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Low-temperature-differential (LTD) Stirling heat engines are able to operate with a small temperature
difference between low-temperature heat reservoirs that exist in our daily lives, and thus they are considered to
be an important sustainable energy technology. The author recently proposed a nonlinear dynamics model of an
LTD kinematic Stirling heat engine to study the rotational mechanism of the engine [Y. Izumida, Europhys. Lett.
121, 50004 (2018)]. This paper presents our study of the nonequilibrium thermodynamics analysis of this engine
model, where a load torque against which the engine does work is introduced. We demonstrate that the engine’s
rotational state is in a quasilinear response regime where the thermodynamic fluxes show a linear dependence
on the thermodynamic forces. Significantly, it is found that the response coefficients of the quasilinear relations
are symmetric, which is similar to Onsager symmetry in linear irreversible thermodynamics. Based on these
relations, we formulate the maximum efficiency of the engine. We also elucidate that the symmetry of the
quasilinear response coefficients emerges by reflecting the (anti-)reciprocity of the Onsager kinetic coefficients
identified for the relaxation dynamics of the engine in the vicinity of an equilibrium state. We expect that the
present study will pave the way for developing nonequilibrium thermodynamics of autonomous heat engines
described as a nonlinear dynamical system.

DOI: 10.1103/PhysRevE.102.012142

I. INTRODUCTION

The development of heat engines that operate with small
temperature differences and at low friction is an important
task in heat engine technology. This task has been undertaken
by low-temperature-differential (LTD) Stirling heat engines
[1–3]. These heat engines were invented by Kolin in the
1980s and subsequently developed primarily by Kolin and
Senft [3]. An LTD Stirling heat engine can operate with a
small temperature difference between low-temperature heat
reservoirs that are available in everyday life, e.g., between the
warmth of one’s hand and the coldness of the air temperature.
Thus, it is considered to be an important sustainable energy
technology.

Appropriate mathematical modeling plays an important
role in describing and understanding the dynamics of LTD
Stirling engines [4,5]. The author recently proposed a non-
linear dynamics model of an LTD kinematic Stirling en-
gine to elucidate the rotational mechanism of the engine
[6]. In this model, the engine was described as a driven
nonlinear pendulum powered by the temperature difference,
which obeys simple dynamical equations with only a few
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dynamical degrees of freedom. The rotational motion of the
engine was described as a stable limit cycle of the dynamical
equations sustained by the temperature difference. Moreover,
it was shown that the limit cycle disappears via a homoclinic
bifurcation [7], with the temperature difference being the
bifurcation parameter. The model was recently used to explain
the experimental results on an LTD kinematic Stirling engine
[8]. It was demonstrated that the core dynamics of the engine
are captured by the simple dynamical equations with some
modifications that are associated with a few fitting parameters.

The thermodynamic performance analysis of the LTD Stir-
ling heat engines is also an important subject. Although the
study in [6] elucidated the rotational mechanism of the engine
based on nonlinear dynamics, the thermodynamic perfor-
mance of the LTD Stirling engine, such as its thermodynamic
efficiency, has not yet been formulated. In particular, apart
from the present performance of the LTD Stirling engine,
it is of interest to formulate its maximum thermodynamic
efficiency based on the minimal model.

For small temperature differences, the thermodynamic the-
ories for linear irreversible heat engine have been proposed
[9–17], which constitute a branch of finite-time thermody-
namics [18–20]. These theories are, however, based on On-
sager relations in linear irreversible thermodynamics [21,22],
where the linear relations between thermodynamic fluxes and
forces can be understood as a perturbation expansion from an
equilibrium state. It is not obvious whether such a framework
can be applied to the LTD Stirling engine, the rotational
motion of which occurs via a nonlinear bifurcation mech-
anism. Consequently, we need to develop a nonequilibrium
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thermodynamic theory of the LTD Stirling engine described
as a nonlinear dynamical system.

In this paper, we develop the nonequilibrium thermody-
namics of the LTD kinematic Stirling engine model that was
previously introduced [6]. In particular, our goal is to find rele-
vant thermodynamic relations that describe the rotational state
of this thermodynamic nonlinear pendulum model, which may
be compared to Onsager relations used in describing linear
irreversible heat engines. We formulate the thermodynamic
efficiency of the LTD kinematic Stirling engine model based
on these relations.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the LTD kinematic Stirling engine
model [6]. In Secs. III and IV, we investigate stationary and
rotational states of the engine, respectively, based on the
dynamical equations. The formal analytical expressions of
the thermodynamic fluxes (angular velocity and heat flux) are
derived for the rotational state. In particular, the quasilinear
response regime is identified for the rotational state where
the thermodynamic fluxes and forces show linear dependency
(quasilinear relations), though this regime is not connected to
an equilibrium state. In Sec. V, we formulate the thermody-
namic efficiency of the engine using the quasilinear relations
for which the coefficients turn out to be symmetric. In Sec. VI,
we elucidate the origin of the symmetric coefficients in terms
of (anti-)reciprocity of the Onsager kinetic coefficients inher-
ited in the relaxation dynamics of the engine. We summarize
the study in Sec. VII.

II. MODEL

A. Setup

We use the same model as in our previous study [6], but
with a slight extension to add a load torque, which enables the
thermodynamic efficiency to be studied. Because the model
was previously explained in detail [6], we introduce it here in
a simplified but self-contained manner.

The LTD kinematic Stirling engine, regarded as a γ -type
Stirling engine [3], utilizes two connected cylinders (one
large and one small) with two movable pistons of different
types in these cylinders [Fig. 1(a)]. The working substance
of the engine is a gas that is confined to the cylinders. Heat
reservoirs at temperatures Tb and Tt , such as a warm palm
and the cold air surrounding it, are attached to the bottom
and top surfaces of the large cylinder, respectively, where
we define the temperature difference �T ≡ Tb − Tt and av-
eraged temperature Teq ≡ Tb+Tt

2 for later use. The piston that
reciprocates in the large cylinder is a displacer. The motion
of the displacer serves to transfer the gas into one side of
the cylinders through a small gap between the displacer and
the wall of the large cylinder, such that the gas comes into
contact with the top and bottom heat reservoirs alternately. In
contrast, the small cylinder is fitted with a power piston at the
top, and its reciprocating motion constitutes a motive part of
the engine. Each piston is connected to a crank with a radius
r through a connecting rod, and the reciprocating motion of
the power piston is converted into rotational motion via the
crank (piston-crank mechanism). The phase angle of the crank
connected to the power piston is θ (mod 2π ), whereas that of
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FIG. 1. (a) Schematic of the LTD kinematic Stirling engine.
The reciprocating motion of the power piston is converted into the
rotational motion of the crank via a piston-crank mechanism. The
displacer that advances π

2 in phase serves to transfer the gas into
one side of the cylinder and makes the gas in contact with the
bottom and top heat reservoirs. The motive force of the rotation
is the temperature difference between the bottom and the top heat
reservoirs with temperature Tb and Tt , respectively. (b) Schematic
of the LTD kinematic Stirling engine steadily rotating clockwise
for �T > 0. (c) Pressure-volume diagram of an ideal Stirling cycle
(solid outer cycle) consisting of the four thermodynamic processes
(see the text) and the kinematic Stirling engine (dotted inner cycle).

the crank connected to the displacer is fixed as θ + π
2 so that

it advances in π
2 . The phase angle θ increases as it rotates

clockwise and θ = 0 at the lowest height of the power piston
[Fig. 1(b)]. The cranks are attached to a flywheel with a large
moment of inertia I to smoothen the rotation; the engine can
continue to maintain rotation by overcoming θ = 0, known
as top dead center (TDC), and θ = π , known as bottom dead
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center (BDC), at which the reciprocating motion of the piston
is not transmitted to the crank.

The phase angle θ is one of the dynamical variables that
expresses the mechanical degree of freedom of this engine
model. The other dynamical variable, as a thermodynamic
degree of freedom, is the temperature T of the gas. We
assume an ideal gas with f internal degrees of freedom as the
working substance, for which the equation of state pV = nRT
holds. Here, p and V are the pressure and volume of the gas,
respectively, and n and R are the amount of substance and
gas constant, respectively. The volume V is calculated as the
sum of the volume of the large cylinder excluding the volume
of the displacer (the swept volume of the displacer during
half-stroke), Vd, and that of the small cylinder, Vp(θ ):

V (θ ) = Vd + Vp(θ ) = 2rσd + s(θ )σp, (1)

where σd and σp are the surface areas of the large and small
cylinders, respectively, and

s(θ ) ≡ r(1 − cos θ ) (2)

is the height of the power piston measured from the lowest
position corresponding to θ = 0.

An ideal Stirling engine cycle repeats an (I) isochoric heat-
ing process, (II) isothermal expansion process, (III) isochoric
cooling process, and (IV) isothermal compression process
[1,2], whose pressure-volume diagram is shown in Fig. 1(c).
Conversely, the pressure-volume diagram of an LTD Stirling
engine is presented as a circular shape as shown in Fig. 1(c),
which is observed in the experiments on LTD kinematic
Stirling engines [8,23]. While the above thermodynamic pro-
cesses of the ideal cycle become vaguer and may not be fully
discriminated from each other for an LTD Stirling engine,
they can operate autonomously without being controlled by
external agents. Therefore, in Sec. II B, we introduce the
dynamical equations of our engine model [6].

B. Dynamical equations

The set of equations that describe our LTD kinematic
Stirling engine constitute the equation of motion of the power
piston, equation of motion of the crank, and time-evolution
equation of the gas temperature given as the energy conserva-
tion law (the first law of thermodynamics):

mp
d2s

dt2
= σp

(
nRT

V (θ )
− pair − Fint

σp

)
− �p

ds

dt
, (3)

I
d2θ

dt2
= rFint sin θ − �

dθ

dt
− Tload, (4)

f

2
nR

dT

dt
=

∑
m=b,t

JQm −
(

pair + Fint

σp

)
dV

dt
. (5)

Here, mp and �p in Eq. (3) are the mass of the power piston
and friction coefficient associated with the power piston,
respectively. Further, Fint in Eqs. (3)–(5) is the action-reaction
force between the power piston and the crank [5,24]. � and
Tload in Eq. (4) are the friction coefficient associated with the
crank and load torque acting on the crank, respectively. pair

in Eqs. (3) and (5) is the atmospheric pressure acting on the
power piston. The rate of internal energy change of the gas
on the left-hand side of Eq. (5) is equated to the heat fluxes

and work flux on the right-hand side. The heat fluxes from the
bottom and top surfaces of the large cylinder obey the Fourier
law [Fig. 1(a)]:

JQm = Gm(θ )(Tm − T ). (6)

Gm(θ ) (m = b, t) is defined as [6]

Gm(θ ) ≡ Gχm(θ ), (7)

where G is the thermal conductance associated with the heat
transfer between the gas and the surface of the large cylinder,
and χm(θ ) (0 � χm(θ ) � 1), defined as

χb(θ ) ≡ 1 + sin θ

2
, χt (θ ) ≡ 1 − χb(θ ) = 1 − sin θ

2
, (8)

is a function that controls the coupling between the gas and
the bottom or top heat reservoir depending on the phase angle
[6]. The role of the displacer transferring the gas into one side
of the cylinders is represented by the function Eq. (8). Then
we can revise ∑

m=b,t

JQm = G(Teff (θ ) − T ), (9)

where Teff (θ ) is the effective temperature that periodically
changes, depending on the phase angle θ , as

Teff (θ ) ≡ Tt + χb(θ )�T = Tt + 1 + sin θ

2
�T (10)

= Teq + sin θ

2
�T . (11)

We can thus consider the gas as though it were in contact
with a single heat reservoir, the temperature of which dynam-
ically oscillates in a sinusoidal manner between Tb at θ = π

2
[χb( π

2 ) = 1 and χt ( π
2 ) = 0] and Tt at θ = 3π

2 [χb( 3π
2 ) = 0 and

χt ( 3π
2 ) = 1], which loosely approximates the ideal Stirling

thermodynamic cycle [6].
We assume that the mass of the power piston and friction

coefficient in Eq. (3) are negligible, as mp = �p = 0. We then
obtain Fint = σp( nRT

V (θ ) − pair ) from Eq. (3). By inserting this
into Eqs. (4) and (5), and noting Eq. (9), we obtain

I
d2θ

dt2
= rσp

(
nRT

V (θ )
− pair

)
sin θ − �

dθ

dt
− Tload, (12)

f

2
nR

dT

dt
= G(Teff (θ ) − T ) − nRT

V (θ )

dV

dt
. (13)

Subsequently, Eqs. (12) and (13) are expressed in terms of the
three-dimensional dynamical system as

dθ

dt
= ω, (14)

dω

dt
= σp

I

(
nRT

V (θ )
− pair

)
r sin θ − �

I
ω − Tload

I
, (15)

dT

dt
= 2G

f nR
(Teff (θ ) − T ) − 2Trσp sin θ

f V (θ )
ω, (16)

where ω denotes the angular velocity. By assuming a time-
scale separation between the crank and the gas dynamics, we
can make the adiabatic approximation dT

dt = 0 by regarding
T as a fast variable and θ and ω as slow variables [25]. By

012142-3



YUKI IZUMIDA PHYSICAL REVIEW E 102, 012142 (2020)

formally substituting dT
dt = 0 into Eq. (16) and solving it with

respect to T , we have the adiabatic approximation solution

T (θ, ω) = Teff (θ )

1 + nRrσp sin θ

GV (θ ) ω
, (17)

which is determined by the slow variables θ and ω of the
crank (see Appendix A for the detailed derivation). This
approximation indicates that the motion of the piston and
crank is considered as an externally controlled parameter for
the gas, rather than being dynamically determined by the
coupled equations in Eqs. (12) and (13) involving the gas
dynamics. By substituting Eq. (17) into Eq. (15), we adiabat-
ically eliminate T and obtain the following two-dimensional
dynamical system:

dθ

dt
= ω, (18)

dω

dt
= σp

I

(
nRT (θ, ω)

V (θ )
− pair

)
r sin θ − �

I
ω − Tload

I
. (19)

These dynamical equations describe the engine as a nonlinear
pendulum driven by the temperature difference. In particular,
as we see in Sec. IV C, the term that is proportional to
sin2 θ�T constituted with sin θ�T in Teff (θ ) and sin θ for
the rotational torque represents an effective driving force for
the steadily rotating engine, which does not vanish upon
cycle-averaging. Equations (18) and (19) [or Eqs. (14)–(16)
before the adiabatic approximation] are the basic dynamical
equations of our LTD kinematic Stirling engine model. The
stationary and rotational states of the engine are described
as a fixed point and stable limit cycle of Eqs. (18) and (19),
respectively, which coexist depending on the parameters [6].

For numerical calculations, we use nondimensionalized
equations [6]. In the text, we use the two-dimensional dynam-
ical model, Eqs. (18) and (19), whose nondimensionalized
equations become

dθ

dt̃
= ω̃, (20)

dω̃

dt̃
= σ̃

(
T̃ (θ, ω̃)

Ṽ (θ )
− p̃air

)
sin θ − �̃ω̃ − T̃load, (21)

where

T̃ (θ, ω̃) = T̃eff (θ )

1 + σ̃ sin θω̃

G̃Ṽ (θ )

. (22)

Here, the following nondimensionalized quantities are used:

t̃ =
√

nRTeq

I t , ω̃ = ω√
nRTeq

I

, G̃ = G

nR
√

nRTeq
I

, σ̃ = σp

σd
, �̃ = �√

nRTeqI
,

p̃air = σd r pair

nRTeq
, T̃load = Tload

nRTeq
, and �T̃ = �T

Teq
. The quanti-

ties with a tilde denote the nondimensionalized quantities
throughout the paper. T̃eff (θ ) = 1 + sin θ

2 �T̃ and Ṽ (θ ) = 2 +
σ̃ (1 − cos θ ) are the nondimensionalized effective tempera-
ture and volume, respectively. In the text, we use σ̃ = 0.02,
p̃air = 1

Ṽ ( π
4 )

= 1
2+σ̃ (1−cos ( π

4 )) � 0.498 54, G̃ = 1.5, and �̃ =
0.001 and vary �T̃ and T̃load to investigate the engine’s work-
ing regime. Under these parameters, the adiabatic elimination
serves as a good approximation and the friction coefficient
is sufficiently small for the engine to be able to operate in a

low-temperature differential. In Appendix B, we also use the
nondimensionalized Eqs. (14)–(16) for comparing the two-
dimensional and the three-dimensional dynamical models. For
numerical calculations, we use the fourth-order Runge-Kutta
method with time step �t = 0.01.

III. STATIONARY STATES

A. Thermodynamic branches and dead-center branches

We investigate the fixed points (θ∗, ω∗) of Eqs. (18) and
(19) satisfying dθ

dt = dω
dt = 0 as the stationary states of the

engine. For the equilibrium condition �T = 0 and Tload = 0,
(θeq1, 0) = (θeq, 0), and (θeq2, 0) = (2π − θeq, 0) are the fixed
points of Eqs. (18) and (19), where θeq satisfies the pressure
equilibrium condition nRTeq

V (θeq ) − pair = 0 and thus expresses an
equilibrium state. Because of the symmetry V (θeq ) = V (2π −
θeq ), 2π − θeq also satisfies the condition. Depending on the
parameters, these fixed points may not exist. We also have
(0, 0) and (π, 0) as the other fixed points of Eqs. (18) and
(19) for �T = 0 and Tload = 0, which represent the stationary
states at the dead centers and exist for any parameter. Thus,
there is a maximum of four fixed points of Eqs. (18) and (19).

When the nonvanishing �T and Tload are applied, the fixed
points (θeq1, 0) and (θeq2, 0) corresponding to the equilibrium
state change to (θth1, 0) and (θeq2, 0), where θth1 and θth2

constitute thermodynamic branches. The fixed points (0, 0)
and (π, 0) also change to (θTDC, 0) and (θBDC, 0), where θTDC

and θBDC constitute dead-center branches. Here, θth1, θth2,
θTDC, and θBDC are given as the solution θ∗ of the following
equation as the condition of fixed points as

0 = σp

(
nRTeff (θ∗)

V (θ∗)
− pair

)
r sin θ∗ − Tload, (23)

where θ∗|(�T,Tload )=(0,0) = θeq1 and θ∗|(�T,Tload )=(0,0) = θeq2 for
the thermodynamic branches θth1 and θth2, respectively, and
θ∗|(�T,Tload )=(0,0) = 0 and θ∗

(�T,Tload )=(0,0) = π for the dead-
center branches θTDC and θBDC, respectively.

The stability of the fixed points on the thermodynamic
and dead-center branches is investigated by checking the
determinant � and trace T , calculated from the linearized
equations of Eqs. (18) and (19) as [7]

� = −σp

I

nRr cos θ∗ sin θ∗

2V (θ∗)
�T + σ 2

p

I

nRr2Teff (θ∗) sin2 θ∗

V 2(θ∗)

− σp

I

(
nRTeff (θ∗)

V (θ∗)
− pair

)
r cos θ∗, (24)

T = −σ 2
p

I

n2R2r2Teff (θ∗) sin2 θ∗

GV 2(θ∗)
− �

I
, (25)

respectively, where θ∗ is given as the solution of Eq. (23).
Figure 2(a) shows the four branches for Tload = 0, where
the solid and dashed curves denote the stable fixed point
and unstable fixed point (saddle point), respectively. For the
given parameters, we have θeq1 = π

4 and θeq2 = 7π
4 , and we

thus have the thermodynamic branches θth1 and θth2 satisfying
θth1|(�T,Tload )=(0,0) = π

4 and θth2|(�T,Tload )=(0,0) = 7π
4 .

In the vicinity of the equilibrium state θeq, the ther-
modynamic branch θth can be expanded as θth � θeq +
a1T̃load + a2�T̃ , where ai are the expansion coefficients to be
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FIG. 2. (a) Thermodynamic and dead-center branches for Tload =
0 with the linear response lines given by Eqs. (27) and (28). Solid
and dashed curves represent the stable fixed point (T > 0 and
� > 0) and saddle point (� < 0), respectively [see Eqs. (24) and
(25)]. (b) (Nondimensionalized) heat fluxes on the stable thermody-
namic branches for Tload = 0 with the linear response lines given by
Eqs. (31) and (32).

determined. By substituting this expansion into Eq. (23), we
obtain

θth � θeq − Ṽ 2(θeq )

σ̃ 2 sin2 θeq
T̃load + Ṽ (θeq )

2σ̃
�T̃ . (26)

For the present case of θeq1 = π
4 and θeq2 = 7π

4 , we can easily
obtain

θth1 � π

4
−

2
(
2 + σ̃

(
1 − 1√

2

))2

σ̃ 2
T̃load +

2 + σ̃
(
1 − 1√

2

)
2σ̃

�T̃ ,

(27)

θth2 � 7π

4
−

2
(
2 + σ̃

(
1 − 1√

2

))2

σ̃ 2
T̃load +

2 + σ̃
(
1 − 1√

2

)
2σ̃

�T̃ .

(28)

The linear response lines of θth from the original equilibrium
value θeq are shown in Fig. 2(a).

B. Heat fluxes at stationary states

For the nonvanishing �T , the engine conducts heat from
the hot heat reservoir to the cold heat reservoir at the station-
ary states. The heat flux from each heat reservoir into the gas

at the stationary state is given by

JQb (θ∗) = Gb(θ∗)(Tb − T (θ∗, 0)) = G
cos2 θ∗

4
�T, (29)

JQt (θ
∗) = Gt (θ

∗)(Tt − T (θ∗, 0)) = −G
cos2 θ∗

4
�T, (30)

with G
4 cos2 θ∗ being an effective thermal conductance that

depends on θ∗. Figure 2(b) shows the (nondimensionalized)
heat fluxes J̃Qb (θ∗) = JQb (θ∗ )

nRTeq

√
nRTeq

I

on the stable thermodynamic

branches θ∗ = θth1, θth2 corresponding to those in Fig. 2(a),
where we can approximate JQb (θth1) and JQb (θth2) as

JQb (θth1) � G
cos2

(
π
4

)
4

�T = G

8
�T, (31)

JQb (θth2) � G
cos2

(
7π
4

)
4

�T = G

8
�T (32)

in the vicinity of the equilibrium state, by using

JQb (θth ) � G
cos2 θeq

4
�T (33)

in Eq. (29).

IV. ROTATIONAL STATE

A. Numerical calculations of time-averaged angular velocity
and heat fluxes

We investigate the stable limit cycle of Eqs. (18) and (19)
representing the rotational state of the engine. Denoting one
cycle period of the stable limit cycle by τ , we define the time-
averaged angular velocity and heat fluxes as

〈ω〉 ≡ 1

τ

∫ τ

0
ωdt = 1

τ

∫ τ

0

dθ

dt
dt = 2π

τ
, (34)

〈
JQm

〉 ≡ 1

τ

∫ τ

0
JQm dt = 1

τ

∫ τ

0
Gm(θ )(Tm − T (θ, ω))dt, (35)

respectively, where 〈· · · 〉 ≡ 1
τ

∫ τ

0 . . . dt denotes a time aver-
age and T (θ, ω) in Eq. (35) is given by Eq. (17).

In Fig. 3(a), we present the 〈ω̃〉-T̃load curve of the stable
limit cycle. See also Fig. 3(b) for the corresponding thermo-
dynamic and dead-center branches.

For sufficiently small T̃load > 0, the engine is able to rotate
against the load torque, producing positive work (〈ω̃〉 > 0).
As T̃load increases, the engine stops rotating at T̃ ′

load �
7.0125 × 10−5, which is the bifurcation point of the stable
limit cycle. As T̃load increases further and exceeds the bi-
furcation point T ′′

load � 9.9027 × 10−5, the stable limit cycle
appears again; the engine is able to rotate again, but in the
same direction as the applied load torque (〈ω̃〉 < 0). 〈ω̃〉
shows the linear dependency on T̃load as it deviates sufficiently
from the bifurcation points. This linear dependency for the
two-dimensional dynamical model, Eqs. (18) and (19), will
be theoretically confirmed in Sec. IV C. We note that such
linear dependency is not observed for the three-dimensional
dynamical model, Eqs. (14)–(16), with parameter ranges for
which the adiabatic approximation is not valid (Appendix B).

The above bifurcations are homoclinic bifurcations [7].
To illustrate this for the bifurcation at T̃ ′

load, we show the
orbit of the stable limit cycle on the phase plane in Fig. 4(a)
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FIG. 3. (a) 〈ω̃〉-T̃load curve of the stable limit cycle for �T̃ =
1/29.3. The dashed line denotes the theoretical line given in Eq. (44).
(b) Thermodynamic branches and dead-center branches as a func-
tion of the load torque for �T̃ = 1/29.3. Solid and dashed curves
represent the stable fixed point (T > 0 and � > 0) and saddle point
(� < 0), respectively [see Eqs. (24) and (25)]. There are one or two
stable fixed points, depending on the value of T̃load.

and the period τ̃ = 2π
〈ω̃〉 in Fig. 4(b) in the vicinity of T̃ ′

load.
In Fig. 4(a), we can see that the orbit of the stable limit
cycle closely passes the saddle point on the BDC branch in
Fig. 3(b) by taking a long time. At the bifurcation point, part
of the orbit touches the saddle point and the stable limit cycle
disappears, forming a homoclinic orbit [7]. Thus, although the
dead-center branch is not connected to the equilibrium state,
the saddle point on the branch plays an important role in the
homoclinic bifurcation of the limit cycle. As characteristics
of the homoclinic bifurcation, the period of the limit cycle ex-
hibits slow divergence according to the theoretical prediction
τ̃ ∝ − log(T̃ ′

load − T̃load ) [7], which is confirmed in Fig. 4(b).
This slow divergence indicates a steep change in the angular
velocity 〈ω̃〉 = 2π

τ̃
near the bifurcation points, as shown in

Fig. 3(a).
We show the T̃load dependence of 〈J̃Qb〉 in Fig. 5(a). 〈J̃Qb〉

shows the linear dependency on T̃load as it deviates sufficiently
from the bifurcation points in the same manner as 〈ω̃〉 in
Fig. 3(a). This linear dependency is further investigated in

 400
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 600
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 900

 1000

10-9 10-8 10-7 10-6

stable limit cycle

(b)

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

0 π/2 π 3π/2 2π

stable limit cycle
saddle point

FIG. 4. (a) Orbit of the stable limit cycle on the phase plane near
the bifurcation point T̃load � T̃ ′

load for �T̃ = 1/29.3. The saddle point
is located on the BDC branch in Fig. 3(b). (b) Semilog plot of the
period τ̃ as a function of T̃ ′

load − T̃load near the bifurcation point T̃ ′
load.

Sec. IV D. As T̃load approaches the bifurcation points, we find
that 〈J̃Qb〉 deviates from the linear line and slowly converges
to a constant value. This behavior is associated with the
homoclinic bifurcation, which is clarified in Sec. IV C.

B. Derivation of formal analytical expressions

We derive formal analytical expressions of the time-
averaged fluxes 〈ω〉 and 〈JQb〉 for a small temperature dif-
ference and load torque, to explain their behaviors as we
have seen in Sec. IV A. We first derive a formal analytical
expression of 〈ω〉 using Eqs. (18) and (19). We assume that
(θ, ω) is the stable limit cycle with period τ of Eqs. (18) and
(19). Then, time-averaging both sides of Eq. (19) yields

0 = σp

I

〈(
nRT (θ, ω)

V (θ )
− pair

)
r sin θ

〉
− �

I
〈ω〉 − Tload

I
. (36)

Note that the inertia term on the left-hand side has vanished
as 〈 dω

dt 〉 = 1
τ

∫ τ

0
dω
dt dt = 1

τ
[ω]τ0 = 0. We can then approximate

Eq. (17) as

T (θ, ω) = Teff (θ ) − Teq
r sin θσp

G̃V (θ )
ω̃ + O(�T̃ ω̃, ω̃2), (37)
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FIG. 5. (a) 〈J̃Qb 〉-T̃load curve of the stable limit cycle for �T̃ =
1/29.3. The dashed line denotes the theoretical line given by
Eq. (45). (b) 〈J̃Qb 〉 in the vicinity of the bifurcation point T̃ ′

load with the
theoretical line given in Eq. (42). θH in Eq. (42) is estimated as θH �
3.4722 at T̃load � T̃ ′

load. The (nondimensionalized) coefficient ã =
a

nRTeq
is estimated as ã � −0.358 38 using a least-squares method.

assuming that |�T̃ | and |ω̃| are sufficiently small. By using
Eq. (37), we can rewrite the first term (rotational torque term)
on the right-hand side of Eq. (36) as

σp

I

〈(
nRT (θ, ω)

V (θ )
− pair

)
r sin θ

〉

� σp

I

〈(
nRTeff (θ )

V (θ )
− n2R2Teqr sin θσp

GV 2(θ )
ω − pair

)
r sin θ

〉
.

(38)

From Eqs. (36) and (38), we obtain

〈ω〉 =
〈
σp
( nRTeff (θ )

V (θ ) − pair
)
r sin θ

〉 − Tload

� + σ 2
p n2R2Teqr2

G

〈
sin2 θ
V 2(θ )

〉
θ

, (39)

where 〈· · · 〉θ ≡ 1
2π

∫ 2π

0 . . . dθ denotes a phase average. This
formal analytical expression states that the averaged angular
velocity is determined by the time average of the rotational
torque and load torque.

We next derive a formal analytical expression of the time-
averaged heat flux 〈JQb〉. Under the approximation of Eq. (37),

the heat flux 〈JQb〉 in Eq. (35) is approximated as

〈
JQb

〉 = 1

τ

∫ τ

0
Gb(θ )(Tb − T (θ, ω))dt

� 1

τ

∫ τ

0
G

1 + sin θ

2

(
Tb − Teff (θ )

+Teq
nRr sin θσp

GV (θ )
ω

)
dt . (40)

By using τ = 2π
〈ω〉 and noting that ω = dθ

dt , we obtain

〈
JQb

〉 = G

4
〈cos2 θ〉�T + TeqnRrσp

2

〈
sin2 θ

V (θ )

〉
θ

〈ω〉, (41)

where 〈ω〉 is given in Eq. (39). The first term on the right-hand
side of Eq. (41) is the time-averaged heat flux formally obey-
ing the Fourier law, with G

4 〈cos2 θ〉 being the time-averaged
thermal conductance. However, this is not similar to the heat
leakage at the stationary state in Eq. (29) because of its strong
correlation with the engine’s rotational motion through the
time-averaged thermal conductance. The second term on the
right-hand side of Eq. (41) represents the heat transfer in
proportion to the averaged angular velocity, which is also
caused by the engine’s rotational motion.

C. Near the bifurcation point

Near the bifurcation point, the orbit of the limit cycle stays
in proximity to the saddle point almost all the time [Fig. 4(a)].
Thus, the effective thermal conductance G

4 〈cos2 θ〉 in Eq. (41)
is approximated as G

4 〈cos2 θ〉 � G
4 cos2 θH + a〈ω〉, where θH

of the saddle point (θH, 0) on the BDC branch in Fig. 3(b)
is evaluated at the homoclinic bifurcation points and a is a
coefficient that needs to be determined numerically. Equation
(41) can be approximated in the vicinity of the bifurcation
points as

〈
JQb

〉 = G

4
cos2 θH�T +

(
a + TeqnRrσp

2

〈
sin2 θ

V (θ )

〉
θ

)
〈ω〉. (42)

In Fig. 5(b), Eq. (42) is compared with the numerical results
for the bifurcation point T̃ ′

load. They are in good agreement and
the linear decreasing from the constant value is confirmed.

D. Quasilinear response regime

The angular velocity 〈ω〉 shows a linear dependency on
Tload as it deviates from the bifurcation point to a sufficient
extent [Fig. 3(a)]. It also shows a similar linear dependency
with respect to �T [6]. We call a regime with this linear
dependency a quasilinear response regime. In this regime,
we may approximate ω by a constant value � as ω � � by
assuming that the periodic variation around the constant value
is sufficiently small. Under this assumption, one cycle period
is approximated as dt � dθ

�
and thus τ = ∫ τ

0 dt � ∫ 2π

0
dθ
�

=
2π
�

. Thus, the rotational torque component in Eq. (39) is
approximated as〈

σp

(
nRTeff (θ )

V (θ )
− pair

)
r sin θ

〉
� σpnRr

2

〈
sin2 θ

V (θ )

〉
θ

�T, (43)
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where we have used
∫ 2π

0
sin θ
V (θ ) dθ = 0 and

∫ 2π

0 pair sin θdθ = 0.
Then Eq. (39) is reduced to

� =
σpnRr

2

〈
sin2 θ
V (θ )

〉
θ
�T − Tload

� + σ 2
p n2R2Teqr2

G

〈
sin2 θ
V 2(θ )

〉
θ

. (44)

In Fig. 3(a), the theoretical line and numerical calculations are
compared, and they are in good agreement.

Next, we consider the heat flux, Eq. (41), in the quasilinear
response regime using the result of Eq. (44). By approximat-
ing dt � dθ

�
as above, we have G

4 〈cos2 θ〉 � G
4 〈cos2 θ〉θ � G

8 .
Then the heat flux in Eq. (41) is approximated as

〈
JQb

〉 � G

8
�T + TeqnRrσp

2

〈
sin2 θ

V (θ )

〉
θ

�

= −
TeqnRrσp

2

〈
sin2 θ
V (θ )

〉
θ

� + σ 2
p n2R2Teqr2

G

〈
sin2 θ
V 2(θ )

〉
θ

Tload

+
⎛
⎝G

8
+

Teqn2R2r2σp
2

4

〈
sin2 θ
V (θ )

〉2
θ

� + σ 2
p n2R2Teqr2

G

〈
sin2 θ
V 2(θ )

〉
θ

⎞
⎠�T, (45)

where we have used
∫ 2π

0
sin θ
V (θ ) dθ = 0. The theoretical line and

numerical calculations show a good agreement [Fig. 5(a)].
Note that 〈JQt 〉 � −〈JQb〉, which can be confirmed by repeat-
ing the same calculations as 〈JQb〉. The theoretical expressions
Eqs. (44) and (45) are used for developing a theory of the
thermodynamic efficiency of the engine in the quasilinear
response regime in Sec. V.

V. THEORY OF THERMODYNAMIC EFFICIENCY

A. Definition of power and thermodynamic efficiency

We define the power and thermodynamic efficiency of the
LTD Stirling engine. The instantaneous power produced by
the gas, which is the second term on the right-hand side of
Eq. (13), can be rewritten as

w ≡ nRT

V

dV

dt

= nRT

V
(r sin θσp)ω

=
(

I
dω

dt
+ rσp pair sin θ + �ω + Tload

)
ω

= d

dt

(
I

2
ω2

)
+ pair

dV

dt
+ �ω2 + Tloadω, (46)

where we have used Eq. (19) from the second line to the third
line. We can interpret each term in Eq. (46) as follows. The
first term is the rotational kinetic energy change of the crank,
and the second, third, and last terms represent the work carried
out against the atmospheric pressure, frictional torque, and
load torque, respectively.

By using Eq. (46), we define the cycle-averaged power as

P ≡ 〈w〉 = 1

τ

∫ τ

0
wdt = 1

τ

∫ τ

0
(�ω2 + Tloadω)dt

= �
1

τ

∫ τ

0
ω2dt + Tload

(
2π

τ

)

= �〈ω2〉 + Tload〈ω〉
≡ Pfric + Pload, (47)

where we have used
∫ τ

0
d
dt ( I

2ω2)dt = 0 and
∫ τ

0 pair
dV
dt dt = 0.

The power P, which is referred to as the indicated power [24],
defined as the closed area of the pressure-volume diagram
of an engine, was decomposed into that carried out against
the friction torque Pfric and that carried out against the load
torque Pload, referred to as the brake power [24]. The former is
eventually dissipated into the surrounding air as heat. By time-
averaging the energy conservation equation, Eq. (13), we have
〈JQb〉 + 〈JQt 〉 = Pload + Pfric. The thermodynamic efficiency η

is then defined as the ratio of the input heat flux from the
hot heat reservoir converted into the available power exerted
against the load torque (brake power) Pload [24]. For �T > 0,
it is explicitly given as

η ≡ Pload〈
JQb

〉 = Tload〈ω〉〈
JQb

〉 . (48)

In Figs. 6(a) and 6(b), we present the numerical results of
the T̃load dependence of the (nondimensionalized) brake power
P̃load = Pload

nRTeq

√
nRTeq

I

and the efficiency η, respectively. We can

see that the values at which the maximum efficiency and
maximum power are realized are close, which is characteristic
of heat engines operating with nonnegligible heat leakage (the
first term on the right-hand side of Eq. (41) for the present
model) [26]. When the maximum efficiency is located in
the quasilinear response regime, we can obtain its theoretical
value, as we show in Sec. V B.

B. Thermodynamic theory of an LTD kinematic Stirling heat
engine in a quasilinear response regime

Before constructing a thermodynamic theory of the LTD
kinematic Stirling engine, we review the theory for conven-
tional linear irreversible heat engines [9–11]. For generic heat
engines, the entropy production rate of the total system σ̇ (a
heat engine and heat reservoirs at temperatures T0 and T1) is
given by

σ̇ ≡ − Q̇0

T0
− Q̇1

T1
= −Pload

T1
+ Q̇0

(
1

T1
− 1

T0

)
, (49)

where Q0 (Q1) is the heat flowing into the working substance
from the heat reservoir at T0 (T1), and we have used Pload =
Q̇0 + Q̇1 (the energy conservation law). Hereafter, an overdot
refers to quantities per unit time for steady-state heat engines
or quantities averaged over one cycle period for cyclic heat
engines. We can express Pload as Pload = Fẋ using an external
force F and its conjugate flux ẋ. By taking the limit of a
small temperature difference and small external force, we can
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FIG. 6. (a) Thermodynamic efficiency η in Eq. (48) and
(b) (nondimensionalized) brake power P̃load in Eq. (47) as a function
of the load torque T̃load. Dashed curves denote the theoretical curves
of Eqs. (61) and (62). The dashed line is the maximum efficiency
given in Eq. (64) using q � 0.175 13.

approximate σ̇ as

σ̇ � ẋ

(
− F

Teq

)
+ Q̇0

�T

T 2
eq

= J1F1 + J2F2, (50)

where the temperature difference and the averaged tempera-
ture are given as �T = T0 − T1 and Teq = T0+T1

2 , respectively,
for the present setup. Here, we have defined the thermody-
namic forces Fi and their conjugate fluxes Ji as

J1 ≡ ẋ, F1 ≡ − F

Teq
(51)

and

J2 ≡ Q̇0, F2 ≡ �T

T 2
eq

. (52)

In linear irreversible thermodynamics, we assume the follow-
ing linear relations between the thermodynamic fluxes and
forces as

J1 = L11F1 + L12F2, (53)

J2 = L21F1 + L22F2, (54)

where Li j are the Onsager coefficients with reciprocity L12 =
L21 [21,22]. The use of Eqs. (53) and (54) enables us to rewrite
Eq. (50) as

σ̇ = L11F 2
1 + 2L12F1F2 + L22F 2

2 . (55)

From σ̇ � 0 for the arbitrary F1 and F2 (the second law of
thermodynamics), we obtain the following restrictions on the
Onsager coefficients Li j :

L11 � 0, L22 � 0, L11L22 − L12L21 � 0. (56)

Here, we define the coupling-strength parameter q as

q ≡ L12√
L11L22

, (57)

which should satisfy |q| � 1 from the last inequality in
Eq. (56). The meaning of q can be elucidated by rewriting
the heat flux in Eq. (54) by using J1 instead of F1 as

J2 = L21

L11
J1 + L22(1 − q2)F2. (58)

The case of |q| = 1 is an ideal condition known as the tight-
coupling condition for which the heat flux J2 is in proportion
to the motion flux J1. For the non-tight-coupling case |q| 
= 1,
the nonvanishing heat leakage L22(1 − q2)F2 arises from the
simultaneous contact between the two heat reservoirs on the
engine, which decreases the thermodynamic performance of
the engine, as shown below.

The power and thermodynamic efficiency are written using
the thermodynamic fluxes and forces in Eqs. (53) and (54) as

Pload = Fẋ = −J1F1Teq, (59)

η = Pload

Q̇0
= −J1F1Teq

J2
, (60)

respectively, where we assume F2 > 0. It is more convenient
to express them in terms of J1 instead of F1 as

Pload = L12

L11
J1F2Teq − Teq

L11
J2

1 , (61)

η =
L12
L11

J1F2Teq − Teq

L11
J2

1
L21
L11

J1 + L22(1 − q2)F2
, (62)

using Eqs. (53) and (58). For the tight-coupling case |q| =
1, the quasistatic limit J1 → 0 yields the vanishing power
Pload → 0 and the Carnot efficiency η → F2Teq = �T

Teq
=

�T
T0− �T

2
� �T

T0
≡ ηC. For the non-tight-coupling case |q| 
= 1,

J1 that yields the maximum efficiency is obtained as the
solution of ∂η

∂J1
= 0,

Jmax
1 = L21(1 − q2)F2

q2

{
−1 +

√
1

1 − q2

}
, (63)

which takes a finite value, unlike the quasistatic limit J1 → 0
for the tight-coupling case |q| = 1. The maximum efficiency
then reads [10,11]

ηmax = (1 −
√

1 − q2)2

q2
ηC, (64)

which is a monotonic function of q.
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The efficiency at maximum power η∗ attained at J∗
1 =

L12
2 F2 is also given as [9]

η∗ = 1

2

q2

2 − q2
ηC. (65)

For the tight-coupling case |q| = 1, we obtain η∗ = ηC

2 (the
Curzon-Ahlborn efficiency [18]) as the upper bound.

Thus far, we have reviewed the theory for conventional
linear irreversible heat engines. Returning to our model of the
LTD kinematic Stirling engine, the linear response relations
such as Eqs. (53) and (54) expanded from an equilibrium state
with F1 = 0 and F2 = 0 do not hold. This is because the rota-
tional state described as the limit cycle is not connected to the
equilibrium state, and the linear dependency in Eqs. (44) and
(45) holds only when the external forces deviate sufficiently
far from the bifurcation points. Nevertheless, we can formally
write the linear relations applied to these quasilinear response
regimes in terms of the thermodynamic fluxes and forces.

We identify each quantity used in the theory of the linear ir-
reversible heat engines as T0 = Tb, T1 = Tt , ẋ = �, F = Tload,
Q̇0 = 〈JQb〉, and Q̇1 = 〈JQt 〉 − Pfric. Using these quantities, we
can write the entropy production rate of the LTD kinematic
Stirling engine in the quasilinear response regime as

σ̇ = −
〈
JQb

〉
Tb

−
〈
JQt

〉 − Pfric

Tt
= −Pload

Tt
+ 〈

JQb

〉( 1

Tt
− 1

Tb

)

� �

(
−Tload

Teq

)
+ 〈

JQb

〉�T

T 2
eq

= J1F1 + J2F2, (66)

where we have used Pload = 〈JQb〉 + 〈JQt 〉 − Pfric (the energy
conservation law), and the thermodynamic fluxes and forces
are related via the linear relations

J1 = L′
11F1 + L′

12F2, (67)

J2 = L′
21F1 + L′

22F2, (68)

where L′
i j are the quasilinear response coefficients. The prime

notation is used to demonstrate that they are defined for
the quasilinear response regime. The use of the definitions
of the thermodynamic fluxes and forces, and Eqs. (44) and
(45), makes it possible to identify the quasilinear response
coefficients L′

i j as

L′
i j =

(
L′

11 L′
12

L′
21 L′

22

)

=

⎛
⎜⎜⎜⎜⎝

Teq

�+ σ2
p n2R2Teq r2

G

〈
sin2 θ

V 2 (θ )

〉
θ

T 2
eqσpnRr

2

〈
sin2 θ
V (θ )

〉
θ

�+ σ2
p n2R2Teq r2

G

〈
sin2 θ

V 2 (θ )

〉
θ

T 2
eqnRrσp

2

〈
sin2 θ
V (θ )

〉
θ

�+ σ2
p n2R2Teq r2

G

〈
sin2 θ

V 2 (θ )

〉
θ

GT 2
eq

8 +
T 3
eqn2R2r2σp2

4

〈
sin2 θ
V (θ )

〉2
θ

�+ σ2
p n2R2Teq r2

G

〈
sin2 θ

V 2 (θ )

〉
θ

⎞
⎟⎟⎟⎟⎠. (69)

Here, we can confirm that a symmetric relation holds as L′
12 =

L′
21. In Fig. 7, the quasilinear response coefficients in Eq. (69)

and the symmetric relation are numerically confirmed. At
this point, the origin of this symmetry is not questioned and
it is elucidated in Sec. VI in terms of the (anti-)reciprocity
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FIG. 7. Relations between the (nondimensionalized) thermody-
namic fluxes J̃i and forces F̃j , where F̃1 = −T̃load and F̃2 = �T̃ . (a)
J̃1-F̃1 diagram for F̃2 = 0, (b) J̃1-F̃2 diagram for F̃1 = 0, (c) J̃2-F̃1

diagram for F̃2 = 0, and (d) J̃2-F̃2 diagram for F̃1 = 0. Dashed lines
denote Eqs. (67) and (68) using the quasilinear response coefficients
L̃′

i j in Eq. (69). In (b) and (c), the symmetric relation L̃′
12 = L̃′

21 is
observed.
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of the Onsager kinetic coefficients. Because the quasilinear
response relations, Eqs. (67) and (68), with the symmetric
relation formally take the same form as the conventional
Onsager relations, Eqs. (53) and (54), the thermodynamic
theory developed using Eqs. (53) and (54) is also applied to
the quasilinear response regime.

In the present case, the coupling-strength parameter q in
Eq. (57) is calculated from the quasilinear response coeffi-
cients in Eq. (69) as

q = 1√
1 + 1

2

〈
sin2 θ

V 2 (θ )

〉
θ〈

sin2 θ
V (θ )

〉2
θ

+ G�

2Teqn2R2r2σ 2
p

〈
sin2 θ
V (θ )

〉2
θ

= 1√
1 + 1

2

〈
sin2 θ

Ṽ 2 (θ )

〉
θ〈

sin2 θ

Ṽ (θ )

〉2
θ

+ G̃�̃

2σ̃ 2
〈

sin2 θ

Ṽ (θ )

〉2
θ

. (70)

Notably, the coupling strength depends on three major (nondi-
mensionalized) physical parameters of the model: σ̃ , G̃, and
�̃. Thus, the maximum efficiency is given by Eq. (64), with
the coupling strength q in Eq. (70) being the single figure of
merit.

In Figs. 6(a) and 6(b), we compare the numerical results of
the efficiency and power with the theoretical results, Eqs. (62)
and (61), using L′

i j in Eq. (69). We can find that the the-
ory approximates the numerical results well. Although we
used Eq. (61) for the calculations of Pload, it should be con-
sistent with the expression Pload = 〈JQb〉 + 〈JQt 〉 − Pfric (the
energy conservation law), which was used in the derivation
of Eq. (66). See Appendix C for a detailed demonstration
of the equivalence of these two expressions. The maximum
efficiency in Eq. (64) using q � 0.175 13 calculated for the
present parameters also approximates the numerical result
well [Fig. 6(a)].

The simple formula, Eq. (64), using Eq. (70) may provide
a new guiding principle for designing efficient LTD kinematic
Stirling engines. By noting〈

sin2 θ

Ṽ (θ )

〉
θ

= (1 − √
1 + σ̃ )2

σ̃ 2
, (71)〈

sin2 θ

Ṽ 2(θ )

〉
θ

= (1 − √
1 + σ̃ )2

2σ̃ 2
√

1 + σ̃
, (72)

we obtain q → 1√
2

as the upper bound of q in Eq. (70) as

σ̃ → 0 and G̃�̃ → 0, with G̃�̃ � σ̃ 2 being satisfied. Within
this limit, ηmax in Eq. (64) is given as

lim
q→ 1√

2

ηmax = (3 − 2
√

2)ηC ≈ 0.17157ηC. (73)

This is the upper bound that the present model in the quasi-
linear response regime can attain. We note that ηmax of the
present model cannot attain the Carnot efficiency achieved by
the ideal Stirling cycle because it lacks a regenerator.

We can also obtain

lim
q→ 1√

2

η∗ = 1

6
ηC (74)

as the upper bound of the efficiency at maximum power in
Eq. (65) that the present model in the quasilinear response
regime can attain.

VI. ORIGIN OF THE SYMMETRIC RELATION

The symmetric relation L′
12 = L′

21 in Eq. (69) is reminis-
cent of the Onsager reciprocity in linear irreversible thermo-
dynamics, whereas the rotational state of the engine described
as the limit cycle may not be described as a linear response
regime. Here, we explain the origin of the symmetry in terms
of the (anti-)reciprocity of the Onsager kinetic coefficients
[21,22,27] in the original three-dimensional dynamical model,
Eqs. (14)–(16), before the adiabatic elimination.

A. Relaxation dynamics towards the equilibrium state

Let us consider that a mesoscopic LTD Stirling heat engine
specified by (θ, pθ ,U ) is in thermal equilibrium with a heat
reservoir, where pθ ≡ Iω is the angular momentum of the
crank and U = f

2 nRT is the internal energy of the gas. The en-
gine may be perturbed from the equilibrium state (θeq, 0,Ueq )
by thermal fluctuation and relaxes to the original equilibrium
state, where Ueq = f

2 nRTeq. By linearizing Eqs. (14)–(16)
with �T = 0 and Tload = 0 around the equilibrium value, we
obtain the following linear relaxation equations:

dδθ

dt
= 1

I
δpθ , (75)

dδpθ

dt
= −nRr2σ 2

p Teq sin2 θeq

V 2(θeq )
δθ − �

I
δpθ + rσp

2 sin θeq

f V (θeq )
δU,

(76)

dδU

dt
= −nRTeqrσp sin θeq

IV (θeq )
δpθ − 2G

f nR
δU . (77)

These are rewritten as (k, l = θ, p,U )

dxk

dt
= −λkl xl , (78)

where xθ ≡ δθ , xp ≡ δpθ , and xU ≡ δU are the thermody-
namic variables that express variation (or fluctuation) from the
equilibrium state, and λkl are the linear relaxation coefficients.
Next, we express Eq. (78) [Eqs. (75)–(77)] as

dxk

dt
= −γklXl , (79)

where Xl are the conjugate thermodynamic forces to be deter-
mined, and γkl are the Onsager kinetic coefficients.

Following the methods in [27], we introduce δH as the
change in the crank’s Hamiltonian from the vanishing value
at the equilibrium state (θeq, 0,Ueq ) as

δH = δp2
θ

2I
+ nRr2σ 2

p Teq sin2 θeq

V 2(θeq )

δθ2

2
. (80)

We then define Xθ and Xp as the thermodynamic forces for the
mechanical degrees of freedom as

Xθ = 1

Teq

∂δH

∂xθ

= nRr2σ 2
p sin2 θeq

V 2(θeq )
δθ, (81)

Xp = 1

Teq

∂δH

∂xp
= 1

Teq

δpθ

I
, (82)
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where we can interpret Xθ as a restoring force and Xp as
an inertial force. Under these thermodynamic forces, we can
easily find

γθ p = −Teq, (83)

γpθ = Teq, (84)

which satisfy the Onsager’s antireciprocal relation γθ p =
−γpθ . We note that the antireciprocity is fundamentally de-
rived from the fact that xθ is a time-reversely symmetric
quantity, whereas xp is an antisymmetric quantity under time
reversal of microscopic dynamics [27]. We also find

γpp = Teq�, (85)

γU p = γU p(θeq ) = nRT 2
eqrσp sin θeq

V (θeq )
. (86)

Once Xθ and Xp have been determined as above, XU , the
other thermodynamic force of the thermodynamic degree of
freedom, can be uniquely determined such that it satisfies
the Onsager symmetry principle [27]. Because we want to
have the antireciprocal relation γU p = −γpU for xU as a time-
reversely symmetric quantity, we naturally choose XU as

XU = δT

T 2
eq

, (87)

which determines

γpU = γpU (θeq ) = −nRT 2
eqrσp sin θeq

V (θeq )
, (88)

γUU = GT 2
eq. (89)

The other kinetic coefficients vanish as γθθ = γθU = γUθ = 0.
We note that the thermodynamic variables xl and the forces

Xk are linearly related from Eqs. (78) and (79) as

Xk = βkl xl , (90)

where

βkl ≡ γ −1
km λml . (91)

The only nonvanishing components of βkl are the diagonal
elements as

βθθ = nRr2σ 2
p sin2 θeq

V 2(θeq )
, (92)

βpp = 1

TeqI
, (93)

βUU = 2

f nRT 2
eq

. (94)

The total entropy variation (the heat engine and reservoir)
around the maximum, equilibrium value is then approximated
as the following quadratic form [27]:

δS = −1

2
βkl xkxl

= − δp2
θ

2ITeq
− nRr2σ 2

p sin2 θeq

V 2(θeq )

δθ2

2
− f nR

4

δT 2

T 2
eq

. (95)

This variation is consistent with equilibrium statistical me-
chanics; the fluctuation of the temperature and volume of a

system under isothermal and isobaric conditions obeys the
probability distribution [27]

w(δT, δV ) ∝ exp

{
− CV

2kBT 2
eq

(δT )2+ 1

2kBTeq

(
∂ p

∂V

)
Teq

(δV )2

}
,

(96)

where CV and kB are the constant-volume heat capacity of
the system and the Boltzmann constant, respectively. The mo-
mentum of the system also fluctuates around its equilibrium
value δpθ = 0 according to the Maxwell distribution:

w(δpθ ) ∝ exp

(
− δp2

θ

2IkBTeq

)
. (97)

According to Einstein’s fluctuation formula, the total weight
W = w(δT, δV )w(δpθ ) is given using the entropy variation
δS as

W ∝ exp

(
δS

kB

)
. (98)

By noting CV = f
2 nR, ( ∂ p

∂V )
Teq

= − nRTeq

V 2 , and δV = ∂V
∂θ

δθ =
rσp sin θδθ in Eq. (96), we find that δS in Eq. (98) agrees with
that in Eq. (95). We note that we can define the thermody-
namic force using δS as

Xk = −∂δS

∂xk
. (99)

The instantaneous entropy production rate is thus given as

dδS

dt
= ∂δS

∂xk

dxk

dt
= −Xk

dxk

dt
= γklXkXl = γppX 2

p + γUU X 2
U ,

(100)

to which the terms with the antireciprocal coefficients of γkl

do not contribute. Due to the antireciprocal component, the
relaxation dynamics in the vicinity of the equilibrium state
show damping oscillation toward the equilibrium state [28].

B. Expression of quasilinear response coefficients using the
Onsager kinetic coefficients

Equations (75)–(77) describe the relaxation dynamics
when the engine slightly deviates from the equilibrium state.
For a nonequilibrium condition in which the externally sus-
tained thermodynamic forces �T 
= 0 and Tload 
= 0 are ap-
plied, the situation can drastically change. The engine can
show rotational motion, and an engine under this state cannot
be regarded as being in the linear response regime as we
have seen in Sec. IV. Nevertheless, we examine how the
antireciprocity of the Onsager kinetic coefficients γkl included
in the relaxation dynamics is inherited by the symmetric
response coefficients L′

i j .
We recall that we have adiabatically eliminated T from

the three-dimensional dynamical model, Eqs. (14)–(16), by
assuming that the dynamics of the gas are fully subject to
those of the crank, and obtained the two-dimensional dynam-
ical model, Eqs. (18) and (19). The quasilinear relations in
Sec. IV have been formulated for the rotational state of the
two-dimensional dynamical model with �T 
= 0 and Tload 
=
0. We now rewrite the thermodynamic fluxes J1 = � = 〈 pθ

I 〉
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and J2 = 〈JQb〉 of the two-dimensional model in a form that
highlights the relation to the Onsager kinetic coefficients γkl

included in the relaxation dynamics of the three-dimensional
dynamical model for �T = 0 and Tload = 0.

For the rotational state realized under the nonequilibrium
condition, the engine is largely perturbed from the equilibrium
state (θeq, 0,Ueq ). This is, however, only with respect to the
phase angle θ . Because the deviations of pθ and U (or, equiv-
alently, T ) from their equilibrium values are small even for the
rotational state for small |�T | and |Tload|, we write pθ � δpθ

and T � Teq + δT . We can thus expand Eq. (16) in terms of
δpθ and δT around their equilibrium value (pθ , T ) = (0, Teq ),
with θ being held fixed as an arbitrary value,

dδU

dt
= G

(
χb(θ ) − 1

2

)
�T − nRTeqrσp sin θ

V (θ )

δpθ

I
− GδT .

(101)

Equivalently, we have

dxU

dt
= G

(
χb(θ ) − 1

2

)
�T − γU p(θ )Xp − γUU XU , (102)

where we have denoted by γkl (θ ) the Onsager kinetic coeffi-
cients, with θeq being formally replaced with θ of the stable
limit cycle (θ, ω). For �T = 0 and Tload = 0, no stable limit
cycle exists and Eq. (102) recovers the relaxation dynamics,
Eq. (77), with θ = θeq. The adiabatic approximation solution
T (θ, δpθ ) = Teq + δT (θ, δpθ ) of Eq. (101) satisfying dT

dt =
dδT
dt = 0 is given as

δT (θ, δpθ ) �
(
χb(θ ) − 1

2

)
�T − nRTeqrσp sin θ

GV (θ )

δpθ

I
. (103)

Equivalently, from Eq. (102), we have the adiabatic approxi-
mation solution as

XU =
(

χb(θ ) − 1

2

)
F2 − γU p(θ )

γUU
Xp, (104)

using the Onsager kinetic coefficients. We next expand
Eq. (15), which describes the rotational state in terms of
δpθ and δT around their equilibrium value (pθ , T ) = (0, Teq ),
with θ being held fixed as an arbitrary value as

dδpθ

dt
= σp

(
nR(Teq + δT )

V (θ )
− pair

)
r sin θ − �

I
δpθ − Tload

= σp

(
nRTeq

V (θ )
− pair

)
r sin θ − �

I
δpθ

+σp

nRT 2
eqr sin θ

V (θ )

δT

T 2
eq

− Tload. (105)

Equivalently, we can rewrite Eq. (105) as

dxp

dt
=σp

(
nRTeq

V (θ )
− pair

)
r sin θ − γppXp − γpU (θ )XU + TeqF1

(106)

in terms of the thermodynamic forces. By putting XU in
Eq. (104) into that in Eq. (106), we obtain

dxp

dt
= σp

(
nRTeq

V (θ )
− pair

)
r sin θ − γpU (θ )

(
χb(θ ) − 1

2

)
F2

+
(

γpU (θ )γU p(θ )

γUU
− γpp

)
Xp + TeqF1. (107)

Alternatively, by noting that Tb − T (θ, δpθ ) = �T
2 −

δT (θ, δpθ ) and using Eq. (103), we can also rewrite the
instantaneous heat flux JQb = Gb(θ )(Tb − T ) as

JQb = Gb(θ )

(
�T

2
− δT

)

= Gχb(θ )

(
χt (θ )T 2

eqF2 + γU p(θ )

γUU
T 2

eqXp

)

= GT 2
eqχb(θ )χt (θ )F2 + χb(θ )γU p(θ )Xp. (108)

We assume that the angular velocity δpθ

I in the quasilinear re-
sponse regime is a constant as δpθ

I = TeqXp � �, in a manner
similar to that we have assumed in Sec. IV D. By taking a time
average of Eqs. (107) and (108), and repeating essentially the
same calculations as in Sec. IV D, we have

J1 = � =
〈
δpθ

I

〉
= −T 2

eqF1 + Teq〈γpU (θ )χb(θ )〉θF2

〈γpU (θ )γU p(θ )〉θ

γUU
− γpp

,

(109)

J2 = 〈
JQb

〉 = GT 2
eq〈χb(θ )χt (θ )〉θF2 + 〈γU p(θ )χb(θ )〉θ J1

Teq
.

(110)

By putting Eq. (109) into Eq. (110), we obtain

J2 = −Teq〈γU p(θ )χb(θ )〉θ
〈γpU (θ )γU p(θ )〉θ

γUU
− γpp

F1 +
⎧⎨
⎩GT 2

eq〈χb(θ )χt (θ )〉θ + 〈γU p(θ )χb(θ )〉θ 〈γpU (θ )χb(θ )〉θ
〈γpU (θ )γU p(θ )〉θ

γUU
− γpp

⎫⎬
⎭F2. (111)

Finally, from Eqs. (109) and (111), the quasilinear response coefficients are found to be

L′
i j =

(
L′

11 L′
12

L′
21 L′

22

)
=

⎛
⎜⎜⎝

− T 2
eq

〈γpU (θ )γU p (θ )〉θ
γUU

−γpp

Teq〈γpU (θ )χb(θ )〉θ〈γpU (θ )γU p (θ )〉θ
γUU

−γpp

−Teq〈γU p(θ )χb(θ )〉θ〈γpU (θ )γU p (θ )〉θ
γUU

−γpp

GT 2
eq〈χb(θ )χt (θ )〉θ + 〈γU p(θ )χb(θ )〉θ〈γpU (θ )χb(θ )〉θ〈γpU (θ )γU p (θ )〉θ

γUU
−γpp

⎞
⎟⎟⎠, (112)
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which are given using the phase averages 〈· · · 〉θ of the quan-
tities that include the Onsager kinetic coefficients using θ

instead of θeq. By performing the phase averages in Eq. (112),
we can confirm that Eq. (112) agrees with Eq. (69). From
the expression of Eq. (112), we immediately note that the
symmetric relation L′

12 = L′
21 in the adiabatically eliminated

model holds as a consequence of the antireciprocal rela-
tion of the Onsager kinetic coefficients γpU (θ ) = −γU p(θ )
included in the three-dimensional dynamical model before
the adiabatic elimination. Recalling that the antireciprocity
of the Onsager kinetic coefficients reflects the time-reversal
symmetry of the underlying microscopic dynamics [27], the
present symmetric relation may also be attributed to the
time-reversal symmetry. Although the antireciprocal terms do
not contribute to the instantaneous entropy production rate,
Eq. (100), during the relaxation dynamics, they can contribute
to the entropy production rate averaged over one cycle period
for the rotational state in the quasilinear response regime
through L′

i j [Eq. (55)]. Interestingly, the restrictions on L′
i j in

Eq. (56) imposed by the second law of thermodynamics are
also assured by this antireciprocity.

VII. DISCUSSION AND SUMMARY

This paper has presented the nonequilibrium thermody-
namics of a nonlinear dynamics model of an LTD kine-
matic Stirling heat engine [6]. The two-dimensional dynam-
ical equations describing the crank of the engine were de-
rived from the original three-dimensional dynamical equa-
tions based on the adiabatic elimination of the gas dynamics.
By using the two-dimensional dynamical equations, we inves-
tigated the stationary and rotational states, which are the fixed
points and stable limit cycle of the equations, respectively.
In particular, we focused on the regime near the bifurcation
points and the quasilinear response regime sufficiently far
from the bifurcation points of the latter state. The formal
analytical expressions of the averaged angular velocity and
heat fluxes (thermodynamic fluxes) as a function of the tem-
perature difference and load torque (thermodynamic forces)
were derived to explain these regimes in the rotational state.
In the quasilinear response regime, it was found that the
thermodynamic fluxes and forces are described by the linear
relations with symmetric coefficients. Based on the linear
relations, we obtained the maximum efficiency formula in
terms of the coupling-strength parameter as the single figure
of merit. We also demonstrated that the symmetric coefficients
are considered to be a consequence of the antireciprocal
relation of the Onsager kinetic coefficients in the relaxation
dynamics before the adiabatic elimination.

Irrespective of whether the engine operates with external
agents, such as conventional heat engines, or autonomously,
such as in the present model, we analyzed their thermody-
namic performance on an equal footing based on the linear
relations [9–11]. When the adiabatic elimination is not valid,
the dynamics of the gas and piston-crank system are not
separated, and they constitute a dynamical system as a whole.
When the adiabatic elimination is valid, the dynamics of the
gas are completely subject to those of the piston-crank system.
This yields explicit separation between the system and exter-
nal agents. In this sense, there may not be much difference

between conventional periodically driven heat engines oper-
ated by external agents and the present LTD kinematic Stirling
engine, although the dynamics of the external operator itself
in the latter case obeys the equations of motion. However,
for the present self-sustained engine we have observed that
the emergence of the symmetric coefficients can be explained
based on the property of the relaxation dynamics towards
the equilibrium state before the adiabatic elimination. This
demonstrates the importance of modeling an autonomous
heat engine as a dynamical system with mechanical and
thermodynamic degrees of freedom. The symmetric relation
can be experimentally verified in principle. It is of interest to
investigate the similarities and differences between the present
emergent symmetry in the quasilinear response regime and
other various symmetries found in periodically driven heat
engines operated by external agents in the linear response
regime [12–17].

Our theory may be useful for predicting the possible future
design of efficient LTD Stirling heat engines by employing
our maximum efficiency formula. In this sense, although our
theory is expected to describe existing LTD Stirling heat
engines, it could also be used to describe more advanced
engines in the near-future.
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APPENDIX A: DERIVATION OF THE ADIABATIC
APPROXIMATION SOLUTION, EQ. (17)

Here, we derive the adiabatic approximation solution Eq.
(17) based on [25]. By defining T = Teq + δT , we can obtain
the equation of δT instead of T from Eq. (13) as

dδT

dt
= − 2G

f nR
δT − 2

f

d

dt
[ln V (θ (t ))]δT + X (θ ), (A1)

where X (θ ) is the external forcing exhibited by the crank,
which is defined as

X (θ ) ≡ 2G

f nR

sin θ

2
�T − 2Teq

f

d

dt
[ln V (θ (t ))]. (A2)

Noting that Eq. (A1) is linear in δT , we can formally solve it
as

δT (t ) =
∫ t

−∞
X (θ (t ′)) exp

[
− 2G

f nR
(t−t ′)− 2

f
ln

V (θ (t ))

V (θ (t ′))

]
dt ′,

(A3)

where we have set δT (t0) = 0 with t0 = −∞ as the initial
condition because we are interested in the dynamics after the
transient one. By integrating Eq. (A3) by parts, we have

δT (t ) = X (θ (t ))
2G
f nR + 2

f
d
dt [ln V (θ (t ))]

−
∫ t

−∞
exp

[
− 2G

f nR
(t − t ′)

− 2

f
ln

V (θ (t ))

V (θ (t ′))

]
d

dt ′

[
X (θ (t ′))

2G
f nR + 2

f
d
dt [ln V (θ (t ′))]

]
dt ′.

(A4)
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Equation (A4) is composed of the instantaneous (first term)
and noninstantaneous (second term) response terms. If we can
neglect the second term, the obtained solution T = Teq + δT
constitutes the adiabatic approximation solution in Eq. (17).

Let us consider a condition such that the second term in
Eq. (A4) can be neglected compared to the first term. The
absolute value of the second term in Eq. (A4) is bounded from
the upper side as follows:∣∣∣∣ d

dt

[
X (θ (t ))

2G
f nR + 2

f
d
dt [ln V (θ (t ))]

]∣∣∣∣
max

×
∣∣∣∣exp

(
− 2

f
ln

V (θ (t ))

V (θ (t ′))

)∣∣∣∣
max

∫ t

−∞
exp

[
− 2G

f nR
(t − t ′)

]
dt ′

=
∣∣∣∣ d

dt

[
X (θ (t ))

2G
f nR + 2

f
d
dt [ln V (θ (t ))]

]∣∣∣∣
max

×
∣∣∣∣exp

(
− 2

f
ln

V (θ (t ))

V (θ (t ′))

)∣∣∣∣
max

f nR

2G
. (A5)

Because of | exp(− 2
f ln V (θ (t ))

V (θ (t ′ )) )|max ≈ 1, we can obtain the
following condition such that the first term in Eq. (A4) is
dominant: ∣∣∣∣ d

dt

[
X (θ (t ))

2G
f nR + 2

f
d
dt [ln V (θ (t ))]

]∣∣∣∣
max

� 1
f nR
2G

∣∣∣∣ X (θ (t ))
2G
f nR + 2

f
d
dt [ln V (θ (t ))]

∣∣∣∣. (A6)

This condition states that the time scale of the variation of
the external forcing due to the crank is much longer than the
system’s intrinsic time scale.

APPENDIX B: COMPARISON BETWEEN THE
TWO-DIMENSIONAL DYNAMICAL MODEL AND THE

THREE-DIMENSIONAL DYNAMICAL MODEL

We compare the two-dimensional dynamical model,
Eqs. (18) and (19), and the three-dimensional dynamical
model, Eqs. (14)–(16). In Fig. 8, we show the 〈ω̃〉-T̃load curve
obtained by these two models for the two values G̃ = 1.5
[Fig. 8(a)] and G̃ = 0.3 [Fig. 8(b)]. For the numerical calcula-
tions, we used the nondimensionalized equations in Eqs. (18)
and (19) for the two-dimensional dynamical model. For the
three-dimensional dynamical model, we used the following
nondimensionalized equations:

dθ

dt̃
= ω̃, (B1)

dω̃

dt̃
= σ̃

(
T̃

Ṽ (θ )
− p̃air

)
sin θ − �̃ω̃ − T̃load, (B2)

dT̃

dt̃
= 2

f
G̃(T̃eff (θ ) − T̃ ) − 2σ̃ T̃ sin θ

f Ṽ (θ )
ω̃. (B3)

We find a good agreement between these two models for
G̃ = 1.5, showing the validity of the adiabatic approximation,
while for G̃ = 0.3 there is discrepancy between these two

(b)
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FIG. 8. 〈ω̃〉-T̃load curve of the stable limit cycle for �T̃ =
1/29.3. Equations (18) and (19) and Eqs. (14)–(16) are compared
for two values: (a) G̃ = 1.5 and (b) G̃ = 0.3. We used f = 5, and all
the other parameters are the same as those in Fig. 3.

models. In particular, the three-dimensional dynamical model
for G̃ = 0.3 shows an asymmetric behavior for the positive
and negative rotational directions. Thus, the linear depen-
dency observed for the two-dimensional dynamical model
[see Fig. 3(a) and Eq. (44)] is not generally expected to hold in
the three-dimensional case when the adiabatic approximation
is not valid.

APPENDIX C: DERIVATION OF EQ. (61) BASED ON THE
ENERGY CONSERVATION LAW

Here, we show Eq. (61) from the energy conservation law
Pload = 〈JQb〉 + 〈JQt 〉 − Pfric. We need the nonlinear terms of
�T̃ ω̃ and ω̃2 that were neglected in Eq. (37):

T (θ, ω) � Teff (θ ) − Teq

(
1 + sin θ

2
�T̃

)
r sin θσp

G̃V (θ )
ω̃

+ Teq

r2 sin2 θσ 2
p

G̃2V 2(θ )
ω̃2. (C1)
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By substituting Eq. (C1) into Eq. (6) and time-averaging, we
can approximate 〈JQb〉 and 〈JQt 〉 as

〈
JQb

〉 � G

8
�T + TeqnRrσp

2

〈
sin2 θ

V (θ )

〉
θ

�

+ nRrσp

2

〈
sin2 θ

V (θ )

〉
θ

�T � − Teqn2R2r2σ 2
p

2G

〈
sin2 θ

V 2(θ )

〉
θ

�2,

(C2)〈
JQt

〉 � −G

8
�T − TeqnRrσp

2

〈
sin2 θ

V (θ )

〉
θ

�

− Teqn2R2r2σ 2
p

2G

〈
sin2 θ

V 2(θ )

〉
θ

�2, (C3)

including the nonlinear terms. Therefore, we have〈
JQb

〉 + 〈
JQt

〉 − Pfric = nRrσp

2

〈
sin2 θ

V (θ )

〉
θ

�T �

−Teqn2R2r2σ 2
p

G

〈
sin2 θ

V 2(θ )

〉
θ

�2 − ��2

= L′
12

L′
11

J1F2Teq − Teq

L′
11

J2
1

= Pload. (C4)

We note that 〈JQt 〉 = −〈JQb〉 up to the linear order of �T
and Tload in Eqs. (C2) and (C3). Thus, the nonlinear terms
are found to play an important role in energetics, though they
do not appear in the linear relations Eqs. (44) and (45) in the
quasilinear response regime.
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