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First-principles nonequilibrium deterministic equation of motion of a Brownian particle
and microscopic viscous drag
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We present a first-principles thermodynamic approach to provide an alternative to the Langevin equation by
identifying the deterministic (no stochastic component) microforce Fk,BP acting on a nonequilibrium Brownian
particle (BP) in its kth microstate mk . (The prefix “micro” refers to microstate quantities and carry a suffix k.) The
deterministic new equation is easier to solve using basic calculus. Being oblivious to the second law, Fk,BP does
not always oppose motion but viscous dissipation emerges upon ensemble averaging. The equipartition theorem
is always satisfied. We reproduce well-known results of the BP in equilibrium. We explain how the microforce
is obtained directly from the mutual potential energy of interaction beween the BP and the medium after we
average it over the medium so we only have to consider the particles in the BP. Our approach goes beyond
the phenomenological and equilibrium approach of Langevin and unifies nonequilibrium viscous dissipation
from mesoscopic to macroscopic scales and provides new insight into Brownian motion beyond Langevin’s and
Einstein’s formulation.
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I. INTRODUCTION

The aim in this study is to introduce a nonequilibrium
(NEQ) thermodynamics based exclusively on microstates,
which will be called the μNEQT in short (μ for micro-),
and apply it to describe viscous dissipation associated with
the dynamics of a Brownian particle (BP) as it undergoes a
macroscopic relative motion with respect to the rest of the
system �. The system is in a medium �̃; see Fig. 1. Due to the
above motion, � is not in equilibrium (EQ) [1,2]; however, �̃

is always assumed to be in EQ. The μNEQT will be an ex-
tension of the traditional macroscopic NEQ thermodynamics
(MNEQT, M for macro-) [3–9] to the microstate level.

At the simplest level, BP’s diffusion and dynamics in EQ
are described using Einstein’s and Langevin’s approaches,
respectively [10–13]. The study is motivated by the fact that
the dynamics of a BP has received a resurgence of interest
mainly due to the current interest in nonequilibrium (NEQ)
processes observed at the microstate scale such as by micron-
or smaller-sized active BPs often encountered in biological
or man-made systems [14–17], and in inhomogeneous sys-
tems [18]. These processes are strongly influenced by NEQ
fluctuations that may be very different from their equilibrium
counterpart.

Spontaneous fluctuations close to EQ are Gaussian [1] as
in the two approaches above, but non-Gaussianity [19,20]
seems to be a signature of NEQ states and abounds in Nature
when the system is far from equilibrium. In this case, the
above two approaches must fail and we need to develop new
approaches to study NEQ viscous drag. Several attempts have
been made to obtain generalized Langevin equations for the
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microstate mk; see, for example, Ref. [21]. Despite significant
attempts to understand Brownian dynamics in a passive or
active medium under external driving [13,14,16,22–25] re-
sulting in NEQ conditions, we still lack its comprehensive
thermodynamic understanding, gaining which should then
allow us to have a systematic enlargement of the NEQ state
space S (see below) and expansion to higher order than
just two in fluctuations. It was Einstein [10] who had first
initiated a successful thermodynamic approach for a BP in
EQ. This should be contrasted with the mechanical stochastic
approach of Langevin [11]. We will adopt a hybrid approach
in this work in which we begin with a NEQ thermodynamic
from which we derive a mechanical equation of motion.
Being associated with microstates, the μNEQT will allow us
to capture the thermodynamics of fluctuations and viscous
dissipation experienced by a BP under any condition using
the state space S. Within the framework of this theory, the
behavior of the system will dictate whether fluctuations are
Gaussian or not or whether viscous drag follows Stokes’ law
or a more complex behavior. Moreover, while most of us
are familiar with classical MNEQT, not many are trained in
the technical issues of the Wiener process (such as the Itô
and Stratonovich integrals) necessary to follow Langevin’s
stochastic approach. In our approach, we will only be dealing
with a deterministic equation of motion. This should make our
approach quite useful.

Einstein assumed that a BP can be simply described by its
stochastic center of mass (CM) position rk for its specification
and by ignoring the center of mass momentum pk , and the
specification of its constituent atoms or molecules that iden-
tify the BP as a thermodynamic object. The interface between
the BP and the system causes osmotic pressure that drives
the diffusion of its CM. The EQ diffusion of the BP obeys
a diffusion equation, the Fokker–Planck equation describing
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FIG. 1. An isolated system �0 consisting of the system � in
a surrounding medium �̃. The BP, which is not shown here, is
embedded within � as shown in Fig. 2. The medium and the
system are characterized by their fields T0, P0, ... and T (t ), P(t ), ...,
respectively, which are different when the two are out of equilibrium.
Exchange quantities (deX ) carry a subscript “e” and irreversibly
generated quantities (diX ) within the system by a subscript “i” by
extending the Prigogine notation. Their sum deX + diX is denoted
by dX , which is a system-intrinsic quantity (see text).

stochasticity in terms of conditional probabilities in the en-
semble picture [26], which Einstein solved. Langevin [11]
later provided a stochastic formulation of the same motion by
applying Newton’s equation

Md2rk/dt2 = F′
k,BP(t ) (1)

to the BP of mass M in each microstate mk specified by
a small cell around [rk (t ), vk (t )], by dividing the stochastic
force F′

k,BP into a deterministic (no randomness) force com-
ponent Fk,f(t )

.= −γ vk (t ) = −γ drk (t )/dt determined by the
microstate k (with γ > 0), and a stochastic Gaussian white
force component ξ(t ) [27]; see Ref. [12] for an elegant dis-
cussion and inherent assumptions. Both γ and the Langevin
force ξ(t ) are independent of the position and velocity of the
BP in mk so the two forces are independent despite arising
from the interaction of the BP with its surroundings. Chan-
drasekhar [12] emphasizes ξ (t ) as a characteristic of a BP,
which undergoes rapid fluctuations over an interval �t over
which vk (t ) only undergoes a small variation. Implicit in the
above formulation is that (i) Fk,f(t ) opposes motion in every
mk(γ > 0) as if it is a macroscopic, i.e., a thermodynamic
average force satisfying the second law, (ii) the Langevin force
ξ(t ) performs no average work, (iii) ξ(t ) represents a rapidly
fluctuating force (fast-force) and Fk,f(t ) a slowly varying force
(slow-force) due to widely separated time scales, and (iv) the
separation between the two distinct time scales requires two
distinct averages involving a joint probability distribution of
initial microstates [rk (0), vk (0)] and ξ(t ); the latter requires its
conditional probability distribution corresponding to a Wiener
process [26]. The separation between Fk,f(t ) and ξ(t ) is one
of the basic assumptions as discussed by Chandrasekhar [12];
see also Mazur and Bedeaux [27], and Pomeau and Piasecki
[28]. The above four assumptions are taken to be valid in any
theory of a BP in which a clear separation between fast and

slow components of the force are made. For brevity, we will
call all of them as following the Langevin approach, which
also includes the modern theory of stochastic processes [26]
and the Mori-Zwanzig approach [29,30].

The distinct approaches by Einstein and Langevin have
developed into mathematically distinct but physically equiv-
alent ways to investigate stochastic processes [26]. The ap-
proach by Einstein adopts a probabilistic approach to cap-
ture thermodynamic stochasticity and results in ensemble,
i.e., thermodynamic averages such as the root-mean-square
displacement but dynamics is not a central issue. In contrast,
Langevin’s approach starts with the dynamical equation in
which Fk,f(t ) is related to the instantaneous velocity vk (t ). The
stochasticity due to ξ(t ) defines a stationary process because
the probability distribution does not change in time [12], a
well-known property of white noise so that averaging Eq. (1)
over ξ(t ) alone results in a deterministic equation.

All quantities associated with mk are called microquantities
as opposed to their ensemble averages, which we call macro-
quantities or simply quantity in this work. All microquantities
will always carry a suffix k [31,32].

The Langevin equation in one dimension is

Mdvk (t )/dt = F ′
k,BP(t ) = −γ vk (t ) + ξ (t ), (2)

with Fk,f(t )
.= −γ vk (t ). The sets {vk (t )} and {F ′

k,BP(t )} form
the set of outcomes of random variables v and F′, respectively,
over {mk}.

Stokes’ law for a spherical BP of radius a gives γ =
6πaη > 0, where η is the viscosity of the surrounding fluid;
see Ref. [33] for a microscopic derivation.

It is well known that the Langevin force ξ (t ) is central to
satisfy the equipartition theorem 〈v2(t )〉 = T0/M, where 〈•〉
refers to the ensemble average over all microstates and T0 is
the temperature of the medium (heat bath) [11]. Therefore,
one needs to perform two distinct and independent averages
over initial velocities {v0} and positions {x0}, and ξ (t ) at
each time; see for example Reichl [34] for a clear discussion.
However, the equipartition theorem is always fulfilled in the
Einstein approach [10] without any ξ . This suggests that our
hybrid approach based on a statistical formulation (μNEQT) à
la Einstein, from which equations of motion à la Langevin can
also be derived, will offer a possible route to study all possible
kinds of BPs since it will contain all the information necessary
to incorporate the correct (Gaussian or non-Gaussian) nature
of fluctuations appropriate for the system. No ξ (t ) is required.
Thus, the μNEQT offers a framework to study all of them
within a unified first-principles approach in which only the
ensemble average 〈•〉 is required.

Our approach using the μNEQT is very different from the
above two approaches. As various mk’s are defined by the
Hamiltonian H, we identify the microforce Fk,BP(t ) on mk

as the mechanical force determined by the microstate energy
(microenergy) Ek obtained directly from H. This microforce
refers to the system � and not to the BP, unless the BP
happens to be the system as will be the case in Sec. IV.
As H itself is deterministic, Fk,BP(t ) is deterministic, which
immediately distinguishes it from the stochastic force F′

k,BP(t )
used by Langevin. In addition, Fk,BP(t ) is not partitioned
into slow and fast components as is required in the Langevin
approach. Newton’s equation with the deterministic Fk,BP(t )
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is different from Eq. (1) and much simpler to solve as we do
not need to deal with stochastic integrals [26]. This makes
solving the equation of motion straight forward using basic
calculus. There is no requirement that Fk,BP(t ) oppose the
motion in mk as the second law is applicable to macrostates
and not to microstates. Thus, it is distinct from the slow
component Fk,f(t ) above. As is normal, Fk,BP(t ) fluctuates
over {mk}. Its ensemble average FBP(t ) satisfies the second
law and opposes the motion, whereas Fk,f(t ) satisfies the law
(γ > 0) for each microstate. We calculate various fluctuations
over the statistical ensemble in the μNEQT and reproduce
all known results. The probabilities {pk (t )} are determined
uniquely in the μNEQT as we will see. We only focus on
{Fk,BP(t )} and the consequences here. We describe in detail
the computational scheme to show the feasibility and the
usefulness of our approach.

The layout of the paper is as follows. We introduce the new
thermodynamics in the next section with a focus on the BP
problem and give a very general form of viscous dissipation
that follows from the second law. In Sec. III, we discuss in
depth the microforce that results in the viscous dissipation,
the resulting new microstate equation of motion, and calculate
various thermodynamic fluctuations. Section IV deals with the
feasibility of the new approach for the simple case of a BP in
a medium. We consider here the mutual interaction between
the BP and the medium and average it over the macrostate
of the medium. The resulting potential depends only on the
BP-microstate and determines Fk,BP(t ). Thus, we only need
to pay attention to the particles in the BP, which simplifies
the calculation. The final section deals with discussion and
conclusions.

II. A NEW APPROACH USING THE μNEQT

We find it very useful to follow the extension of the
Prigogine’s notation in this study [35]; see also Fig. 1 caption.

A. The concept of internal equilibrium

The central concept of the NEQT exploited here is that of
the internal equilibrium (IEQ) according to which the entropy
S of a NEQ macrostate is a state function of the state variables
in the enlarged state space S [7–9]; see Sec. II C for details.
The enlargement of the space relative to the EQ state space
S0 is due to independent internal variables [3–8] that are
required to describe a NEQ macrostate as we explain below.
In EQ, the internal variables are no longer independent of the
observables forming the space S0. As a consequence, their
affinities vanish in EQ. Observables are quantities that can be
controlled from the outside but not the internal variables. In
general, the temperature T of the system in IEQ is identified
in the standard manner by the relation

1/T = ∂S/∂E , (3)

using the fact that S is state variable in S.
An important property of IEQ macrostates is the following

that will prove very useful here: It is possible in an IEQ
macrostate to have different degrees of freedom or different
parts of a system to have different temperatures than T . For
example, in a glass, it is well known that the vibrational

degrees of freedom have a different temperature than the
configurational degrees of freedom [36,37]. In the viscous
drag problem, the CM-motion of the BP can be separated
out from the motion of its various constituent particles as
is well known; see Sec. IV. Then, it is possible for the BP
motion to have a different temperature than T introduced
above. This observation is easily verified in MNEQT based on
the concept of IEQ as done elsewhere [[37], see Sec. 8.1 and
Eq. (58)]. The derivation also works when various parts of the
system have different temperatures. As this observation will
play an important role in this investigation, we rederive it for
clarity in a different manner, which supplements the previous
demonstration [37] and also shows how an internal variable is
required to describe an IEQ macrostate.

1. An example

Consider the case of two identical bodies �1 and �2

in thermal contact at different temperatures T1(t ) and T2(t )
and energies E1(t ) and E2(t ), respectively; we ignore other
observables N,V , etc. We assume that each one is in an EQ
state of its own at each instant. Together, they form an isolated
system �, whose entropy S(E1, E2) = S1(E1) + S2(E2) is a
function of two variables at each instant t , and can be written
as a state function in the enlarged state space formed by
E = E1 + E2 = const (the observable) and ξ (t ) = E1 − E2

(the internal variable). (We have neglected the interaction
energy E12 between �1 and �2 here.) For this IEQ state, it is
trivial to show that the temperature is T (t ) = 2T1T2/(T1 + T2)
and the affinity T ∂S/∂ξ is A(t ) = (T1 − T2)/(T1 + T2). At
equilibrium, T1 = T2 = Teq and ξ = 0, A = 0. Thus, T1 and T2

may be very different, yet the system can be treated in IEQ,
any temperature difference between its parts not withstanding.
The discussion can be extended easily to the case the two
bodies are in IEQs and also when they are of different sizes.

2. Microstates

We consider the phase space 	 associated with � and
partition it completely into countable nonoverlapping cells
{δzk}, k = 1, 2, . . ., each of size h3N , around the phase point
z ∈ �; here N is the number of particles in � and we assume
that the volume |	| of 	 has been divided by N! to account
for the permutation symmetry of the N particles. We use the
cells to identify the set of microstate {mk} of �. Consider �

to be composed of two distinct bodies �1 and �2, as above
in the example. As each cell δzk is a union of cells δz(1)

k1
and

δz(2)
k2

corresponding to �1 and �2, we can relate the microstate
energies as follows:

Ek = Ek1 + Ek2 + Ek,12, (4a)

where we have also included the interaction energy Ek,12,
which is usually neglected as we did above. These energies are
independent of the macrostates and, therefore, independent of
quantities such as the temperatures that specify macrostates of
various bodies forming the system. The energies correspond-
ing to their macrostates are related by

E = E1 + E2 + E12. (4b)

The interaction energy Ek,12 and its macroaverage E12,
however, will play an important role later in Sec. IV, where
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FIG. 2. We schematically show a system of (a) gas in a cylinder
with a movable piston (at a distance l from the left wall) under an
external pressure P0 controlling the volume V of the gas and the
piston, and (b) a particle attached to an end of a spring in a fluid
and being pulled by an external force F0, which causes the spring
to stretch or compress depending on its direction. The other end of
the spring is fixed to the left wall and l denotes the spring length.
The volume of � in (b) is kept fixed. In an irreversible process, the
internal pressure P or the spring force Fs is different in magnitude
from the external pressure P0 or the external force F0, respectively.
Their difference is the force imbalance that causes the irreversible
macrowork. The temperature of the system is T ; T0, P0 or F0 are the
macrofields of the medium �̃.

we deal with relative motion between � (the BP) and �̃; the
existence of this motion is central for viscous dissipation as
we will see in Sec. II C.

B. Ensemble stochasticity and the second law

We consider a system �, see Fig. 1, that contains a single
BP that is shown explicitly in Fig. 2 as part of �. The single
BP is our focus in this work. We follow the standard formula-
tion for a statistical system � [1], which interacts weakly with
a much larger medium �̃ so this interaction Uint is normally
ignored. This is possible as we do not allow any relative
motion between � and �̃ as noted above; see also Sec. II C.
However, Uint must not be zero identically otherwise there
cannot be any energy (heat and work) exchange between �

and �̃. Together, they form an isolated system �0
.= � ∪ �̃.

The system may be far away from equilibrium so the new
theory is more general than the EQ treatments by Einstein and
Langevin.

As said above, treating NEQ states normally requires some
(extensive) internal variables that are generated due to internal
processes [3–8]. Their conjugate fields, called affinity, vanish
only in equilibrium. The system is specified by a Hamiltonian
H(z|Z) in which z denotes a phase point in its phase space
and Z .= {Z} denotes the set of parameters such as the volume
V , the number of particles N which we do not show, etc. and
internal variables.

The time dependence in some or all components in Z
gives rise to time dependence in the Hamiltonian H(z|Z); the
dynamical variable z plays no role as we show in Eqs. (6a)
and (6b). From H(z|Z), we identify microstates mk (Z) and
their microenergies Ek (Z); we will usually suppress the Z-
dependence unless necessary for clarity. The microstate mk

appears with probability pk in the statistical ensemble. The
set {pk} determines the stochasticity in the ensemble. Accord-
ingly, it determines the nature of the macrostate (EQ vs NEQ)
but the sets {Ek} and {mk} are independent of {pk} so they are
deterministic.

In the μNEQT, the two aspects can be separated out
in an unambiguous fashion so we can uniquely determine
the deterministic quantities such as {Fk,BP}. Accordingly, we
do not need to partition microforces into “slow” and “fast”
components. There is no random force in our approach so we
avoid the complications of the conventional Wiener process in
the Langevin approach. Clearly, the deterministic microforces
are oblivious to the stochastic nature of the thermodynamic
system. The second law emerges automatically after averag-
ing, but not without it. Thus, the μNEQT as an extension of
the MNEQT will be based solely on the sets {Ek} and {pk} so
it provides a first-principles deterministic theory from which
the MNEQT is trivially reconstructed.

To investigate the ensemble, it is useful to treat a mi-
croquantity that takes values {qk} over {mk} at each instant
as a random variable q defined over {mk}. Thus, {Ek} and
{Fk,BP} refer to the outcomes of the random variables E and
FBP, respectively. In this study, we use sans serif typeface
to denote random variables to distinguish them from their
outcomes. For a given {pk}, q is characterized by its ensemble
average 〈q〉 and various moments such as the variance 〈(�q)2〉
in terms of the fluctuation �q .= q−〈q〉. As pk’s continue
to change in a NEQ state, 〈q〉 and 〈(�q)2〉 also change.
In the μNEQT, the macroforce FBP

.= 〈FBP〉 corresponding
to {Fk,BP} must oppose the motion in accordance with the
second law as does Fk,f(t ) but not individual Fk,BP’s. The non-
vanishing fluctuations, see Eqs. (34) and (35), in Fk,BP even
in equilibrium (where FBP = 0) demonstrates that Fk,BP’s do
not always oppose the motion of mk in the μNEQT. This
effectively means that if we consider FBP to be of the form
(−γ v), v, γ having the outcomes {vk}, {γk}, respectively, then
γk is of either sign.

For thermodynamic considerations, instead of consider-
ing FBP, we will find it convenient to consider the internal
microwork diWBP done by it with outcomes {diWk,BP}, see
Eq. (30). Being specific to mk , the internal microwork diWk,BP

also has a unique value but no specific sign; only the ensemble
average diWBP

.= 〈diWBP〉 � 0 in accordance with the second
law as we will see. That diWk,BP and γk have no sign restriction
and Fk,BP does not always oppose motion is the unique feature
of our approach.

We consider the two systems (a) and (b) shown in Fig. 2
as our system �. In Fig. 2(a), P,V represent some generic
work field and variable, which we label pressure and volume
for convenience. We treat the piston or the particle as a BP.
As the BP forms a subsystem, we denote it by �BP and the
remainder of � by �R. We assume that the piston in Fig. 2(a)
may be either mesoscopic or macroscopic, while the particle
in Fig. 2(b) will be assumed to denote a mesoscopic particle.
Thus, our approach will unify the two different scales. We will
establish that both experience fluctuating Brownian motion v
over {mk}, except that for the macroscopic size piston, it is not
noticeable because of its macroscopic mass.

We follow Einstein and focus on the BP’s center-of-mass.
Let V denote the volume of � and PBP and PR the linear
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momenta of �BP and �R, respectively. Let RBP and RR denote
the displacement of the CM of �BP and �R, respectively.
This makes � nonuniform and out of EQ [2]. We assume �

stationary in the laboratory-frame (compare with Ref. [8]), so
that

PBP + PR = 0; (5)

we also take �̃ and, hence, �0 to be stationary so that �

has no relative motion with respect to �̃ and �0 as noted
above.

We will establish here that PBP and PR must be treated as
parameters, which is in the spirit of the original assumption
of Einstein about the CM-motion. As PBP and PR denote the
total momenta that we will associate with respective CMs
of �BP and �R, they can only be changed by “external”
forces to the two bodies, i.e., only the force exerted by �R

on �BP can change PBP, and the force exerted by �BP on
�R can change PR. These forces are equal and opposite as
they are internal forces for �, and cancel out in �; recall
that it is stationary. Thus, we need to determine one of
these forces in the following. This cancellation also applies
to each microstate of �. However, these “external” forces
are due to some mutual interactions between the two bodies
as we discuss at length in Sec. IV. In the absence of this
interaction, PBP and PR cannot change so it is required for the
viscous drag and it cannot be neglected as we have observed
above.

We can treat �R as our medium �̃ and treat �BP as our
system � with PR replaced by the linear momentum P̃ of �̃

if we want the BP to interact directly with �̃, a case that is
a trivial modification but which is usually studied [[33], for
example]. We will discuss this situation in Sec. IV.

C. Deriving microstate thermodynamics

1. Thermodynamic parameters

This section is important to demonstrate the importance
of relative internal motion between two parts of a system
for viscous dissipation. We will first treat the piston problem
as it is commonly discussed in introductory physics. The
Hamiltonian of the system is written as H(z|V, PBP, PR) in
which V, PBP and PR form Z; here PBP and PR are two internal
variables. In the following, we treat z as discrete and use k as
a label. Let us consider the change

dH = ∂H
∂z

· dz + ∂Ek

∂V
dV + ∂H

∂PBP
· dPBP + ∂H

∂PR
· dPR.

(6a)

The first term on the right vanishes identically due to Hamil-
ton’s equations of motion, so it is the variations due to dZ
(dV, dPBP and dPR) that generate any change in H:

dH = ∂Ek

∂V
dV + ∂H

∂PBP
· dPBP + ∂H

∂PR
· dPR. (6b)

We identify this as the generalized work dWk done by
the system [31,32,38,39]. We introduce “generalized me-
chanical forces” in terms of Ek (we suppress Z and use
Ek for H(z|Z) unless clarity is needed) using the standard

definition

Pk
.= −∂Ek

∂V
, −Vk,BP

.= − ∂Ek

∂PBP
, −Vk,R

.= − ∂Ek

∂PR
; (7)

these are the conjugate microfields of V, PBP and PR, respec-
tively. As Ek is uniquely determined by its arguments, these
microforces are deterministic functions of V, PBP, and PR and
are continuous in a proper thermodynamic theory; see below.
The corresponding generalized microworks are PkdV , etc., so
the net microwork done by � is

dWk = PkdV − Vk,BP · dPBP − Vk,R · dPR = −dEk . (8)

The ensemble averages of the various microworks are given
by PdV , etc., see Landau and Lifshitz [1,40] and elsewhere
[8], where

P
.= −∂E/∂V, VBP

.= ∂E/∂PBP, VR
.= ∂E/∂PR (9)

denote macroforces in the MNEQT; here E is the macroen-
ergy E = 〈H(z|V, PBP, PR)〉 in the laboratory frame; the con-
jugate macrofields are the average pressure P and the average
velocities (or affinities) VBP, VR of the BP and �R, respec-
tively, with E ,V, PBP, PR forming S, where the entropy S is
defined as a state function.

We assume that � is in IEQ [7,8]. Thus, S is a state
function S(E ,V, PBP, PR) defined in S because of which IEQ
macrostates have close similarities with EQ macrostates so
that the temperature T of the system is given by Eq. (3) and
the generalized macroheat by dQ = T dS; see below. In addi-
tion, IEQ states have no memory of where they come from.
Despite this, IEQ states have irreversible entropy generation.
In EQ, T = T0, P = P0; see Fig. 1. In addition, VBP and VR

vanish in EQ so they also represent the vanishing affinities
of the medium. As they vanish, they contribute nothing to
the exchange microwork deWk [3,4], which then becomes
deWk = P0dV .

From E (S,V, PBP, PR) we have dE = T dS − PdV +
VBP · dPBP + VR · dPR, which we rewrite using Eq. (5) as

dE = T dS − PdV + V · dPBP, (10)

in terms of the relative velocity or the drift velocity,

V .= VBP − VR = PBP/m, (11)

of the BP with respect to �R in the MNEQT; here m is the
reduced mass of �BP and �R.

We remark that even though PBP as the total momentum
of the BP is its intrinsic property, it is coupled to �R in
accordance with Eq. (5). Consequently,

ECM = P2
BP/2m (12)

is the sum of the kinetic energies of the CM’s of �BP and
�R. This is not surprising as the CM-kinetic energies can be
always separated out from the motion of the particles in �.
As discussed in Sec. II A, it is possible to have a different
temperature TCM associated with the CM-motion, which can
be very different from T . As this motion slows down, TCM

will continue to decrease; cf. Eq. (37c).
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2. Einstein-Langevin duality of the relative motion

We can also rewrite the drift velocity term using the
identity

V · dPBP ≡ FBP · dR = d
(
P2

BP/2m
)
, (13)

where FBP
.= dPBP/dt is the “external” macroforce as dis-

cussed above, and dR = Vdt is the relative displacement of
the BP in the MNEQT. Because of this identity, we can either
use PBP or R as a parameter in Z so the macroenergy E can
be expressed either as EP

.= E (S,V, PBP) or ER
.= E (S,V, R),

a simplification due to the thermodynamic treatment,
with

V = ∂E (S,V, PBP)/∂PBP, FBP = ∂E (S,V, R)/∂R. (14)

We now deal with a reduced state space S′ formed by
E ,V, PBP or E ,V, V. In a proper thermodynamic theory, E
is at least twice differentiable (we do not consider any phase
transition in this work) so the above derivatives exist and are
continuous.

There is very interesting duality hidden in Eq. (13). The
choice of using R as a parameter provides a justification for
Einstein’s approach involving the CM location of the BP and
considering the “osmotic” force FBP acting on it; there was
no need to consider its momentum at all. Thus, his choice in
our approach corresponds to using E as E (S,V, R). However,
Langevin’s interest was not in using R but its momentum
PBP to write down the equation of motion; cf. Eq. (2). While
he was not interested in thermodynamics, his choice in our
approach will correspond to using E as E (S,V, PBP). As a
consequence, our thermodynamic approach is a hybrid ap-
proach capable of allowing both approaches in a unifying
way. However, as the first equation in Eq. (14) merely gives
back PBP = mV, it is not much of a use. Therefore, we will
normally use E (S,V, R) with R as a parameter, which will be
extremely useful in our thermodynamic investigation.

3. Microwork and microheat

Using the generalized macrowork dW = PdV − FBP · dR
and macroheat dQ = T dS, we have dE = dQ − dW , which
expresses the first law in terms of the generalized quantities.
This expresses an important fact: the two terms in it denote in-
dependent variations of the energy E : dQ denotes the change
due to entropy variation and dW isentropic variation. This
allows us to deal with dW as a purely mechanical (dS = 0)
quantity resulting in microstate energy changes. This is easily
seen from the following argument. From E ≡ 〈E〉 .= ∑

kEk pk

in terms of Ek = Ek (V, PBP) [or equivalently Ek = Ek (V, R)]
and pk , we have

dE = ∑
kEkd pk + ∑

k pkdEk,

where

dEk = (∂Ek/∂V )dV + (∂Ek/∂PBP) · dPBP.

The first sum in dE involves d pk at fixed Ek , and evidently
corresponds to the entropy change dS. It denotes the general-
ized heat,

dQ = 〈dQ〉 = ∑
k pkdQk

.= ∑
kEkd pk .

Here, we have used dQ to denote a random variable with
outcomes {dQk}. The second sum in dE involves dEk at fixed
pk and evidently corresponds to dS = 0. Its negative is the
generalized work (we use dW to denote a random variable
with outcomes {dWk}),

dW = 〈dW〉 .= −∑
k pkdEk,

and uniquely identifies microwork dWk = −dEk from which
we can uniquely identify mechanical microforces Pk =
−(∂Ek/∂V ) and (−Vk ) = −∂Ek/∂PBP that appear in the
μNEQT; these quantities refer to the system alone. This can
be done because dWk is a mechanical quantity and is oblivious
to pk .

We use this uniqueness of identifying system-specific mi-
croforces to construct the μNEQT in S′. We have

dWk = PkdV − Vk · dPBP ≡ PkdV − Fk,BP · dR, (15a)

where

Vk
.= ∂Ek/∂PBP, Fk,BP

.= ∂Ek/∂R. (15b)

Using deW = P0dV , we identify the irreversible macrowork
diW

.= dW − deW ,

diW = (P − P0)dV − FBP · dR � 0, (16)

from the second law so that we must have

(P − P0)dV � 0, FBP · dR � 0 (17)

separately as each term refers to an independent internal
process. For the example in Fig. 2(b), we must replace (P −
P0)dV by (Fs − F0)dl , where dl is the spring compression.
Similarly, the exchange heat with �̃ is deQ = T0deS and the
irreversible heat is

diQ = T dS − T0deS = (T − T0)deS + T diS � 0. (18)

As dE = deQ − deW also expresses the first law, we must
have

diQ = diW � 0 (19)

in the MNEQT. Therefore, determining diW allows us to
indirectly determine diQ. In this study, we will not be directly
studying generalized heat, which we will consider in a future
publication.

We thus see that the μNEQT is obtained directly and
uniquely from the MNEQT. However, the most important
and distinguishing feature of our approach as noted above is
that the microwork dWk is deterministic (independent of the
probability pk) so it represents a truly microscopic mechanical
work from which we can directly identify various microscopic
forces. Thus, even though we have started with the MNEQT,
the microscopic work dWk in Eq. (15a) directly and uniquely
identifies microscopic forces Pk and Vk in terms of purely
mechanical quantities of the system alone. As we will see,
the μNEQT provides additional details than are not available
from using the MNEQT alone.
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4. IEQ microstate probabilities

In an IEQ state [41], we have two possible forms of pk

based on the choice of the parameters R or FBP:

pk = exp[� − (Ek + PkV − Fk,BP·R)]/T ], (20)

pk = exp[� − (Ek + PkV − FBP·Rk )]/T ], (21)

with 〈1〉, 〈E〉, 〈P〉, and 〈FBP〉 in Eq. (20) or 〈R〉 in Eq. (21),
fixed so that β = 1/T, βV and (−βR) or (−βFBP) are La-
grange multipliers to maximize the entropy [39]. Here, the
normalization function � ensures that pk’s add to unity. The
form is what is expected in EQ except for the presence of the
internal variable term and of the fields T and P of the IEQ
state. Thus, most of the EQ results can be easily extended to
an IEQ state.

We now prove a very useful and general theorem for
systems in IEQ that allows us to identify the change in the
IEQ temperature as its parameters change.

Theorem 1. As the parameters in Z change and change
the microstate probabilities, the change in the temperature is
given by

dT = T
〈d〉
〈〉 , (22)

where we have introduced

k = � − (Ek + PkV − Fk,BP·R). (23a)

proof. Using

pk = exp(k/T ), (24a)

we find that

d pk = pk

[
dk

T
− kdT

T 2

]
. (24b)

The average 〈〉 is given by

〈〉 = � − E − PV + FBP · R, (25a)

and 〈d〉 is given by

〈d〉 = d� + dW − d (PV ) + d (FBP · R). (25b)

Eq. (22) now follows from
∑

kd pk = 0 as an identity for any
IEQ macrostate. �

To use Eq. (22), we must explicitly evaluate 〈〉 and 〈d〉
using Eqs. (25a) and (25b), respectively, in terms of quantities
appearing on their right sides.

D. Viscous drag and the Langevin limit

We use the notation

diWBP
.= −FBP · dR ≡ −V · dPBP � 0, (26)

related to the second irreversible contribution in Eq. (17). It
follows that for the inequality to be valid, we must have the
following form for NEQ FBP in the MNEQT:

FBP = −V f (T, V, t ), f (T, V, t ) > 0, (27)

in which f (T, V, t ) must be an even scalar function of
V = PBP/m at each instant so that diWBP = f (T, V, t )V2dt �
0. As FBP opposes motion, it represents the viscous force we

are interested in. Let us compare FBP above with its definition
in Eq. (14), according to which it is a derivative of E with
respect to R. The only way this derivative can give a result
along the direction of V is for the scalar function E to be a
function of the combination

u
.= V · R (28)

as a scalar. We thus conclude that

f (T, V, t ) = −∂E (S,V, u)/∂u, (29)

so f (T, V, t ) will also include a dependence on R in f through
u so we must write it as f (T,V, u). Hopefully, this will make
Eq. (27) suitable for some active BPs [14–17]. In general,
the dependence on V through u may be very complex as will
become clear in Sec. IV.

As FBP is the macroforce corresponding to the viscous
drag, the above discussion provides a thermodynamic jus-
tification of the viscous drag. To make connection with
the Langevin equation, we will assume f (u, t ) to be a
power series in u2 with f (0, t ) = γ (t ) � 0 so that diWBP �
γ (t )V · dR is the frictional work in the small-speed approx-
imation, which will be called the Langevin limit from now
on. In this limit, diWBP � γ (t )V2(t )dt � 0 at any instant t .
Langevin takes γ (t ) to be a constant γ .

The above discussion also provides a thermodynamic jus-
tification of the viscous drag in the Langevin equation in the
small-speed approximation. For arbitrary speeds, we can treat
f (T, u, t ) as the analog of an effective γeff in Eq. (2), which
is a complicated function of T, V and t , a situation commonly
encountered in active BPs [14–17]. We will not pursue active
BPs in this work except tangentially; they will be treated later.

As we will see below, we get more insight into the viscous
force FBP(t ) when we consider its microanalogs Fk,BP(V,t ) in
the μNEQT.

III. FLUCTUATIONS AND A NEW EQUATION OF MOTION

The fluctuations in random variables are the hallmark of a
statistical system and are always present whether we consider
a reversible or an irreversible process. Let us consider the
random variable P with outcomes {Pk}. The fluctuation �P
has outcomes {Pk − P} with P = 〈P〉, which determine the
mean square fluctuation 〈(�P)2〉 � 0. We know from EQ
statistical mechanics (P = P0, T = T0) [1] that

〈(�P)2〉eq = −T0(∂P/∂V )S

is not identically zero so Pk fluctuates over mk and takes
values on both sides of P0. Since P is not determined by
any macrostate, {Pk} remain the same whether we are dealing
with an EQ or a NEQ macrostate. Moreover, diWk,V

.= (Pk −
P0)dV does not have a particular sign in general, even though
the macrowork diWV

.= (P − P0)dV � 0 is never negative;
see Eq. (17). Because of this conformity, it is customary to call
the macrowork diWV the irreversible work. As the microwork
diWk,V does not follow the sign requirement, it is better to call
it internal microwork as noted above.

Similarly, there are fluctuations in the random variables
FBP and V (with outcomes {Fk,BP} and {Vk}, respectively)
around the average FBP ≡ 〈FBP〉 and V ≡ 〈V〉, respectively,
which are always present. This will be explicitly demonstrated
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later; see Eqs. (34) and (35). As the EQ affinity F0BP = 0 or
V0 = 0 so that deWk,BP ≡ 0 [3–5], we conclude that diWk,BP ≡
dWk,BP fluctuates over {mk} around the macroaverage dWBP ≡
diWBP. Thus, the internal microwork diWk,BP does not have a
particular sign, while diWBP does as seen in Eq. (26).

It is important to make the following three remarks con-
cerning Fk,BP(t ):

(a) It is not broken into a fast- and a slow-component for
each k as is common in the Langevin approach.

(b) It represents the outcome of a random variable FBP

over the microstates.
(c) For a given k, FBP possesses no randomness so Fk,BP(t )

has a unique value.

A. A new equation of motion

That the internal microwork diWk,BP has no sign restriction
is another point of departure from Langevin’s approach and is
discussed next. We focus on the form

diWk,BP
.= −Fk,BP · dRk (30)

for mk and determine Newton’s equation for the BP at a
relative location Rk (t ); k on Rk (t ) is added for clarity. The
deterministic equation

md2Rk (t )/dt2 = mdVk (t )/dt = Fk,BP(t ) (31)

describes the trajectory of the BP in the μNEQT. The tra-
jectory Rk (t ) is obtained by integrating twice Eq. (31) using
basic calculus, and is also deterministic and at least twice dif-
ferentiable. Introducing the deviation �Fk,BP(t )

.= Fk,BP(t ) −
FBP(t ), we can express Fk,BP(t ) in terms of FBP(t ) as

Fk,BP(t )
.= FBP(t ) + �Fk,BP(t ), (32)

which may suggest that �Fk,BP(t ) is Langevin’s ξ(t ). This
is where other important differences from the Langevin ap-
proach appear. The FBP(t ) is a function of the average relative
velocity V(t ) ≡ 〈V(t )〉 so it does not represent the microforce
Fk,f(t ) that appears in Eqs. (1) and (2). Furthermore, Fk,BP

.=
∂Ek/∂R is deterministic in the μNEQT as noted above. So
is FBP(t ). Thus, �Fk,BP(t ) also takes a single value for each
mk , while ξ(t ) is stochastic. The stochasticity in the μNEQT
emerges as we average Eq. (31) over all microstates to yield

md2R(t )/dt2 = FBP(t ) − 2m〈ṗṘ/p〉 − m〈 p̈R/p〉, (33)

with R(t )
.= 〈R(t )〉, pk > 0, and a dot represents the total time

derivative; the last two terms on the right side are due to
temporal changes in {pk}; they vanish in EQ so that we obtain
a simple equation of motion for the average trajectory R(t )
of Rk (t ) that is normally discussed in the literature for the
Langevin equation.

1. Solving Eq. (31)

We will consider the simpler case by keeping V constant
so we do not have to worry about the PV -work. Let Rk (0) and
Vk (0) be the initial values of Rk (t ) and Vk (t ), respectively;
let T (0) be the initial value of T . It is convenient to discretize
the situation by dividing a predetermined time interval �t ,
over which we are interested in finding the solution, into n
nonoverlapping intervals δtl−1 = tl − tl−1, l = 1, . . . , n, with
t0 = 0 and tn = �t . We determine the initial value Fk,BP(0)

of Fk,BP(t ) using Eq. (15b), and we use Eq. (20) to determine
the initial probability pk (0); note that we must not consider
the PkV term for this case. We now solve Eq. (31) during δt0
to determine the next values of Rk (t1), which is then used to
determine the next values of Fk,BP(t1) and pk (t1). We repeat
these steps n times to obtain the solution over the interval
(tn, t0) = �t .

2. Entropy and temperature changes

The instantaneous macroentropy is given by
S

.= ∑
k pksk, sk

.= − ln pk . Using d pk (tl−1) = pk (tl ) −
pk (tl−1) obtained above, we determine dS(tl−1)

.=∑
kd pk (tl−1)(sk (tl−1) − 1) and dQ(tl−1) = T (tl−1)dS(tl−1)

in the MNEQT. Using deQ(tl−1) = C̃(T0 − T (tl−1)),
where C̃ is the heat capacity of �̃, and equating it with
T0deS(tl−1), we determine deS(tl−1), which is then used
to determine the irreversible macroentropy generation
diS(tl−1) = dS(tl−1) − deS(tl−1).

The temperature change during δtl−1 is given in Theorem 1.
We thus have a complete MNEQT.

B. Fluctuations

Standard fluctuation theory [1,42,43] deals with EQ fluc-
tuations where no internal variables are present. However,
as we have shown elsewhere [39] and also discussed above,
their presence in IEQ states causes no new complications
and we can just follow the standard formulation to obtain
instantaneous fluctuations in FBP, R, V, and PBP when the
system is in an IEQ state involving the internal variable FBP

or PBP.
We restrict ourselves to a one-dimensional (1D) case for

simplicity (R replaced by X ). The probability of fluctuations
about the IEQ state [1] is given by W0 exp(−βρ/2), where

ρ = �T �S − �P�V + �FBP�X

in terms of various fluctuations from the IEQ state and
W0 is some unimportant constant. As ρ is a thermody-
namic expression, we have the liberty to chose T,V , and
FBP as independent variables to express ρ in terms of
�T,�V and �FBP :ρ = (∂S/∂T )(�T )2 − (∂P/∂V )(�V )2 +
2(∂X/∂T )�T �FBP + (∂X/∂FBP)(�FBP)2 by exploiting some
Maxwell relations [9]. The coefficients of fluctuations in the
�T -�FBP subspace define a 2 × 2 matrix M from which we
can determine various mean square fluctuations [1,42,43]. For
the interesting mean-square fluctuation 〈(�FBP)2〉, we obtain

〈(�FBP)2〉 = T (∂S/∂T )V,FBP/M, (34)

where M
.= (∂S/∂T )(∂X/∂FBP) − (∂X/∂T )2 � 0 is the deter-

minant of M. From these fluctuations, we can determine any
other fluctuation such as 〈(�X )2〉. However, a simple method
is to use T,V , and X as independent variables, which yields

〈(�X)2〉 = −T (∂P/∂V )T,X /M ′,

where M ′ .= −(∂P/∂V )(∂FBP/∂X ) − (∂FBP/∂V )2 � 0.

C. Microwork fluctuations

The above NEQ fluctuation calculation is valid in general
for small fluctuations about some IEQ state and are by very

012140-8



FIRST-PRINCIPLES NONEQUILIBRIUM DETERMINISTIC … PHYSICAL REVIEW E 102, 012140 (2020)

nature Gaussian. To go beyond the Gaussian form, we must
expand to higher order, which we will not do here as we are
only interested in establishing the feasibility of the μNEQT
and the reproducibility of known results. As Fk,BP is specific
to mk , diWk,BP is not affected by pk; it is the same whether we
consider an EQ or a NEQ state. In the present case, diWk,BP

.=
−Fk,BPdX fluctuates around its average diWBP

.= 〈diWBP〉 �
0. As the average fluctuation 〈(�FBP)2〉(dX )2 does not neces-
sarily vanish, diWk,BP takes values on both sides of diWBP. To
understand its variation, we consider the EQ state for which
diWBP,eq ≡ 0 so that diWk,BP takes both positive and negative
values around 0. This variation remains true even in a NEQ
state; only pk’s change.

Thus, we have finally established that there is no sign
restriction. Having no restriction on the sign of diWk,BP means
that Fk,BP may or may not oppose the motion for mk . This
is different from the Langevin approach. In the latter, the
deterministic force Fk,f(t )

.= −γ vk (t ) 	= 0 always opposes
the motion for every microstate mk; this is in accordance
with the second law. Therefore, diWk,f

.= Fk,f(t ) · dR must
generate some irreversible entropy diS > 0; cf. Eqs. (16) and
(18). In our theory, Fk,BP is a mechanical force so it does not
change pk and, hence, the entropy. The other difference is
the following. As Fk,f(t ) is obtained from F′

k,BP by averaging
over the fast Langevin force ξ, it is analogous is some crude
sense to our deterministic microforce Fk,BP but the latter does
not always oppose the motion. Recall that Fk,f(t ) represents
the slow component of the microforce on BP, while Fk,BP is
the net microforce on BP. If we insist on using the Langevin
interpretation for γ , then this is equivalent to allowing γ to
have both signs as is considered to be the case for active BPs
[14–17].

D. The Langevin limit

If (∂S/∂FBP)T,V = (∂X/∂T )V,FBP can be neglected, then the
fluctuations in T,V, and FBP become independent. In partic-
ular, 〈(�FBP)2〉 = T (∂FBP/∂X )T,V . It follows from Eq. (14)
that FBP(S,V, X ) is a function of X , and using FBP � −γ Ẋ
in the Langevin limit, we find that ∂FBP/∂X � −γ Ẍ/Ẋ =
γ 2/m, so that

〈(�FBP)2〉 � T0γ
2/m > 0, (35)

which is precisely what we expect in this approximation since
(�FBP)2 = γ 2Ẋ 2 and 〈Ẋ 2〉 = T0/m in EQ; see below. We can
similarly obtain 〈(�X )2〉 = T0(∂X/∂FBP)T,V = mT0/γ

2 > 0
and 〈�X�FBP〉 = T0. In a highly viscous environment, the
mean square CM-fluctuation becomes very small as expected,
and 〈(�FBP)2〉 become large. All these results are valid for
any BP of any reduced mass m ranging from mesoscales to
macroscales in this limit.

E. Relative velocity fluctuations

Integrating Eq. (30) over an interval (0, t ), we have

�iWk,BP = −
∫ t

0
Fk,BP(t ) · Vk (t )dt, (36a)

where Vk (t ) is the relative velocity. Note that we do not need
pk to calculate the microwork, which makes it trivial; see

Sec. IV F. We thus have the general result

�iWk,BP = −(m/2)
[
V2

k (t ) − V2
k (0)

]
, (36b)

which can have any sign. The above result is an identity so it is
not restricted to small speeds only. As mk at 0 and t may have
different probabilities, we take the ensemble average using
joint probabilities to obtain

�iWBP = (m/2)(〈V2(0)〉 − 〈V2(t )〉) � 0. (37a)

From the comments above about the close similarity be-
tween the IEQ and EQ states, we conclude that the veloc-
ity distribution is given by the Maxwell distribution at the
instantaneous temperature TCM(t ) of the degrees of freedom
associated with the CM-motion as described in Sec. II A.
Thus, we have the conventional result

〈V2(t )〉 = 3TCM(t )/m (37b)

for the BP in an IEQ state so that

�iWBP = (3/2)[TCM(0) − TCM(t )] � 0, (37c)

showing that the slowing down of the CM-motion results in its
temperature falling as time goes on. Eventually, TCM(t ) → T0.
In EQ, the Brownian motion does not undergo any temper-
ature change (�iWBP = 0) as is the case for the Langevin
equation, even though Vk varies over mk .

In the Langevin limit, the equation of motion for mk with a
time-dependent γk (t ) becomes [see Eq. (50) for justification]

dVk (t )/dt = −(γk (t )/m)Vk (t ), (38a)

whose solution is

Vk (t ) = Vk (0) exp

(
−

∫ t

0
γk (u)du/m

)
, (38b)

which is independent of pk . To be consistent with Eq. (37b),
γk (t ) must not have a fixed sign over {mk}. This is consis-
tent with the observation that �iWk,BP has no particular sign
over {mk}. This means that the components of the possible
velocities can range from −∞ to +∞ to satisfy Eq. (37b).
Consequently,

〈V2(t )〉 =
〈
V2(0) exp

(
−2

∫ t

0
γ (u)du/m

)〉
� 〈V2(0)〉, (39)

where the last inequality follows from Eq. (37a) and where the
random variable γ has outcomes {γk}. We thus see that our ap-
proach has allowed the equipartition theorem to remain valid
at all times. From 〈V2(t )〉 ∝ 1/m, we conclude that larger
the mass, smaller the mean square fluctuations such as for
a macroscopic piston. However, for a mesoscopic Brownian
particle, it can be appreciable and can be observed.

For the Langevin case γk (u) � γ > 0 for all k so
that 〈V2(t )〉 = e−2γ t/m〈V2(0)〉 � 〈V2(0)〉, which is consistent
with the above inequality but shows that 〈V2(t )〉 → 0 as
t → ∞. This highlights another important difference from
the Langevin approach: in the μNEQT, γk (t ) has no sign
restriction. Because of this, it cannot be taken out of the av-
eraging process. By taking it out in the Langevin case results
in an incorrect answer. To see it clearly, we evaluate �iWBP in
Eq. (37a) to obtain �iWBP = (m/2)〈V2(0)〉(1 − e−2γ t/m) � 0.
As t → ∞, �iWBP = (m/2)〈V2(0)〉 > 0, while it must vanish
in EQ as noted above.
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F. EQ diffusion

We now determine the average square displacement of the
BP over a long time. For the sake of simplicity, we will only
consider diffusion in an EQ state as considering IEQ states
creates complications that we wish to avoid. We consider
the relative displacement �Rk (t, 0)

.= Rk (t ) − Rk (0) over all
{mk} at long time and follow Einstein again [10]. The distribu-
tion function of the relative displacement �Rk = �Rk (t, 0)
over all {mk} is given by pk (�R, t ) = e−�R2/4Dt/(4πDt )3/2,
so that

〈�R2(t )〉 = 6Dt (40)

as a function of time; here, D is the diffusion constant, which
is related to the viscosity of the fluid by D = T/6πηa. We can
also compute 〈�R2(t )〉 from Eq. (38a) in a standard way but
we will not stop to do that.

IV. COMPUTATIONAL SCHEME

To establish the feasibility of our theory, we describe the
computational methodology by considering a simpler version
of the case studied in Sec. II: �BP as the system � (previously
denoted by �BP) in a medium �̃, which with � forms the
isolated system �0 (as before). It is this version that is
normally considered in the literature, and its computational
scheme must be consistent with the μNEQT we have already
developed in the previous sections, except that �R is absent
in the current consideration. The BP contains NBP particles,
each of mass mBP so that M = NBPmBP, and �̃ contains Ñ
particles, each of mass m̃, so that its total mass is M̃ = Ñm̃.
In addition, V and Ṽ are the volumes of the BP and the
medium, respectively, which we keep fixed along with NBP

and Ñ . Accordingly, we do not exhibit them as parameters
in the Hamiltonians. Our choice for the volumes means that
there is no “pressure-volume” work, so the only microwork
we need to consider is due to the microforce Fk,BP resulting
in diWk,BP; note that now k refers to the BP microstate mk .
Earlier, mk refereed to the joint macrostates of �BP and �R.
This simplifies the computational complexity considerably.

We will take �̃ to be in equilibrium as before in a canonical
ensemble with equilibrium temperature T0,

p̃k̃ = exp[β0(F̃ − Ẽk̃ )], (41a)

for its microstate m̃k̃; here, F̃ is the thermodynamic potential
(the Helmholtz free energy). We take �, i.e., �BP in an
internal equilibrium with temperature T and microforce Fk,BP;
its microstate probability is

pk = exp[β(� − Ek + Fk,BP·R)], (41b)

cf. Eq. (20), where � is the thermodynamic potential, and
Fk,BP is given in Eq. (15b) and determined below for the
current case. As noted earlier, β0, β, and R are the Lagrange
multipliers so they are not fluctuating over m̃k̃ and mk , as the
case may be. In other words, they are parameters and must
be held fixed as we use these probabilities to take averages.
However, we can also treat FBP as the parameter so that Rk is
fluctuating; cf. Eq. (21). However, we will not do so here.

A. Various frames

We consider three different frames K0, K̃ , and K , in which
�0, �̃, and � are at rest, respectively, with their CM’s at the
origins of the frames. These frames determine their thermody-
namic, i.e., internal energies E0, Ẽ , and E , respectively. The
Hamiltonian of �0 is denoted by H0(z0 ,̃z0|RBP, R̃) with z0 =
{z0i = (x0i, p0i )}NBP

i=1 and z̃0 = {̃z0 j = (̃x0 j, p̃0 j )}Ñ
j=1 referring

to the particles composing the BP and �̃, respectively, and
RBP and R̃ denoting the CM-displacements of the BP and
�̃, respectively, with respect to K0. In the following, we will
exclusively use i for a BP-particle and j for a medium particle.
The Hamiltonian of � with respect to K and of �̃ with respect
to K̃ are denoted by H(z|RBP) and H̃(̃z|R̃), respectively (see
below); here, z = {zi = (xi, pi )} and z̃ = {̃z j = (̃x j, p̃ j )} refer
to K and K̃ , respectively. By definition,

NBP∑
i=1

zi = 0,

Ñ∑
j=1

z̃ j = 0,

mBP

NBP∑
i=1

x0i + m̃
Ñ∑

j=1

x̃0 j = 0,

NBP∑
i=1

p0i +
Ñ∑

j=1

p̃0 j = 0. (42)

The first sum in the last equation is PBP and the second sum is
P̃ = −PBP.

B. Separating center of mass motion

Let (RBP, VBP) and (R̃, Ṽ) denote the (displacement, ve-
locity) of the CM’s of K and K̃ , respectively, with respect to
K0. We have R = RBP − R̃ as the relative displacement and
V = VBP − Ṽ as the relative velocity of the BP relative to �̃.
Then

x0i
.= xi + RBP, p0i

.= pi + mBPVBP,

x̃0i
.= x̃i + R̃, p̃0i

.= p̃i + m̃Ṽ.

We can obtain E0 in K0 by adding to Ẽ + E the CM-kinetic
energies ECM

.= P2
BP/2M + P̃2/2M̃ = P2

BP/2m of the BP and
�̃, and their mutual interaction energy Û :

E0 = ECM + Ẽ + Û + E ; (43a)

cf. Eq. (4b). It should be noted that because of no pressure-
volume work here, this interaction energy is responsible for
the viscous drag. As Eq. (43a) is a purely mechanical relation,
it also refers to a microstate m0k0 (k0 = k̃ ⊗ k) of �0 in
terms of the microstates m̃k̃ and mk of the medium and the
BP, respectively. Thus, E0, Ẽ , E , and Û can be replaced,
respectively, by their microanalogs E0k0 , Ẽk̃ and Ek , and Ûkk̃

or Ûk0 , while we can replace ECM by its microanalog ECM,k or
ECM,̃k . Thus, we have the identity

E0k0 = ECM,k + Ek + Ûkk̃ + Ẽk̃ ; (43b)

012140-10



FIRST-PRINCIPLES NONEQUILIBRIUM DETERMINISTIC … PHYSICAL REVIEW E 102, 012140 (2020)

cf. Eq. (4a). We obtain various macroenergies from them:

E0 =
∑

k0

pk0 E0k0 , Û =
∑

k0

pk0Ûkk̃,

Ẽ =
∑

k̃

pk̃ Ẽk̃ =
∑

k0

pk0 Ẽk̃,

E =
∑

k

pkEk =
∑

k0

pk0 Ek . (44a)

Let us introduce conditional probabilities p(̃k | k) of k̃ given
k so that pk0 = pk p(̃k | k). We use them to determine mi-
croenergies E0k and Ẽk of �0 and �̃, respectively, that can
be associated with mk:

E0k
.=

∑
k̃

p(̃k | k)Ek0 ,

Ẽk
.=

∑
k̃

p(̃k | k)Ẽk̃,

E0 =
∑

k

pkE0k, Ẽ =
∑

k

pkẼk . (44b)

If the medium and the BP are quasi-independent, then p(̃k |
k) = pk̃ .

As �̃ is in equilibrium, no irreversibility can be associated
with it. Accordingly, we ascribe the irreversibility to the
BP itself in the following. For this, we need to obtain the
interaction energy associated with the BP alone so we must
average Ûk,̃k over the medium [see the second equation in
Eq. (44b)] as follows:

Ûk
.=

∑
k̃

p(̃k | k)Ûk,̃k ; (44c)

it is the interaction energy associated with mk for a given
macrostate of the medium. We can now extract E0k from
Eq. (43b):

E0k = ECM,k + Ek + Ûk + Ẽk . (45)

We did not explicitly consider Û in Secs. II C and II D as
we were considering the microstates of �BP and �R together
forming �. This tremendously simplified our discussion there
as Ûk was already included in Ek . The situation is differ-
ent here where we consider �BP and �̃ together but we
wish to consider the microstate mk of the BP alone so we
need to deal with Ûk,̃k separately and determine Ûk in our
discussion.

C. Hamiltonians

We first focus on the BP. In its rest frame K , its Hamiltonian
is given by

HBP(z) =
NBP∑
i=1

p2
i /2mBP +

NBP∑
i,i′=1

′
U (xi − xi′ ), (46a)

where U (xi − xi′ ) is the potential energy between BP particles
at xi and xi′ . The prime over the summation implies i 	= i′. The
Hamiltonian when applied to mk determines Ek so that E =
〈HBP〉 = 〈E〉 with microstate probabilities pk given above.

The Hamiltonian of �̃ in its rest frame K̃ is given by

H̃(̃z) =
Ñ∑

j=1

p̃2
j/2m̃ +

Ñ∑
j, j′=1

′
Ũ (̃x j − x̃ j′ ), (46b)

where Ũ (̃x j − x̃ j′ ) is the potential energy between the parti-
cles of �̃ at x̃ j and x̃ j′ . It gives the microstate energy Ẽk̃ of
m̃k̃ so that Ẽ = 〈H̃〉�̃ = 〈Ẽ〉�̃ with microstate probabilities p̃k̃
given above.

In terms of these Hamiltonians, H0 is given by

H0 = HBP( z0|RBP) + H̃( z̃0|R̃) +
NBP∑
i=1

Ñ∑
j=1

Û (x0i − x̃0 j ),

(46c)

in the K0 frame. Here, Û (x0i − x̃0 j ) denotes the mutual po-
tential energy between a BP particle at x0i and a medium
particle at x̃0 j . The mutual interaction between the BP and
�̃ is described by the last term above.

D. Frame change

We need to express the interaction energy explicitly in
terms of R; cf. Eqs. (14) and (15b). This will be needed below;
see Eq. (50). Using the identity x0i − x̃0 j= xi − x̃ j + R, we
rewrite Û (x0i − x̃0 j ) = Û (xi − x̃ j + R); here, xi is defined in
the K frame and x̃ j is defined in the K̃ frame so that we can
manipulate this energy conveniently as required below. The
last sum in Eq. (46c) is the potential energy between the BP in
a given microstate mk and the medium in a given microstate
m̃k̃ , and defines Ûkk̃ . To obtain Ûk , we need to average it
according to Eq. (44c) using p(̃k|k). While this can be done,
for computational simplicity here, we will average using p̃k̃ ,
the canonical distribution of �̃ in its rest frame, given above,
which we denote by 〈〉�̃ . It is a restricted average and gives us

Ûk (T0, R)
.=

NBP∑
i=1

〈
Ñ∑

j=1

Û (xi + R − x̃ j )

〉
�̃

, (47)

for mk determined by {xi}; see the definition of Ẽk in
Eq. (44b); the dependence on T0 is due to the above averaging.

E. Determination of FBP and Fk,BP

The average of Ûk (T0, R) over pk determines the macro-
scopic potential

Û (T, T0, u) = 〈Û(T0, R)〉, (48)

where Û(T0, R) is the random variable with outcomes
{Ûk (T0, R)}, T appears due to the ensemble averaging, and u
is defined in Eq. (28) as we now explain. This average is the Û
in E0 in Eq. (43a). Using E0 for E in Eq. (14) and recognizing
that only Û depends on R, we realize that this dependence
must be through u as explained in Sec. II D. We thus find that
the macroforce FBP is given by

FBP(t )= V
∂Û (T, T0, u)

∂u
,

∂Û (T, T0, u)

∂u
< 0, (49)
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in which ∂Û (T, T0, u)/∂u represent (− f (T, V, t )) in Eq. (27)
for the current case; cf. Eq. (29).

We now use Eq. (15b) by replacing Ek there with E0k . We
obtain

Fk,BP(t ) = ∂Ûk (T0, R)

∂R
. (50)

This determines the microforce thermodynamically.
As we have already discussed the CM-motion of the BP,

we can go back to the K frame and consider HBP(z) to write
down the equations of motions for xi and pi for mk ,

dpi

dt
= −

NBP∑
i′

′ ∂U (xi−xi′ )

∂xi
, mBP

dxi

dt
= pi, (51)

dealing only with internal forces. These equations determine
how mk evolves in time and determine the evolution of {zi} in
time in the K frame. From this, we extract {xi(t )} to be used in
Eq. (48) to determine Ûk (T0, R). We then determine Fk,BP(t )
and follow the prescription of the solution of Eq. (31) over �t .

Note that we do not need to solve the Hamilton’s equations
for the particles in �̃, which provides a major simplification of
our approach. The stochasticity, as we have mentioned several
times, emerges and is completely captured when we average
over mk using pk from Eq. (41b).

The BP equation of motion in Eq. (31) differs from the
original Langevin equation in Eq. (1) in that it is missing
the partitioning shown in Eq. (2). Since the Hamiltonian in
Eq. (46c) does not have any stochasticity, Fk,BP(t ) above
cannot be compared with the F′

k,BP(t ) in Eq. (1). It follows
from Eq. (31) that V = Vk in a given BP-microstate mk is
a slowy-varying function that is differentiable. The random
fluctuations in it are described by considering it over mi-
crostates. Thus, the fast fluctuations similar but not identical to
ξ are captured when we consider the ensemble {Vk} or {Fk,BP}
over {mk}. The fluctuations in the medium are not relevant in
our approach as we have performed an average over m̃k̃ for
reasons explained above.

We can use well-established solution and surface thermo-
dynamic theories [44] to determine useful forms of Û , which
can be useful to validate any approximation, if any, is made in
the evaluation of Ûk . In most cases, the interaction potential
can be approximated by considering N (s)

BP and Ñ (s) particles
in a thin interface surrounding the BP-surface and not all
the particles. This will provide a further simplification in the
calculation. The averaging in Eq. (48) is limited to only the
thin interface and not the entire medium. Indeed, Einstein used
this interface to determine the osmotic force in his analysis
of the Brownian motion. Other sophisticated techniques may
also be useful to deal with the computation [45–49].

F. A BP with NBP = 1

Let us consider the simplest possible case NBP = 1 that is
commonly studied; see, for example, Ref. [33]. In this case,
Eq. (51) is meaningless and Ûk depends only on a single
phase point z = 0 of the BP, which also refers to its CM.
The BP-microstate mk is now the small cell δz around z in a
6-dimensional phase space. With respect to the CM of �̃, the
BP has a relative displacement R and a relative velocity Vk .

We determine Ûk (T0, R) for general R. This has to be done
once. We now determine Fk,BP(t ) using Eq. (50) and FBP(t )
for all possible values of R. We then integrate the equation of
motion using basic calculus.

As an example, let us assume that Ûk (T0, R) is given by

Ûk (T0, R) = −γk (T0, t )R(t ) · Vk (t ), (52)

in terms of the scalar product; cf. Sec. II D. This results in

Fk,BP(t ) = −γkVk (t ), diWk,BP(t ) = γkV2
k (t )dt . (53a)

Comparing with Eq. (38a), we see that Vk (t ) after basic
integration is given by Eq. (38b). Note again that we do
not need to consider �̃ in obtaining the solution, which
demonstrate the usefulness of the new theory. The macroforce
FBP(t ) = 〈−γk (T0, t )Vk (t )〉 must follow the form for viscous
drag in Eq. (49) so we have

FBP(t ) = −γeffV(t ), diWBP(t ) = γeffV2(t )dt, γeff > 0,

(53b)
where dR(t )/dt = V(t )

.= 〈V〉, and γeff is an effective param-
eter defined by γeff(T0, t )V2(t )

.= 〈γ (T0, t )V2(t )〉.

G. Returning to the BP in �

We now return to the earlier case of the BP as a part of �. In
this case, Ûk (R) is the analog of Ûk (T0, R) for the microstate
mk of �. Its ensemble average Û (T, u)

.= 〈Ûk (R)〉 over mk is
subsumed into E in Eq. (14); the dependence on R appears
through u as explained in Sec. II D. Because of this, there is
no reason to extract it from E so we identify the viscous force
FBP(t ) by differentiating E with respect to u; see Eq. (29).
This macroforce is for the entire system � and not for just
�BP. Thus, the microforce Fk,BP(t ) is for �’s microstate mk .
While we did not do, it is possible to extract the microforce
associated with a BP-microstate by the method presented in
this section.

V. DISCUSSION AND CONCLUSIONS

The present work was motivated by a desire to obtain a
deterministic equation of motion of a BP in microstate mk

by considering a microstate thermodynamics (μNEQT) to
provide an alternative to the stochastic Langevin approach
that contains the original phenomenological Langevin equa-
tion of motion and the more advanced generalized Langevin
equations such as due to Zwanzig and Mori [29,30]. The
central concept in the latter approaches is the partition of the
microforce acting on a BP into fast and slow components,
which finds its formal justification in the Mori-Zwanzig ap-
proach [29,30]. The stochasticity due to the fast component
is determined by the conditional probability of ξ and the
stochasticity of the slow component is determined by the
initial conditions.

In contrast, we have adopted a hybrid approach to derive
the equation of motion of the BP, in the spirit of Langevin, by
following not his mechanical approach but a thermodynamic
approach based on the energy E , which generalizes the one
adopted by Einstein [10]. Instead of focusing only on the BP
and its diffusion in a medium (which we treat in Sec. IV),
we take a comprehensive first-principle approach to consider

012140-12



FIRST-PRINCIPLES NONEQUILIBRIUM DETERMINISTIC … PHYSICAL REVIEW E 102, 012140 (2020)

the BP as a part of a system �, embedded in a medium �̃;
see Fig. 1. All of them form the isolated system �0. We
consider the rest frame K0 in which �0, �̃, and � are at rest
(except in Sec. IV), but we allow the BP and �R (replaced by
�̃ in Sec. IV) to have a relative motion specified by R and
V, necessary to describe the process of viscous drag as we
find that the relative motion between �BP and �R (or �̃) is
the source of viscous dissipation. We treat R as a parameter
and consider the energy E (S,V, R), from which we determine
the viscous force FBP as it opposes motion in accordance
with the second law. After identifying this macroforce in our
thermodynamic approach, we go a step further and obtain a
deterministic equation of motion of the microstate mk of �,
which was not the focus of Einstein. Later in Sec. IV, we
return to the simple system of a BP in a medium, and obtain
the deterministic equation of motion of the BP-microstate mk

(not to be confused with mk of � discussed above). There we
establish that the mutual interaction energy Û between them
is the source of viscous dissipation.

We accomplish our goal by developing a μNEQT that
deals with each microstate individually. At this level, the
microworks are done at fixed microstate probabilities pk

so evaluating them is simplified. The inherent determinism
comes from the fact that the Hamiltonians and the Hamilto-
nian equations have no randomness and apply directly to the
microstates individually. At this level, the potential energies in
the Hamiltonian determine various microforces including the
one (Fk,BP), see Eq. (50), responsible for viscous dissipation
in terms of the macroforce FBP. We do not partition Fk,BP

into slow and fast components as required in the Langevin
approach. This is one of the distinctions between the two
approaches.

The stochasticity and the second law emerges automati-
cally in our approach when the ensemble average over mi-
crostates is taken as is standard in statistical thermodynamics.
To obtain the μNEQT, we need to uniquely extract from the
MNEQT a description suitable at the microstate level. We
have introduced the μNEQT a while back [8,39,50,51]. It
is a first-principles theory and its main purpose here is to
study BP in NEQ situations, where the Langevin equation in
Eqs. (1) and (2) are inapplicable. To have a well-defined NEQ
temperature T of the system, we need to assume the system
to be in an IEQ state requiring internal variables; cf. Sec. II A.
For simplicity, we have considered a single internal variable
PBP or R in this study, which along with V are independent
state variables in the state space S′.

The deterministic equation of motion in Eq. (31) for the
microforce is easy to solve as described in Sec. III A 1.
We do not need the sophisticated concepts like the Wiener
process, Itô and Stratonovich integrals, etc. This is a benefit
of adopting the μNEQT. The method of solution does not
require knowing any interaction with �̃; it only requires in-
teractions between �BP and �R. This becomes very important
in Sec. IV that we will discuss below. As the second law is
inoperative at the microstate level, the microforce Fk,BP does
not always oppose motion in our approach; that holds only for
the macroforce FBP. The uniquely defined microforces {Fk,BP}
and microworks {diWk,BP = −Fk,BP � dR} done by them be-
come, as expected, fluctuating quantities over {mk}. We make
no assumptions about the nature of these fluctuations as is

needed for the stochastic forces in the Langevin approach. The
internal microwork diWk,BP also has no fixed sign. However,
diWk,BP and the change in the kinetic energy Ek,CM = mV2

k/2
satisfy

diWk,BP + dEk,CM = 0,

as seen from Eq. (13); see also Eq. (36b). This is expected
at the microstate level where classical mechanics operates.
Some microforces increase Ek,CM; some decrease it. Things
change at the macroscopic level after ensemble averaging as
seen from Eq. (37a). Now, diWBP � 0 is constrained by the
second law so the macroforce always opposes motion.

Within the MNEQT, we determine fluctuations in various
thermodynamically relevant random variables. We limit our-
selves to only second order in expansion so we have only
Gaussian fluctuations to reproduce all known EQ results such
as the Einstein relation in Eq. (40). We need to go to higher
order in expansion to obtain non-Gaussian fluctuations, but
the machinery is there. We show that the equipartition theorem
is satisfied at all times as the system is in IEQ, except that
the degrees of freedom associated with the CM-motion have
their own temperature TCM, which may be different from T or
T0; see the discussion in Sec. II A. This temperature always
decreases as the CM-motion ceases as the system (or the BP)
comes to equilibrium; cf. Eq. (37c). Therefore, it cannot be T ,
which can either go up, down or remain unchanged depending
on how it relates to T0. Even if T = T0, TCM will continue to
decrease if PBP 	= 0. We also obtain other results such as a
complex velocity-dependent microscopic friction coefficient
γk or the internal microwork �iWk,BP, both of which can be of
either sign.

An important aspect of the μNEQT approach should be
mentioned. As Fk,BP is oblivious to pk , it does not change
whether we are dealing with an EQ case or a NEQ case; the
latter are specified only by pk’s. Thus, we can determine Fk,BP

in an EQ situation, but use it in a NEQ situation by merely
using the NEQ pk’s. In EQ, FBP = 0, while in a NEQ case,
FBP 	= 0. But the fluctuations in {Fk,BP} are present in both
cases. The same discussion also applies to {diWk,BP}.

We have taken V to be some generic work parameter
and that the irreversible macroworks diWV = (P − P0)dV and
diWBP were treated as independent, which allowed us to get
the two inequalities in Eq. (17). For a genuine piston problem
in which the volume V changes due to piston displacement
dXBP, they are not independent. Indeed, the force imbalance
P − P0 causes the friction force, which eventually ensures
P = P0 in EQ as is well known; see, for example, Refs. [7,8].
Recognizing that dV = AdXBP = AmdX/MBP, where A is the
area of the piston, we must have FBP = −(P − P0)Am/MBP in
the 1D case. We thus see that the standard piston behaves as a
BP undergoing Brownian motion. A similar discussion can be
carried out for the particle in Fig. 2(b), which also undergoes
Brownian motion.

The choice of using only IEQ states should not be taken
as a limitation of the μNEQT. As the system gets farther
and farther away from the EQ state, we need more and
more of the independent internal variables, which requires
a larger and larger state space S in which the IEQ states
are defined [8,37]. This requires a trivial extension of the
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present approach. We may also need to treat the system as
inhomogeneous (see Ref. [8] for details). Thus, the μNEQT is
capable of describing any complex NEQ state. The challenge
is to identify additional internal variables.

We have discussed the feasibility of the new theory in
Sec. IV by considering a simple version of the problem
often studied in the literature: a single BP consisting of NBP

particles in a medium consisting of Ñ particles. We treat a
NEQ macrostate of the BP by having a temperature differ-
ence between the BP and the medium and a relative motion
between them. Here, we relate the microforce Fk,BP to the
mutual interaction Ûk associated with the BP-microstate mk .
The discussion is very general and Ûk includes the mutual
interaction between all pairs of medium and BP particles,
except that we average it over all microstates of the medium;
see Eq. (48). Thus, Ûk depends only on NBP as it only depends
on the microstate mk of the BP alone. Once this “average”
potential is obtained as a function of R, we do not need
to worry about the particles of �̃. We can use Ûk for mk ,
regardless of whether the BP is in EQ or not with respect to
the medium; the latter is controlled by pk . This is the same
conclusions we had arrived at for {Fk,BP} and {diWk,BP} above.

A good approximation for Ûk will be obtained by limiting
the mutual interactions between particles in a thin interface
between the BP and the medium. This is the approximation
used by Einstein who used the osmotic pressure across it to
develop his theory. In Sec. IV F, we consider the case of a BP
made up of a single particle (NBP = 1) in a medium so mk

refers to a single particle in a six-dimensional phase space.

Here, the simplicity of our approach becomes obvious. Once
Ûk has been obtained, the solution of the equation of motion
requires only following the single particle. A simple model
given in Eq. (52) clarifies this point.

At a fundamental level, there are subtle but profound dif-
ferences in the μNEQT approach and the Langevin approach.
It is important to draw attention to them before closing, which
we list below.

(1) Fk,BP and diWk,BP are uniquely determined by mk ,
deterministic, and independent of pk . Because of the presence
of ξ in the Langevin approach, F′

k,BP in Eq. (1) and the
microwork done by it are random quantities.

(2) The trajectory from Eq. (31), being deterministic, re-
quires integration using basic calculus. The trajectory from
the Langevin equation, being stochastic, requires technical
concepts of the Wiener processes (the Itô and Stratonovich
integrals), which are not as easy as the basic calculus.

(3) As the sign of γk is not fixed, it cannot be taken out of
averaging in Eq. (39) in the μNEQT. Doing so in the Langevin
limit gives an unphysical result showing that the fluctuating
sign is crucial for correct physics.

(4) The MNEQT approach provides a thermodynamic jus-
tification for the frictional drag for small relative velocities. In
the Langevin approach, it appears phenomenologically. The
μNEQT further unravels the mystery behind the microforce
as noted above.

Thus, we hope that the μNEQT presented here will prove
useful to study both passive and active BPs, and NEQ BP in
general.
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