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Scaling properties of the dynamics at first-order quantum transitions when boundary
conditions favor one of the two phases
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We address the out-of-equilibrium dynamics of a many-body system when one of its Hamiltonian parameters
is driven across a first-order quantum transition (FOQT). In particular, we consider systems subject to boundary
conditions favoring one of the two phases separated by the FOQT. These issues are investigated within the
paradigmatic one-dimensional quantum Ising model, at the FOQTs driven by the longitudinal magnetic field h,
with boundary conditions that favor the same magnetized phase (EFBC) or opposite magnetized phases (OFBC).
We study the dynamic behavior for an instantaneous quench and for a protocol in which h is slowly varied across
the FOQT. We develop a dynamic finite-size scaling theory for both EFBC and OFBC, which displays some
remarkable differences with respect to the case of neutral boundary conditions. The corresponding relevant
timescale shows a qualitative different size dependence in the two cases: it increases exponentially with the size
in the case of EFBC, and as a power of the size in the case of OFBC.
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I. INTRODUCTION

Quantum phase transitions are striking signatures of many-
body collective behaviors [1–3]. They are continuous when
the ground state of the system changes continuously at the
transition point and correlation functions develop a divergent
length scale. They are instead of first order when ground-
state properties are discontinuous across the transition point.
In general, singularities develop only in the infinite-volume
limit. If the size L of the system is finite, then all prop-
erties are analytic as a function of the external parameter
driving the transition. However, around the transition point,
thermodynamic quantities and large-scale properties develop
peculiar scaling behaviors, depending on the general features
of the transition. Their understanding is essential to cor-
rectly interpret experimental or numerical data, when phase
transitions are investigated in relatively small systems—see,
e.g., Refs. [4–11]. Moreover, their investigation may lead
us to discover novel phenomena that emerge in the strongly
correlated dynamic regime arising at quantum transitions.

These issues are important not only for continuous quan-
tum transitions, but also for first-order quantum transitions
(FOQTs), essentially for two reasons. First, FOQTs are phe-
nomenologically relevant, as they occur in a large number
of quantum many-body systems, including quantum Hall
samples [12], itinerant ferromagnets [13], heavy fermion met-
als [14–16], etc. Second, the low-energy properties at FOQTs
are particularly sensitive to the boundary conditions, giving
rise to a variety of behaviors, that is even wider than at
continuous quantum transitions. Indeed, depending on the
type of boundary conditions, for example whether they are

*Authors are listed in alphabetical order.

neutral or favor one of the phases, the behavior at FOQTs
may be characterized by qualitatively different dynamic prop-
erties [10,11,17–20], associated with timescales that have an
exponential or power dependence on the size of the system.

In this paper we investigate the out-of-equilibrium dynam-
ics of a many-body system undergoing a FOQT, when one
of its Hamiltonian parameters is driven across the FOQT.
In particular, we study such processes in the presence of
boundary conditions that favor one of the two phases sepa-
rated by the FOQT. This work extends the results presented
in Refs. [21,22], where the dynamic properties of systems
with neutral boundary conditions were discussed. As we shall
see, notable differences emerge when the system is subject to
boundary conditions favoring one of the phases.

We study the above issues within the one-dimensional
quantum Ising model in the presence of a transverse field,
which provides an optimal theoretical laboratory for the in-
vestigation of phenomena emerging at quantum transitions.
Indeed its zero-temperature phase diagram presents a line of
FOQTs driven by a longitudinal external field h, ending at
a continuous quantum transition. We focus on the dynamic
behavior along the FOQT line, considering boundary con-
ditions that favor one of the two magnetized phases. This
is obtained by imposing appropriate boundary conditions:
equal fixed boundary conditions (EFBC), meaning that both
boundaries favor the same magnetized phase, and opposite
fixed boundary conditions (OFBC), meaning that the bound-
aries favor the phases with opposite magnetization. We are
interested in the out-of-equilibrium dynamic behavior arising
when a time-dependent longitudinal field h varies across the
value h = 0, associated with the FOQT. For this purpose, we
consider two limiting cases: an instantaneous quench from
one phase to the other and a time protocol in which h is slowly
changed across the FOQT. We show that, for both EFBC
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and OFBC, the system develops a dynamic scaling behavior,
as it occurs for neutral boundary conditions [21]. However,
the dynamic scaling with non-neutral boundary conditions
presents peculiar features with respect to those with neutral
boundary conditions, making their study necessary to achieve
a deep and complete understanding of the phenomenology of
FOQTs. Moreover, we anticipate that the dynamic scalings
at EFBC and OFBC differ significantly, leading to scaling
properties with very different timescales.

It is worth mentioning that analogous issues have been
investigated for classical systems undergoing first-order tran-
sitions, to understand the dependence of the equilibrium and
out-of-equilibrium properties on the boundary conditions—
see, e.g., Refs. [23–33].

The paper is organized as follows. In Sec. II we introduce
the one-dimensional quantum Ising model, and the dynamic
protocols we consider. In Sec. III we recap the relevant
features of the equilibrium finite-size scaling behavior of the
Ising chain with EFBC and OFBC. In Sec. IV and Sec. V we
discuss the dynamic behavior in the presence of EFBC and
OFBC, respectively. Our general arguments are supported by
analytical and numerical calculations. Finally, in Sec. VI we
summarize our findings and draw our conclusions.

II. THE QUANTUM ISING CHAIN ALONG THE
FIRST-ORDER TRANSITION LINE

The quantum Ising chain in a transverse field is a paradig-
matic quantum many-body system showing continuous and
first-order quantum transitions. The Hamiltonian reads

HIs = −J
∑
〈x,y〉

σ (3)
x σ (3)

y − g
∑

x

σ (1)
x − h

∑
x

σ (3)
x , (1)

where σ ≡ (σ (1), σ (2), σ (3) ) are the spin-1/2 Pauli matrices,
the first sum is over all nearest-neighbor bonds 〈x, y〉, while
the second and the third sums are over the L sites of the chain.
We assume h̄ = 1, J = 1, and, without loss of generality,
g > 0. At g = 1 and h = 0, the model undergoes a continuous
quantum transition belonging to the two-dimensional Ising
universality class, separating a disordered phase (g > 1) from
an ordered (g < 1) one. For any g < 1, the longitudinal field h
drives FOQTs along the h = 0 line.

Here we focus on the dynamic behavior along the FOQT
line for g < 1. In particular, we consider boundary conditions
that favor one of the two magnetized phases, EFBC and
OFBC. They are obtained by adding fixed spin states at two
additional points x = 0 and x = L + 1: for EFBC we fix |↓〉
at both endpoints x = 0 and x = L + 1, while for OFBC we
fix |↓〉 at the endpoint x = 0 and |↑〉 at the endpoint x =
L + 1. As we shall see, EFBC and OFBC lead to drastically
different dynamic behaviors at the FOQT, characterized by an
exponential or a power dependence on the size of the relevant
scaling variables, respectively.

The low-energy properties at a FOQT crucially depend
on the chosen boundary conditions, even in the L → ∞
limit—see, e.g., Refs. [10,11,17,18,34,35]. If one considers
neutral boundary conditions, i.e., boundary conditions that do
not favor any of the two phases, then in the infinite-volume
limit the FOQT is characterized by the crossing of the two
states |+〉 and |−〉 with opposite longitudinal magnetization,

that represent the ground states for h > 0 and h < 0, respec-
tively. Correspondingly, the magnetization is discontinuous at
h = 0 [36],

lim
h→0±

lim
L→∞

〈±|σ (3)
x |±〉 = ± m0 , m0 = (1 − g2)1/8 . (2)

In finite-size systems the degeneracy at h = 0 is lifted: the
two lowest-energy levels are nondegenerate and their energy
difference �(L) = �(L, h = 0) vanishes as L → ∞. The L
dependence of �(L) depends on the boundary conditions. For
periodic boundary conditions (PBC) and open boundary con-
ditions (OBC) �(L) decreases exponentially with L, �(L) ∼
gL [36,37], while for antiperiodic boundary conditions (ABC)
and OFBC [10,34] it decreases as a power of L. Also the finite-
size scaling (FSS) behavior close to the transition point is
sensitive to the boundary conditions. In particular, the scaling
variables may have an exponential or power dependence on L.

Studies of the equilibrium behavior for several boundary
conditions (PBC, ABC, OBC, EFBC and OFBC) have been
reported in Refs. [10,11,18]. In this work we discuss the
out-of-equilibrium dynamic behavior which is observed when
a time-dependent longitudinal field h is applied to the system,
in the presence of EFBC and OFBC. For this purpose, we
consider two limiting protocols [38,39], that both start from
the ground state at an initial value hi of the longitudinal field:

(1) At t = 0 we perform an instantaneous quench of the
longitudinal field to a new value h and consider the subsequent
unitary evolution. If h is opposite to hi, then the system
effectively crosses the FOQT. Quantum quenches provide the
simplest protocol in which a system can be naturally put in
out-of-equilibrium conditions—see, e.g., Refs. [40–45];

(2) We perform a slow change of the longitudinal field
across the FOQT. We consider a linear time dependence

h(t ) = −t/ts , (3)

where ts is the corresponding timescale. The protocol starts
at time ti = −hits (we assume hi > 0) so that h(ti ) = hi, then
the system evolves unitarily, up t = t f > 0, such that h(t f ) =
h < 0. For t = 0, the longitudinal field vanishes and the
system goes across the FOQT. This protocol is analogous to
that implemented for the study of the so-called Kibble-Zurek
problem, i.e., of the scaling behavior of the amount of defects
when a system slowly moves across a continuous quantum
transition [46–50].

Different observables are computed during the quantum
evolution. In our work we will mostly monitor the local and
the average magnetization

mx = 〈�(t )|σ (3)
x |�(t )〉 , m = 1

L

L∑
x=1

mx , (4)

where |�(t )〉 represents the evolved quantum state at time t .
In particular, we will consider the normalized quantities

Mc(L, h) = mxc

m0
, M(L, h) = m

m0
, (5)

where xc is the central site of the chain, for L odd, or one of the
two central sites, for L even. The normalization of Mc and M is
such that they take the values ±1 in the two phases coexisting
at the FOQT (i.e., for any fixed, positive or negative, value of
the longitudinal field) for any g < 1, in the limit L → ∞.
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The dynamic behavior at a FOQT has already been dis-
cussed for neutral boundary conditions [21], such as PBC and
OBC. Below we show that a significantly different behavior
arises when the boundary conditions favor one of the two
phases, as in the case of EFBC and OFBC.

III. EQUILIBRIUM SCALING WITH
FIXED BOUNDARY CONDITIONS

Before addressing the out-of-equilibrium dynamic behav-
ior, we summarize the known results for the equilibrium low-
energy properties of the quantum Ising chain with EFBC and
OFBC.

A. Quantum Ising chain with EFBC

Let us first discuss the behavior of the system in the
presence of EFBC. Without loss of generality, because of
the obvious up-down symmetry, we can fix the spins to the
states |↓〉 at both boundaries, thereby favoring the negative-
magnetization phase. For h = 0, at variance with what hap-
pens for neutral boundary conditions, the gap �(L) does not
vanish for L → ∞. Indeed, one has [34]

�(L) = 4(1 − g) + 5gπ2

(1 − g)L2
+ O(L−3), (6)

and mxc → −m0 for L → ∞. Since the boundaries favor a
negative magnetization, at h = 0 the system is effectively
within the negative-magnetization phase. The transition to the
phase with positive magnetization occurs at a positive value
of h. Indeed, the observables around h = 0 depend smoothly
on h, up to a pseudotransition value htr(L), where the system
undergoes a sharp transition to the positively magnetized
phase. Such value corresponds to the minimum �m(L) of the
gap �(L, h), and, for large L, it converges to h = 0. Its large-L
asymptotic behavior is [11]

htr(L) = η(g) L−1 + a(g)L−5/3 + O(L−2), (7)

where η(g) decreases with approaching the continuous transi-
tion point g = 1. The minimum �m(L) behaves exponentially
with increasing L:

�m(L) ∼ e−b(g)L, (8)

where b(g) decreases with approaching g = 1 [51].
The lowest levels around h = htr(L) display an avoided-

level crossing phenomenon, interpolating the ground states
for h < htr(L) and h > htr(L). The first one is a negatively
magnetized state, while the second one is characterized by a
positive local magnetization in the central part of the chain
and by two negatively magnetized regions at the boundaries.
Note, finally, that in the EFBC case there is an infinite number
of states that become degenerate with the ground state for
L → ∞. Indeed, we have [11]

�(n)[L, htr(L)] ≡ En − E0 = O(L−1) for n � 2, (9)

corresponding to the spectrum of kink-antikink states in the
presence of an external O(L−1) magnetic field. This is at
variance with the PBC and OBC case, where �(n)(L, 0) is
finite for L → ∞ for any n � 2. Although �(n)[L, htr(L)]
vanishes for any n in the infinite-volume limit, it is important

to stress that the rate is different for n = 1 (exponential in L)
and for n � 2 (1/L).

Around htr(L), FSS holds. The corresponding scaling vari-
able is the ratio between the energy variation associated
with the longitudinal field around h = htr(L) and the gap
�m(L) [11], that is

κe = 2m0[h − htr(L)]L

�m(L)
. (10)

In the FSS limit at fixed κe, the energy gap �(L, h), the
average and local central magnetization defined in Eq. (5),
with mx = 〈0h|σ (3)

x |0h〉 (|0h〉 is the ground state at the given
h and L), behave as [11]

�(L, h) ≈ �m(L)DE (κe), (11a)

Mc(L, h) ≈ McE (κe), (11b)

M(L, h) ≈ ME (κe). (11c)

Since the higher excited states decouple from the two
lowest levels, �(n)(L, h)/�(L, h) ∼ eb(g)L/L for any n � 2,
one can compute the scaling functions by considering only the
two lowest levels. A straightforward calculation gives [11]

DE (ke) = D2l (κe/c), D2l (x) =
√

1 + x2, (12a)

McE (ke) = M2l (κe/c), M2l (x) = x√
1 + x2

, (12b)

where c is an appropriate g-dependent normalization constant.
The asymptotic FSS is approached with exponentially sup-
pressed corrections. It is also possible to compute the scaling
function for the average magnetization, but in this case one
has to take into account the inhomogeneous behavior at the
boundaries [11].

We finally mention that another peculiar scaling behav-
ior emerges for h > htr(L), where the low-energy states are
characterized by kink-antikink structures. It is related to the
behavior of the domain walls between the spatially sepa-
rated negatively and positively magnetized regions. Indeed,
for h > htr(L) the central part of the chain is positively
magnetized, while close to the boundaries, the local mag-
netization is negative. As argued in Ref. [11], the size �−
of the negatively magnetized region behaves as h−1/2 in the
large-L limit. Then, the average magnetization is simply M ≈
(1 − 2�−/L) − 2�−/L = 1 − 4�−/L. Since �2

−/L2 ∼ 1/hL2,
we predict M(L, h) ≈ fm(u), with u = hL2. This scaling be-
havior holds only for h > htr(L), i.e., for u > umin = htr(L)L2.
Since htr(L) L2 → ∞ when L → ∞, the range of validity of
this scaling behavior shrinks as L increases.

B. Quantum Ising chain with OFBC

OFBC give rise to a spatially dependent local magnetiza-
tion, whose average M vanishes for h = 0 by symmetry. For
h = 0 the gap �(L) behaves as [10,34]

�(L) = 3gπ2

(1 − g)L2
− 6g2π2

(1 − g)2L3
+ O(L−4). (13)

Note that the L−2 behavior of the gap differs from the behavior
in the presence of PBC and OBC, where the gap decreases
exponentially, �(L) ∼ gL. This is related to the fact that
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the low-energy states are one-kink states (for g → 0 they
are combination of states in which there is a single pair of
antiparallel spins), which behave as one-particle states with
O(L−1) momenta.

Low-energy properties show FSS, the relevant scaling vari-
able κo being the ratio between the energy associated with
magnetic perturbation, Eh(L) ≈ 2m0Lh, and the gap �(L) at
h = 0 [10],

κo = 2m0Lh

�(L)
∼ hL3. (14)

The FSS limit corresponds to L → ∞ and h → 0, keeping κo

fixed. In this limit, the energy gap and the rescaled magneti-
zation associated with the ground state behave as

�(L, h) ≈ �(L)DO(κo), (15a)

M(L, h) ≈ MO(κo), (15b)

where DO and MO are universal functions independent of g.
The above equilibrium FSS predictions have been numerically
confirmed in Ref. [10]. Corrections to the asymptotic FSS
behavior scale as 1/L.

IV. DYNAMIC SCALING WITH EFBC

As shown in Ref. [11], systems with neutral boundary con-
ditions, such as PBC and OBC, develop a dynamic scaling be-
havior at a FOQT when an instantaneous quench is performed.
The corresponding scaling variables are the equilibrium vari-
able κ = 2m0hL/�(L) and θ = t �(L), where t is the time.
We expect a similar scaling behavior in the case of EFBC,
provided one takes into account that in a finite-size system
the transition effectively occurs at h ≈ htr(L); see Eq. (7).
In the following we will discuss and verify the dynamic
scaling theory when an instantaneous quench is performed.
We will then extend these results to the case in which the
longitudinal field is slowly varied across the transition.

A. Instantaneous quenches of h

We consider an instantaneous quench at t = 0, from a
longitudinal field hi to a new field h. For EFBC, the effective
transition occurs at htr(L), so that we choose hi > htr(L)
and h < htr(L), to observe the dynamic behavior across the
transition. As discussed in Ref. [11], the dynamic scaling
depends on the equilibrium FSS variable computed at the
initial and final value of the applied external field. For EFBC,
we therefore consider κe and κei, corresponding to the final
and initial longitudinal fields h and hi, respectively. As for
the scaling variable associated with the time t , we take into
account that the relevant energy scale is the gap �m(L) at the
pseudotransition point htr(L), so that we consider

θe = t �m(L). (16)

In the FSS limit L → ∞, hi, h → 0, t → ∞, keeping κei, κe,
and θe fixed, the local central magnetization, defined in
Eq. (5), has the asymptotic behavior

Mc(L, hi, h, t ) ≈ QcE (κei, κe, θe). (17)

The average magnetization M should behave analogously.

As in the case of neutral boundary conditions, since the
higher excited states decouple from the two lowest-energy
levels, the dynamic scaling functions can be computed using
a two-level truncation of the spectrum [10,11,22]. One only
considers the two-dimensional reduced Hilbert subspace gen-
erated by |−〉 and |+〉, which are the ground states for h <

htr(L) and h > htr(L), respectively. The effective evolution in
this subspace is determined by the Schrödinger equation

i ∂t |ψr (t )〉 = Hr (t ) |ψr (t )〉, (18)

where the effective Hamiltonian Hr (t ) reads [10,21]

Hr = m0hL σ (3) + 1
2�mσ (1). (19)

Assuming the validity of the two-level approximation, the
scaling function QcE can be obtained by computing the ex-
pectation value 〈ψr (t )|σ (3)|ψr (t )〉, where |ψr (t )〉 is the state
obtained starting from the ground state of the two-level effec-
tive Hamiltonian with field hi. A straightforward calculation
gives

QcE ,r (κei, κe, θe) = cos(α − αi ) cos α

+ cos
(
θe

√
1 + κ2

e

)
sin(α − αi ) sin α,

(20)

where tan α = κ−1
e and tan αi = κ−1

ei . One can thus predict the
scaling function appearing in Eq. (17),

QcE (κei, κe, θe) = QcE ,r (κei/c1, κe/c2, θe/c3), (21)

where c1, c2, and c3 are three nonuniversal model-dependent
constants.

To verify the scaling prediction Eq. (17), we have per-
formed numerical calculations based on exact-diagonalization
approaches. Namely, the initial ground state has been obtained
through Lanczos diagonalization, while for the time evolu-
tion we integrated the time-dependent Schrödinger equation
through a fourth-order Runge-Kutta method, with a time step
dt = 10−3 sufficiently small to ensure convergence for all our
purposes.

Figure 1 reports numerical results for g = 0.5, κei = 1,
and κe = −1. Note that it is first required to determine htr(L)
and the corresponding gap �m(L), which enter the definition
of the above rescaled quantities [51]. In the upper panel we
plot the normalized central magnetization Eq. (5) as a function
of the rescaled time Eq. (16) for several values of L. The data
for L = 14 and L = 12 fall on top of each other, confirming
the validity of the scaling Ansatz. As is clearly visible, the
curves display Rabi oscillations, which naturally emerge from
the dynamics of a two-level system [21]. The continuous black
line on top of the colored ones is a fit (c2 and c3 are the
fit parameters, while c1 is obtained by matching the value
of the magnetization for t = 0) of the numerical data at the
largest available size (L = 14) to the two-level prediction
Eq. (21). The agreement with the numerical data is excellent,
confirming the two-level description of the dynamics.

The lower panel focuses on the finite-size approach to the
asymptotic behavior, which is consistent with an exponential
behavior of the type Mc(L) ∼ a + b e−cL, both for the pre-
quench equilibrium state (θe = 0) and also along the post-
quench dynamics (θe > 0). We limited our analysis to L = 12,
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FIG. 1. Upper panel: normalized local magnetization Mc as a
function of the rescaled time variable θe, after a sudden quench of
the longitudinal field. We consider EFBC and fix g = 0.5, κei =
+1, κe = −1. Different colored data sets correspond to different
chain lengths L. The continuous black line represents a fit of the
numerical data for L = 14 (not shown in the figure, as they are barely
distinguishable from those at L = 12) to Eq. (21). Lower panel:
Difference between the numerically computed Mc and the asymptotic
value, as a function of L. The dashed lines correspond to fits to
Mc(L) ∼ a + b e−cL . Black circles stand for the static case θe = 0,
red squares are for θe = 3.

because it was impossible to reach a degree of accuracy in the
temporal evolution sufficient to observe a clear exponential
decay at larger L.

We simulated the post-quench dynamics of the quantum
Ising chain with EFBC for several other values of the trans-
verse field g and rescaled fields κei, κe, always obtaining a neat
consistency with the effective two-level prediction presented
above. In the remainder of our work, we will thus assume its
validity for any type of dynamic behavior in the appropriate
FSS limit.

B. Slow variations of h

We now discuss a second protocol, in which h varies
slowly across the FOQT, generalizing the theory discussed in
Ref. [22]. We assume that h varies as h(t ) = −t/ts, and that
the dynamics starts from the ground state at a finite hi > htr(L)
and ends at h f < htr(L). It is convenient to introduce a new
time variable,

t̂ ≡ t + tshtr(L), (22)

such that t̂ = 0 corresponds to the pseudotransition point. The
natural scaling variables are the equilibrium scaling variable
κe defined in Eq. (10), with h replaced by h(t ), that is

ωe = − 2m0L

�m(L)

t̂

ts
, (23)

and

θ̂e ≡ t̂ �m(L). (24)

It is also convenient to define a related scaling variable

υe = −θ̂e/ωe = ts �m(L)2

2m0L
, (25)

which is independent of t . The dynamic scaling limit is ob-
tained by taking t̂, ts, L → ∞, keeping the scaling variables
υe and ωe or θ̂e fixed. In this limit, the local central magneti-
zation is expected to obey the asymptotic FSS behavior,

Mc(L, ts, t ) ≈ ScE (υe, ωe) = ŜcE (υe, θ̂e). (26)

An analogous relation holds for the average magnetization M.
In the adiabatic limit (t, ts → ∞ at fixed size), the equilibrium
FSS must be recovered, so that

ScE (υe → ∞, ωe) = McE (ωe), (27)

with McE given by Eq. (12b).
In the FSS limit we can perform a two-level truncation

of the spectrum to compute the scaling functions (as before,
the two levels are indicated as |−〉 and |+〉). Starting from
Eq. (19), we obtain the effective time-dependent Hamiltonian,

Hr (t ) = −m0t̂L

ts
σ (3) + 1

2
�mσ (1). (28)

It is immediate to recognize that this Hamiltonian is analogous
to the one that appears in the Landau-Zener problem [52]. If
ψr (t ) is the solution of Schrödinger equation with the initial
condition ψr (ti ) = |+〉 (|+〉 is the positive eigenvalue of σ (3)),
using the results of Ref. [53] for the Landau-Zener problem,
then we obtain

|ψr (t )〉 = C−(υe, ωe)|−〉 + C+(υe, ωe)|+〉, (29)

where C± are known functions of the scaling variables υe and
ωe. The dynamic scaling of the local central magnetization
can be computed by taking the ground-state expectation value
of σ (3). This allows us to compute the dynamic FSS function
ScE defined in Eq. (26) apart from a rescaling of the scaling
variables. For the two-level system we obtain

ScE ,r (υe, ωe) = 〈ψr (t )|σ (3)|ψr (t )〉
= |C+(υe, ωe)|2 − |C−(υe, ωe)|2

= 1 − 1
4υee− πυe

16
∣∣D−1+i υe

8
(ei 3π

4

√
2υeωe)

∣∣2
,

(30)

where Dν (z) is the parabolic cylinder function [54]. The scal-
ing function ScE can be related to ScE ,r by simply rescaling
the arguments by constant nonuniversal factors, as already
discussed for QcE ; see Eq. (21).

V. DYNAMIC SCALING WITH OFBC

In this section we focus on the dynamic behavior of the
quantum Ising chains with OFBC. As we shall observe, the
dynamic features of the out-of-equilibrium behavior close to
the FOQT are characterized by timescales that increase as
powers of the size, at variance with neutral boundary condi-
tions and EFBC, where the timescale increases exponentially
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with L. In this case, it is not possible to exploit a two-level
truncation of the spectrum to determine the asymptotic FSS
behavior.

Analogously as we did to test the dynamic scaling pre-
diction with EFBC, also for the case with OFBC we present
numerical calculations obtained through Lanczos diagonaliza-
tion followed by a fourth-order Runge-Kutta integration of the
Schrödinger equation, with a time step dt = 10−3. We have
simulated systems with up to L = 24 sites.

A. Instantaneous quenches of h

We first consider the dynamic behavior arising from an
instantaneous quench of the external longitudinal field from
hi to h. Dynamic scaling depends on the equilibrium scaling
variable κo defined in Eq. (14), computed for the initial and
final values of the field. Therefore, we introduce κoi corre-
sponding to the initial field hi and κo which corresponds to the
post-quench field h. Moreover, we introduce a scaling variable
associated with the time t ,

θo = t �(L), (31)

where �(L) is the gap at h = 0. Note that �(L) scales as a
power of L, see Eq. (13), so that θo ∼ tL−2. We can then define
a dynamic FSS limit L → ∞, hi, h → 0, t → ∞, keeping κoi,
κo, and θo fixed. In this limit we expect

M(L, hi, h, t ) ≈ QO(κoi, κo, θo), (32)

and an analogous relation for the local central magnetiza-
tion. Scaling corrections are expected to behave as 1/L. The
scaling function defined in Eq. (32) should be universal,
apart from possible multiplicative normalization of the scaling
variables. In particular, the same behavior, but with different
normalization constants, is expected for different values of the
Hamiltonian parameter g.

The dynamic FSS behavior, Eq. (32), is supported by the
results of our numerical simulations. In Fig. 2, we show the
average magnetization as a function of θo, for fixed values
of κoi and κo: in the upper panel we fix hi and h at opposite
sides of the transition point h = 0, while in the lower panel
hi and h have the same sign so that the system is not going
across the FOQT. In both cases, as L increases, the data nicely
approach an asymptotic function. They show oscillations in
time, which, however, are not sinusoidal as observed with
EFBC (see Fig. 1). This is related to the fact that the dynamics
for OFBC cannot be schematized in terms of a two-level
dynamics, due to the presence of a tower of excited states,
such that their energy differences �(n) = En − E0 decrease
with the same power of L for any n � 1.

As expected, the convergence to the scaling behavior is
characterized by 1/L corrections. This has been explicitly
verified in our numerics: the magnetization data at fixed θo,
plotted in Fig. 3, scale linearly as a function of L−1 as
soon as L � 10. We have reported only the results for κoi =
+1, κo = −1, but qualitatively analogous results have been
obtained for other values of θo and also for different κoi and
κo. It is interesting to note that the extrapolated asymptotic
value for L → ∞ for fixed scaling variables does not depend
on the specific choice of g, within the numerical accuracy.
Apparently, the g-dependencies of m0 and of the amplitude of
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0 2 4 6 8 10θo
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M

κoi = 8,   κo = 0.2
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FIG. 2. Average magnetization M for the quantum Ising chain
with OFBC, after a sudden quench of the longitudinal field close
to the FOQT, as a function of the rescaled time variable θo. We fix
g = 0.5 and the rescaled variables κoi and κ0 (in the upper panel κoi =
−κo = 1, while in the lower panel κoi = 8, κo = 0.2). Different data
sets are for various chain lengths L, as indicated in the legend.

the gap �(L), entering the definitions of the scaling variables,
provide the correct normalizations, without the need of further
g-dependent rescalings. Note also that, although for OFBC the
corrections to the asymptotic FSS behavior decay only as a
power of L, systems of length L � 24 were sufficient to ob-
serve the convergence to the asymptotic behavior. Analogous
behaviors are observed for the central magnetization Mc (not
shown).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
1/L
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-0.3

M
 (

θ o
=
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FIG. 3. Average magnetization as a function of 1/L for θo = 3,
κoi = +1, and κo = −1 (dashed vertical line in the upper panel of
Fig. 2). Different symbols denote the numerical results for three
values of the transverse field g (see legend). They confirm that
scaling corrections are O(L−1), as shown by the dashed lines, which
are 1/L fits of four data corresponding to the largest available
sizes (L = 18, 20, 22, and 24) to M ∼ M∞ + a/L. The asymptotic
values M∞ appear to be approximately independent of g within our
numerical precision: M∞ ≈ 0.321, 0.323, 0.330, for g = 0.3, 0.5,
0.7, respectively.
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B. Slow variations of h

We finally discuss and analyze the protocol, in which the
longitudinal field varies as in Eq. (3). We start from the ground
state at a finite hi > 0 and stop at h f < 0, thus crossing the
FOQT located at h = 0. As we already discussed in Sec. IV B,
the scaling variables are θo and

ωo = −2m0L

�(L)

t

ts
, (33)

obtained by replacing h with h(t ) in the definition of the
equilibrium scaling variable κo, defined in Eq. (14). It is also
convenient to define the time-independent scaling variable,

υo ≡ |θo/ωo| = �(L)2ts
2m0L

, (34)

and the (asymptotically) size-independent scaling variable,

τo ≡ sign(t ) |ωo|2/5 |θo|3/5. (35)

The dynamic FSS limit is obtained by taking L → ∞, ts →
∞, and t → ∞, at υo and θo (or any other pair of scaling
variables) fixed. In this limit, since �(L) ∼ L−2, see Eq. (16),
the scaling variables scale as

ωo ∼ −(t/ts)L3, υo ∼ tsL
−5, τo ∼ t/t2/5

s . (36)

Note that these scaling variables can also be derived using the
fact that the relevant low-energy configurations are made of
kinks and antikinks. A kink in the presence of an external
magnetic field can be effectively described by a particle
subject to a linear potential. Indeed, if the kink is located
at a distance x from the center of the chain, the magnetic
field h induces a linear potential Hh = −2hx. Correspond-
ingly, the energy spacing of the low-energy levels is δEn =
O(h2/3) [11,55–57]. Therefore, we can consider the scaling
variables

|h(t )|2/3

�(L)
∼ ω3/2

o , t |h(t )|2/3 ∼ τ 3/5
o . (37)

In the dynamic finite-size scaling limit, keeping the starting
longitudinal field hi fixed (it is not rescaled with L), we expect
the average magnetization to behave as

M(L, hi, ts, t ) ≈ SO(υo, θo). (38)

The scaling function does not depend on hi. This is due to the
fact that, for finite h > 0, the gap is finite in the limit L → ∞.
Therefore, for ts → ∞, the dynamics is always adiabatic and
the system goes through the instantaneous ground states as
long as h > 0. An out-of-equilibrium behavior develops only
in an interval around h = 0 that shrinks as L−3, or equivalently
t−3/5
s , since ωo ∼ h(t )L3 or τo ∼ h(t )t3/5

s are kept fixed in
the dynamic FSS limit, see Eq. (36). The dynamic scaling
behavior around h = 0 is thus not expected to depend on
the choice of the initial hi > 0. For the same reason also the
final value h f is irrelevant for the scaling behavior. It is easy
to realize that the scaling behavior Eq. (38) also holds for
generic time-dependent h(t ). Indeed, if h(t ) = at + O(t2), the
same scaling behavior is obtained provided we identify |a|
with 1/ts. The higher-order terms give only rise to scaling
corrections. If the linear term is missing (a = 0), then the
appropriate dynamic FSS variables can be straightforwardly

-1

-0.5

0

0.5

1

M L = 8
L = 12
L = 16
L = 20

-12 -8 -4 0 4 8 12
θo

-1

-0.5

0

0.5

1

M

υo = 0.2

υo = 1

FIG. 4. Average magnetization with OFBC as a function of the
rescaled time variable θo for different values of L. The longitudinal
field varies according to Eq. (3) and hi = 1. This starting value has
been chosen sufficiently far from the transition point, so as to ensure
that all the reported curves are unaffected by the choice, on the scale
we are interested in. All data sets have been obtained for g = 0.7. In
the upper panel υ0 = 0.2, in the lower panel υ0 = 1.

obtained by simply considering the leading nonvanishing term
in the expansion of h(t ).

The equilibrium FSS must be recovered in the adiabatic
limit t, ts → ∞ at fixed L and t/ts, thus for υo → ∞ keeping
ωo fixed. Therefore, we should have

SO(υo → ∞, ωo) = MO(ωo), (39)

where MO enters the equilibrium FSS relation Eq. (15b).
Numerical results for the average magnetization M as a

function of the rescaled time θo are reported in Fig. 4, for two
different values of the scaling variable υo. We started from
the initial field hi = 1, sufficiently far from the FOQT point
(θ0 = h = 0). Unfortunately, we were not able to consider
sizes larger than L = 20, due to the fast increase of the
timescale ts with the size, ts ∼ L5; see Eq. (36). Nevertheless,
the data support the FSS behavior predicted in Eq. (38) since,
for increasing system size L, the different curves approach
an asymptotic function. Note the appearance of wiggles for
θo > 0, especially in the upper panel (υo = 0.2), due to the
loss of adiabaticity occurring in proximity to the FOQT.
Such wiggles are suppressed when υo is increased (bottom
panel), i.e., moving towards the adiabatic limit, for which the
magnetization becomes an odd function of the rescaled time,
M(θo) = −M(−θo). Here we have shown results for a specific
choice for the transverse field g, but analogous results were
obtained for other values of g < 1, supporting the expected
universality with respect to variations of g.
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VI. CONCLUSIONS

We have addressed the dynamic behavior of many-body
systems at FOQTs, when a Hamiltonian parameter is driven
across its FOQT value. Emphasis has been put on systems
subject to boundary conditions that favor one of the two
phases separated by the FOQT, extending earlier analyses
for systems with neutral boundary conditions [21], such as
periodic boundary conditions.

We have focused on the paradigmatic quantum Ising chain,
whose phase diagram presents a FOQT line, where the tran-
sitions are driven by the external longitudinal field h. We
have studied the out-of-equilibrium dynamic behavior when
h is varied across the FOQT for systems with fixed boundary
conditions favoring one of the magnetized phases. We have
considered equal fixed boundary conditions (EFBC), that both
favor the same phase, and opposite fixed boundary conditions
(OFBC), that favor different magnetized phases close to the
endpoints of the chain. Our results extend previous studies of
the equilibrium properties at FOQT for different the boundary
conditions, see, e.g., Refs. [10,11,17,18,35], to the out-of-
equilibrium case. It emerges that EFBC and OFBC lead to
remarkable, even qualitatively, differences with respect to the
generally considered case of neutral boundary conditions.

We address two different dynamics: an instantaneous
quench of the longitudinal field and a protocol in which h
varies slowly across the FOQT. As it occurs for neutral bound-
ary conditions [21], a dynamic finite-size scaling develops
also for both EFBC and OFBC. One of the relevant scaling
variables is the ratio κ , that controls the equilibrium finite-size
scaling. It is defined as the energy contribution due to h
(normalized so that it vanishes at the transition point) and the
gap at the transition, see Eqs. (10) and (14) for EFBC and
OFBC, respectively. Note that, in the EFBC case, for finite
values of L, one should consider the pseudotransition point
htr(L) ∼ L−1, where the gap is minimal. We also introduce
a second scaling variable related to the time. As we are
considering a unitary dynamics, it is natural to choose θ =
t �; see Eqs. (16) and (31) for the two boundary conditions,

respectively. The emerging dynamic FSS is characterized
by very different timescales. The timescale of the dynamic
behavior across the FOQT increases exponentially with the
size L for EFBC, while it increases as a power of the size for
OFBC. This is essentially related to the fact that the minimum
gap decreases exponentially with L in the case of EFBC and
as a power, � ∼ L−2, for OFBC.

We believe that the general dynamic scenario emerging
in the quantum Ising chain along its FOQT line and, in
particular, the dependence on the boundary conditions, is quite
general. The general ideas should apply to other systems,
also in higher dimensions. For example, higher-dimensional
quantum Ising models present similar phase diagrams, with a
FOQT line where transitions are driven by the longitudinal
field h, ending at a continuous quantum transition. They
are expected to display similar behaviors along the FOQT
line, when subject to neutral boundary conditions, or fixed
boundary conditions favoring one of the two magnetized
phase. In a sense, the dramatic sensitivity of the equilibrium
and dynamic properties on the boundary conditions should
be considered as a broad feature of FOQTs, distinguishing
them from their continuous counterparts. Indeed, the large
spectrum of behaviors present at FOQTs, with timescales that
increase either exponentially or as a power of the size, is not
observed at continuous transitions, where only power laws are
typically observed. The strong dependence of the dynamics
on the boundary conditions has been also reported at classical
first-order transitions—see, e.g., Refs. [23–33].

Finally, we mention that the dynamic scaling behaviors
discussed here may be observed in relatively small systems.
Therefore, given the need for high accuracy without nec-
essarily reaching scalability to large sizes, we believe that
the available technology for probing the coherent quantum
dynamics of interacting systems, such as with ultracold atoms
in optical lattices [58,59], trapped ions [60–67], as well as
Rydberg atoms in arrays of optical microtraps [68,69], could
offer possible playgrounds where the behaviors we envisioned
at FOQTs can be observed.
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