrium one are
remote one from the other, and the system may be regarded as
remaining strongly out of equilibrium, because in the former
one there are long-range correlations, which are absent in the
second one. In the APBC case, instead, both the asymptotic
and the equilibrium state are critical and with the same
universal properties, hence the system equilibrates although
with an infinite equilibration time, just as in the quench to Tc.

D. Summary

So far we have shown that when the Ising model is
quenched in the two-phase region, i.e., to below Tc for d = 2
and to TF = 0 for d = 1, the APBC system equilibrates and
the PBC one remains off equilibrium. The basic elements
of the mechanism underlying this phenomenology are as
follows:

(i) To different BC, in principle, there correspond different
statistical ensembles.

(ii) These ensembles become equivalent when the limits
are taken according to the sequence: L−1 → 0 first and then
t−1 → 0, for all temperatures TF .

(iii) Instead, the ensembles may become non equivalent,
depending on BC, when the limits are taken in the reverse
sequence: t−1 → 0 first and then L−1 → 0 with TF < Tc.

(iv) Equivalence fails with PBC because of ergodicity
breaking, and holds with APBC since ergodicity is preserved.

(v) Ergodicity breaking induces spontaneous symmetry
breaking, which makes correlations short-ranged.

(vi) Instead, when ergodicity holds an unusual type of
criticality sets in, with long-range correlations and compact
correlated domains.

In the next section we shall show that this is not just a
peculiarity of the Ising model, but that it is a more general
phenomenon, since it takes place with the same characteristics
also in the quench to below the critical point of the spherical
model, without invoking the imposition of different types
of BC. In fact, two different ensembles arise not from the
choice of BC, which is taken to be the standard PBC one,
but from enforcing the spherical constraint either sharply or
smoothly. These ensembles turn out to be equivalent or non
equivalent, just as in the Ising case, depending on the order of
the L−1 → 0 and t−1 → 0 limits.

VII. SPHERICAL MODELS

A. Equilibrium

Let us briefly recall what the spherical model is about
starting from equilibrium, which means that the t−1 → 0 limit
has been taken beforehand. Consider a classical paramagnet in
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the volume V = Ld and with the energy function [23]

H(ϕ) =
∫

V
dr ϕ(r)

(
−1

2
∇2

)
ϕ(r), (67)

where ϕ stands for a configuration of the local, continu-
ous, and unbounded spin variable ϕ(r). PBC are understood
throughout. Due to its bilinear character, the above Hamilto-
nian can be diagonalized by Fourier transform

H = 1

2V

∑
k

k2|ϕk|2. (68)

In the spherical model (SM) of Berlin and Kac [24] a coupling
among the modes is induced by the imposition of an overall
sharp constraint on the square magnetization density,

s(ϕ) = 1

V

∫
V

dr ϕ2(r) = 1

V 2

∑
k

|ϕk|2 = 1. (69)

Then, in thermal equilibrium the statistical ensemble is
given by

PSM(ϕ) = 1

ZSM
e−βH(ϕ) δ[s(ϕ) − 1], (70)

where ZSM is the partition function. A variant of the model,
called the mean-spherical model (MSM) [25,26], is obtained
by imposing the constraint in the mean: An exponential bias
is introduced in place of the δ function,

PMSM(ϕ) = 1

ZMSM
e−β[H(ϕ)+ κ

2 S(ϕ)], (71)

where S (ϕ) = V s(ϕ) and the parameter κ must be so adjusted
to satisfy the requirement

〈s(ϕ)〉MSM = 1. (72)

Although it is the common usage to refer to these as models,
it should be clear from Eqs. (70) and (71) that we are dealing
with two conjugate ensembles, distinguished by conserving or
letting to fluctuate the density s.

In both models there exists a phase transition at the same
critical temperature Tc, above which they are equivalent and
below which they are not, which means that the nature of the
low-temperature phase is different. It is worthwhile here to go
into some detail [27] because the point is quite illuminating
on the equivalence or lack-of issue. Let us separate in s the
excitations from the ground-state contribution,

s = s0 + s∗, with s0 = 1

V 2
ϕ2

0 , s∗ = 1

V 2

∑
k �=0

|ϕk|2.

(73)

Then, taking the average in either ensemble, from the spheri-
cal constraint follows the sum rule

〈s0〉 + 〈s∗〉 = 1, (74)

which must be satisfied at all temperatures and it is the motor
of the transition. In fact, in the thermodynamic limit the
excitations contribution is superiorly bounded [27] by

〈s∗〉 � T B, (75)

FIG. 9. Magnetization distribution in the MSM model (a) and in
the SM model (b) for T < Tc. The spikes in the right panel stand for
δ functions.

where B is a dimensionality-dependent positive constant,
which is finite for d > 2 and diverges at d = 2. Therefore, by
enforcing the constraint (74) there remains defined the critical
temperature

Tc = 1/B, (76)

above which the sum rule (74) is saturated without any
contribution from 〈s0〉, while below there must necessarily be
a finite contribution from the ground state, yielding

〈s0〉 =
{

0 for T � Tc

1 − T/Tc for T < Tc
. (77)

Rewriting s0 = ψ2
0 , where ψ0 is the density 1

V ϕ0, the question
is how can there arise a finite contribution to 〈s0〉 from this
single degree of freedom and here is precisely where the
two models differ. In the SM the sharp version (69) of the
constraint introduces enough nonlinearity for the transition
to take place by ordering. This means that ergodicity breaks
down, inducing the spontaneous breaking of the Z2 symmetry.
Then, exactly like in the Ising model with PBC, the probability
distribution of the magnetization density, that is, of ψ0, results
from the mixture of the two pure ferromagnetic states,

PSM(ψ0) = 1
2 [δ(ψ0 − m−) + δ(ψ0 − m+)], (78)

where m± = ±√
1 − T/Tc is the spontaneous magnetization.

Thus, in this case 〈s0〉SM stands for the square of the spon-
taneous magnetization m2

±. Instead, in the MSM ordering
cannot take place, because the soft version (72) of the con-
straint leaves the statistics Gaussian. Neither ergodicity nor
symmetry break down, as in the Ising APBC case. Then,
below Tc, the only mean to build up the finite value of 〈s0〉MSM

needed to saturate the sum rule is by growing the fluctuations
of ψ0 through the spread out probability distribution given by

PMSM(ψ0) = e− ψ2
0

2(1−T/Tc )

√
2π (1 − T/Tc)

. (79)

Therefore, now 〈s0〉MSM stands for the macroscopic variance
of ψ0. Elsewhere (Refs. [28–32]), this type of transition,
characterized by the fluctuations of an extensive quantity con-
densing into one microscopic component, has been referred to
as condensation of fluctuations.

Comparing Figs. 9 and 4, it is evident that the distri-
butions are the same in the two cases where ergodicity
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breaks down, that is, in the Ising model with PBC and
in the SM. In the other two cases, Ising with APBC and
MSM, the distributions are not superimposable but show
the same physical phenomenon: ergodicity is preserved by
developing macroscopic fluctuations of the magnetization,
which remain finite in the thermodynamic limit and reveal
the critical nature of the low-temperature phase. In fact, in
the MSM the structure factor, i.e., the Fourier transform
of the correlation function, is given by [29]

CMSM(k) = T

k2
+ m2

±δ(k). (80)

The two terms appearing above are the analoges in Fourier
space of those entering C(a)

eq (r; ε) in Eq. (60), with the corre-
spondences

Geq(r; ε) ←→ T

k2
,

m2
α

ra
←→ m2

±δ(k). (81)

Notice that, as is well known, the thermal fluctuations con-
tribution in the MSM is massless, i.e., is critical, at all
temperatures below Tc. For simplicity, let us set T = 0 in
order to get rid on this contribution and to focus on the
interesting one, which is the δ-function term (Bragg peak). We
emphasize that this is the Fourier transform of the background
critical contribution with compact correlated clusters, just as
the corresponding term in the Ising APBC case.

Finally, we point out that the d = 2 case is analogous to
Ising with d = 1, because Tc vanishes. However, for brevity,
we shall not elaborate on this case here.

B. Dynamics

Let us next consider the relaxation dynamics in the quench
to TF = 0. In Ref. [33] it was shown that, when the thermody-
namic limit is taken first, the two models are equivalent at all
times. Then, it is an exact result that the dynamical structure
factor both for the SM and MSM is given by

C(k, t ) = �

(
1 + 2r2

0

R2

)d/2

Rd e−(kR)2
, (82)

where C(k, 0) = � is the spatially uncorrelated initial condi-
tion at TI = ∞, R = √

2t is the growth law for nonconserved
dynamics, and r0 = 1/(

√
2�) is the microscopic length re-

lated to the momentum cutoff �, which is imposed exponen-
tially when integrating over k and is responsible for the cor-
rections to scaling in the early regime. From the normalization
condition at t = 0,∫

dd k

(2π )d
C(k, 0)e−k2/�2 = 1, (83)

there follows � = (2
√

π )d . Inserting this into Eq. (82), with
little algebra one can verify that indeed the normalization is
satisfied at all times. Then, since the peak grows like C(0, t ) ∼
Rd , one can conclude that the asymptotic structure factor is the
δ function,

lim
t→∞C(k, t ) = C∗(k) = δ(k), (84)

which matches the equilibrium Bragg peak (80) in the MSM.
Since the growth of R implies that the asymptotic state is

critical and with compact correlated clusters, in the quench to
below Tc the MSM approaches equilibrium arbitrarily close,
while the SM, which is not critical in the equilibrium state,
remains permanently out of equilibrium.

In conclusion, going through all the items listed at the
end of the previous section, one can check that perfect cor-
respondence between Ising-PBC and SM on one side and
Ising-APBC and MSM on the other is established.

VIII. CONCLUDING REMARKS

In this paper we have addressed a problem which is of
basic interest in the physics of slowly relaxing systems. Since
slow relaxation means that equilibrium is not reached in
the observable time scale, relevant questions are whether a
criterion for equilibration, or for lack of, can be established
and, if so, whether the nature of the equilibrium state can be
inferred from the available dynamical information. Although
the task of giving general answers to these questions is of
formidable difficulty, we have shown that, at least in the
restricted realm of phase-ordering systems, it is possible to
arrive at some definite conclusions.

By analyzing the relaxation of the Ising model after tem-
perature quenches, we have found that the system does or
does not equilibrate, depending on whether the dynamics
at the final temperature of the quench is ergodic or not.
This has been established by investigating the dependence
of the spin-spin correlation function on the order of the
large-time and thermodynamic limits, when different BC are
imposed. The findings are that the APBC system equilibrates
in all conditions, because the dynamics are ergodic at all
temperatures, while the PBC system does not equilibrate for
TF < Tc, because that is where ergodicity does not hold.
These statements are strengthened and corroborated by exact
analytical results from the quench of the spherical and mean
spherical model, which reproduce very closely, although in a
quite different context, the picture just outlined. We may then
answer the first question asked at the beginning of the section
by saying that it might take an infinite time to equilibrate, but
nonetheless the system can get arbitrarily close to equilibrium
if the dynamics are ergodic. Instead, if ergodicity is broken,
and if the initial state is symmetric, the system does not get
close to equilibrium, no matter how long is let to relax.

For what concerns the second question, the answer is
that, yes, once it is established that the system approaches
equilibrium, then the nature of the equilibrium state can be
inferred from the dynamical information. Consider first the
quench to Tc, in which case the time-dependent correlation
function obeys the scaling form (36), while in the equilibrium
state it decays according to the pure power law (35). It is
then evident that the latter result can be reconstructed from
the short distance behavior, i.e., for r � R, at times finite
but large enough to detect a clean scaling behavior. The
same procedure applies also in the case of the quench to
below Tc with APBC, where the background component of the
correlation function is given by Eq. (63). Then, again the short
distance approximation, which in this case is a constant term
since a = 0, reproduces correctly the form of the equilibrium
critical correlation function.
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Finally, let us comment on the nature of the line of crit-
ical points on the ε < 0 segment in the Ising APBC case.
According to the view put forward in this paper, t−1 is just
another relevant parameter measuring the distance from criti-
cality, on the same footing with ε and L−1, so that these critical
points control both statics and dynamics. In Sec. VI B we
have pointed out that the static critical exponents, defined with
respect to L−1, satisfy the hyperscaling relation 2β̇ + γ̇ = ν̇d
for all d , suggesting that the upper critical dimension is at d =

∞. It is then interesting to note the concomitance with the fact
that the Otha-Jasnow-Kawasaki approximate theory, which
accounts well for the time-dependent correlation function as
shown in Fig. 8, becomes exact in the d → ∞ limit [3].
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