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Hydrodynamic memory can boost enormously driven nonlinear diffusion and transport
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Hydrodynamic memory force or Basset force has been known since the 19th century. Its influence on
Brownian motion remains, however, mostly unexplored. Here we investigate its role in nonlinear transport and
diffusion within a paradigmatic model of tilted washboard potential. In this model, a giant enhancement of
driven diffusion over its potential-free limit [Phys. Rev. Lett. 87, 010602 (2001)] presents a well-established
paradoxical phenomenon. In the overdamped limit, it occurs at a critical tilt of vanishing potential barriers.
However, for weak damping, it takes place surprisingly at another critical tilt, where the potential barriers are
clearly expressed. Recently we showed [Phys. Rev. Lett. 123, 180603 (2019)] that Basset force could make such
a diffusion enhancement enormously large. In this paper, we discover that even for moderately strong damping,
where the overdamped theory works very well when the memory effects are negligible, substantial hydrodynamic
memory unexpectedly makes a strong impact. First, the diffusion boost occurs at nonvanishing potential barriers
and can be orders of magnitude larger. Second, transient anomalous diffusion regimes emerge over many time
decades and potential periods. Third, particles’ mobility can also be dramatically enhanced, and a long transient
supertransport regime emerges.

DOI: 10.1103/PhysRevE.102.012139

I. INTRODUCTION

Non-Markovian hydrodynamic memory effects due to
Boussinesq-Basset force emerging in the motion of macro-
scopic bodies with fluctuating velocity have been known since
the 19th century [1–3] and still present an active field of
research [4,5]. Their influence on Brownian motion [6–9]
remains, however, largely unexplored, even though they are
known to effect a famous algebraic tail in the velocity auto-
correlation function (VACF) of Brownian particles [10,11],
which was found first in molecular dynamic simulations by
Alder and Wainwright [12]. Neither diffusion nor transport is,
however, affected asymptotically in the absence of nonlinear
force fields, even if a transient superdiffusion is engendered
[13]. The existence and importance of such memory effects
was experimentally manifested for free diffusion of colloidal
particles [14] and, more recently, for particles trapped in
parabolic potentials [15–17]. It raises the question of their
general role and importance in nonlinear transport and dif-
fusion [18], where the model of tilted washboard potentials
serves as a paradigm in condensed matter physics and other
fields [7–9]. Within this model, a giant enhancement of
driven diffusion [19–21] over its potential-free limit is a well-
established paradoxical phenomenon in the overdamped limit
[8,22,23], where the inertial effects are entirely negligible.
It occurs at a critical potential tilt of vanishing potential
barriers [8,20,21] with applied constant force f (1)

c = 1 in the
units used in this paper. Inertial effects in nonlinear diffusion
beyond thermal equilibrium are less studied [7,8] and have
brought many surprises [24–28] lately. However, the influence
of hydrodynamic memory effects on such a nonlinear driven
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diffusion and transport came only recently into the spotlight
of attention [18]. For weak damping, a giant enhancement of
diffusion occurs at another critical tilt, where the potential bar-
riers are clearly expressed [26–28]. Then profound memory
effects make such an enhancement enormously large and re-
sult in a substantial prolongation of a transient superdiffusion
regime [18].

To understand the mechanism of a resonancelike en-
hancement of diffusion in the corresponding weakly damped
regime, the picture of motion bistability originally developed
by Risken and collaborators [7,29] in the absence of hydro-
dynamic memory becomes crucially important. There exists a
critical friction value γ

(c)
0 ≈ 1.193 [7] (in scaled units used

below) such that for a smaller friction at zero temperature
there emerges a friction-dependent critical tilt value f (3)

c (our
notations are different from those used in Ref. [7]) such
that for tilting forces between two critical values, f (3)

c < f <

f (1)
c the motion is bistable at zero temperature with thermal

fluctuations neglected. An excellent account of this bistability
is given in Ref. [30] in the context of the stochastic resonance
problem. Depending on the starting point in the phase space,
any particle will either end in one of potential wells due to
frictional losses or run indefinitely, when losses are com-
pensated by the energy delivered from the external field. In
this bistable regime and at a finite temperature T , velocity of
particles exhibits bistable fluctuations for a sufficiently small
friction γ0 � γ

(c)
0 . They can be modeled and well understood

as thermally activated fluctuations in a bistable velocity pseu-
dopotential V (v) = −kBT ln[P(v)], where P(v) is velocity
distribution and kB is the Boltzmann constant [27,28,31].
One potential minimum corresponds to v1 = 0 (trapped par-
ticles), and another one to v2 = f /γ0 (running particles, units
are scaled). Near minima, P(v) is approximately Gaussian
(Maxwell distribution) with a thermal velocity width [27,31].
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The giant enhancement of diffusion occurs at the condition of
equal pseudopotential minima or equal probabilities [27,28]
for the particle to be trapped or run in an intermittent Lévy
walk-like fashion [24,32–34]. Such a critical condition can
also be obtained in a generic model of velocity-bistable ac-
tive diffusion [35]. For underdamped dynamics in washboard
potential, the diffusion maximum occurs at some f (2)

c , f (3)
c <

f (2)
c < f (1)

c satisfying this condition.
Upon taking hydrodynamic memory influence for a small

γ0 into account, this basic picture remains approximately valid
upon some essential modifications [18]. First, the diffusion
enhancement becomes strongly amplified and sharpened (sup-
pressed outside of the narrow maximum region). Second, the
distribution of particle velocities in the running state (near its
maximum) is broader than Maxwellian. This effect can be
characterized either by enhanced kinetic temperature in the
running state or by a smaller effective mass of the particle in
this state. The latter interpretation is preferred because it is
convenient to characterize the whole velocity distribution by
a kinetic temperature measured by its width [18,26,36–38].
Particles become kinetically hot in the bistable regime. Third,
an effective friction experienced by particles becomes en-
larged by the hydrodynamic memory friction. This leads to an
effective suppression of the asymptotically normal transport
in comparison with the memoryless case. However, transient
regime of looking anomalously fast transport, 〈δx(t )〉 ∼ tκt ,
with κt > 1 can be prolonged enormously. Likewise, transient
superdiffusion, 〈δx2(t )〉 ∼ tκd , with κd > 1 can also be drasti-
cally prolonged in time. It is due to the changed kinetics of the
transitions between two macrostates of a velocity Lévy walk,
which becomes anomalously slow, stretched-exponential, in-
stead of exponential in the memoryless case—the fourth
profound feature introduced by hydrodynamic memory. Fur-
thermore, like in the case of asymptotically superdiffusive
transport [37–39], long hyperdiffusive regimes, κd > 2, are
present due to a transiently growing in time kinetic temper-
ature. In the memoryless case, such regimes are also present
[26]. However, they are much shorter.

Now, profound questions emerge: How are these interest-
ing features introduced by hydrodynamic memory modified
beyond the γ0 � γ

(c)
0 regime studied in Ref. [18]? Is hydrody-

namic memory still important for γ0 equal to and even larger
than Risken’s γ

(c)
0 , when dynamics becomes overdamped?

This question is very important because Brownian motion
in fluids is typically overdamped. For example, in experi-
mental works [15,17] colloidal particles are overdamped and,
nevertheless, exhibit resonances caused by the hydrodynamic
memory. Next, does hydrodynamic memory always increase
an effective friction or can it also make that smaller, e.g. for
a sufficiently large γ0, and how large is large? For example,
some results in recent Ref. [40] for transport in a critically
tilted piecewise linear periodic potential at T = 0 imply that
this can be the case. Next, does a picture of bistable velocity
fluctuations remain valid for sufficiently large γ0, which is
yet smaller than γ

(c)
0 ? Actually, some results presented in

the Supplemental Material [41] of Ref. [18] imply “no”
already for γ0 larger than about 0.25, which was confirmed
in a recent detailed study [42]. This feature means that the
running velocity state is not necessarily monostable unless γ0

is small enough. The numerical simulations reveal that already

for γ0 = 0.3, the velocity distribution can be trimodal; see
Fig. 7(a) in Ref. [41] and, especially, panel (c) therein, for
γ0 = 0.7, where the running state consists, in fact, of two
velocity substates with P(v) maxima at v

(1)
2 and v

(2)
2 such

that v
(1)
2 < v2 = f /γ0 < v

(2)
2 . Moreover, v2 corresponds to the

minimum (!) and not the maximum of P(v), as a bistable
picture of V (v) [26,27], valid only for sufficiently small γ0

[18,42], can misleadingly imply. For a critical tilt f = 1 in
Fig. 7(d) in Ref. [41], the minimum at v = 0 (trapped state)
disappears, and the running state remains bistable. It means
that velocity fluctuations can remain bistable even for an
overcritical tilt, when the trapped states are absent. Hence, the
case of nearly overdamped dynamics is not trivial, even if to
neglect crucial memory effects.

Below we show that even for a moderately strong damp-
ing, within a seemingly overdamped regime, hydrodynamic
memory unexpectedly makes a very profound impact. As
a general implication, it means that hydrodynamic memory
effects, whose neglect might earlier seem intuitively to be
well justified, can nevertheless profoundly affect nonlinear
transport and diffusion. They should not be generally ad hoc
neglected in further research. Theory of nonlinear Brownian
motion in fluids should be rethought and revisited from this
angle of view.

II. MODEL AND THEORY

We consider one-dimensional transport and diffusion of
spherical Brownian particles with radius R and mass m =
4πρR3/3 (ρ is the particles’ mass density) in a fluid with
kinematic viscosity μ and density ρ f governed by a fractional
Langevin equation (FLE) [8,13,15,38,43,44]

m∗ẍ(t ) + η0ẋ(t ) + ηα−∞D̂1/2
t ẋ(t )

= f (x) + ξ0(t ) + ξα (t ) (1)

in a periodic force field

f (x) = − f (1)
c sin(x/x0) + f (2)

with amplitude f (1)
c = U0/x0. Here U0 is the amplitude of

the corresponding washboard potential with period L = 2πx0,
which is biased by a constant driving force f . Trapped
states exist only below the critical value f (1)

c , f < f (1)
c . In

Eq. (1), m∗ = m + 2πρ f R3/3 is a fluid-renormalized mass
of a Brownian particle [3,11,45], η0 = 6πRρ f μ is Stokes

viscous friction, −∞D̂
1/2
t v(t ) := 1


(2−α)
d
dt

∫ t
−∞ dt ′v(t ′)/(t −

t ′)α−1, with α = 3/2, is the Riemann-Liouville fractional
derivative [13,46], and ηα = η0

√
τr is a fractional friction

coefficient. The corresponding memory term in the FLE
reflects hydrodynamic memory, which is characterized by
a relaxation timescale τr = R2/μ entering ηα . It presents
the Boussinesq-Basset force, which is derived within sim-
ilar approximations as the Stokes friction, however, for a
particle with fluctuating velocity (nonsteady Stokes flow)
[1–3]. Roughly speaking, τr is a characteristic time for a
backflow induced by the body motion to diffuse over its
size. Inertial effects in the particle’s dynamics are also not
always negligible. The characteristic velocity relaxation time,
τv = m∗/η0 (obtained in neglecting the memory effects), is
τv = τr (2ρ/ρ f + 1)/9, in terms of τr and the ratio ρ/ρ f of
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the body and fluid densities. For example, in the case of a neu-
trally buoyant particle, ρ f = ρ, τv = τr/3, and τv = τr at ρ =
4ρ f . It means that unless the Brownian particle is very heavy
with respect to fluid, hydrodynamic memory is not negligible
once the particle’s inertia becomes important, especially given
a slow algebraic character of this memory decay. We recast
the Boussinesq-Basset force in the form of memory friction
[13,18,38,44],

∫ t
−∞ η(t − t ′)ẋ(t ′) dt ′, with a singular memory

kernel η(t ) corresponding to the operator of the Riemann-
Liouville fractional derivative. For 1 < α < 2, η(t > 0) =
−ηαt−α/|
(1 − α)| < 0; however,

∫ t
0 η(t ′) dt ′ ∼ t1−α > 0 is

always positive and tends to zero with t → ∞. This term
is absent for v = ẋ = const. However, it is always present
in the realm of Brownian particles, where it must be com-
plemented by the corresponding unbiased thermal Gaussian
force ξα (t ) obeying the fluctuation-dissipation relation[11,47],
〈ξα (t ′)ξα (t )〉 = kBT η(|t − t ′|), which follows from the funda-
mental fluctuation-dissipation theorem [11,47]. ξα (t ) provides
a naturally emerging instance of the fractional Gaussian noise
or fGn [48]. By the same token, 〈ξ0(t ′)ξ0(t )〉 = 2kBT η0δ(|t −
t ′|), as in the standard Langevin equation, where ξ0(t ) is a
white Gaussian noise, which like fGn is a singular stochastic
process with infinite variance existing only in a class of
distributions. FLE (1) presents an important example of a
general nonlinear generalized Langevin equation [11,44,47].

Periodic potentials acting on Brownian microparticles can
be created by a lattice of optical vortices [22] or optical tweez-
ers [23] (with L in the submicron range), or, e.g., by nanoim-
print lithography [49], for nanoparticles (down to nanometer
scale). The FLE description was confirmed experimentally
for colloidal particles in parabolic traps [15–17], where hy-
drodynamic effects were measurable and even caused res-
onances in the case of almost overdamped dynamics [15].
They, however, never were studied for nonlinear Brownian
transport and diffusion until recently [18], even theoretically,
except for a model case, where the Stokes friction was ad
hoc neglected [38]. Indeed, in the case of potential-free dif-
fusion, U0 = 0, the memory effects do not affect the diffusion
coefficient, D0 = kBT/η0, asymptotically. However, they do
cause some relatively short transient superdiffusion [13] and
profoundly modify the stationary VACF, 〈v(t )v(0)〉st. Namely,
it universally acquires asymptotically a long algebraic tail,
〈v(t )v(0)〉st ∼ v2

T

√
τr/π/(2γ0t3/2) [10,13,18], where vT =√

kBT/m∗ is thermal velocity and γ0 = η0/m∗. This tail was
first found in molecular-dynamics simulations by Alder and
Wainwright [12]. Moreover, the initial decay of VACF is
stretched-exponential and not exponential, in the case of
strong yet realistic memory effects [18]. The case of driven
nonlinear diffusion is capable of further surprises [18].

We shall scale distance in x0, time in τ0 = x0
√

m∗/U0,
which is inverse circular frequency of oscillations at the
bottom of potential wells in the absence of friction and
bias, energy in U0, and temperature as T̃ = kBT/U0. In these
units, f (1)

c = 1 and dimensionless γ̃0 = γ0τ0 (the tilde will
be mostly omitted in the following) measures the strength of
normal friction. For ηα = 0, the unbiased intrawell dynam-
ics is overdamped for γ0 � 2. Furthermore, γα = ηα/m∗ in
these units reads γα = 3

√
γ0/(1 + 2ρ/ρ f ), which is maximal,

γ (max)
α = 3

√
γ0, in the limit of ultralight particles, ρ/ρ f → 0.

The memory effects are fully negligible in the opposite limit

ρ/ρ f → ∞ and are expected to be strong for ρ ∼ ρ f or
smaller. FLE does not allow for analytical solutions for the
considered nonlinear dynamics, and we solved it numerically
[18], as detailed in Appendix A.

III. RESULTS AND DISCUSSION

A. Influence of memory effects on bistability phase diagram

As mentioned in the Introduction, the fundamental feature
of driven underdamped dynamics in a tilted washboard po-
tential in the absence of memory effects is its bistability [7].
Namely, for γ0 less than a critical value γ

(c)
0 ≈ 1.193 [7], there

exists a critical force f (3)
c < f (1)

c such that for f < f (3)
c , any

trajectory in the phase space will end eventually at T = 0 in
one of the potential wells. However, for f (3)

c � f < f (1)
c , the

deterministic running solutions emerge and coexist with the
trapped ones, whereas for f > f (1)

c , only the running solutions
remain. This critical force value depends on γ0. For a small
friction, f (3)

c ≈ 4γ0/π ; see Fig. 11.26 in Ref. [7] and the red
double-dash-dotted line in Fig. 1(a) of this paper. Numerical
f (3)
c (γ0) is shown by a full black line with diamond symbols in

this figure. It increases monotonously with γ0 and f (3) = f (1)

at γ0 = γ
(c)

0 .
How does hydrodynamic memory affect the Risken’s phase

diagram? We answer first this important question. Profound
memory effects for ρ = ρ f (neutrally buoyant condition) and
ρ = ρ f /2 (a relatively lighter than fluid particle) used mostly
in the numerical simulations below profoundly change the
phase diagram in Fig. 1, where the limiting case of ρ →
0 (maximal memory effects) also is depicted. In all three
cases, numerical data are well approximated by a stretched-
exponential dependence f (3)

c ≈ 1 − exp[−(γ0/b)a], with 0 <

a < 1, and b > 0 shown in the plot by a dashed indigo line
(ρ = ρ f ), full blue line (ρ = ρ f /2), and dash-dotted green
line (ρ → 0), which come through the corresponding dif-
ferent symbols depicting the numerical results. For γ0 � b
this yields f (3)

c ∝ γ a
0 instead of f (3)

c ∝ γ0 in the memory-
less case. It presents the first important result of this paper.
This dramatic change means the following: For γ0 smaller
than about γ0 = 0.5 shown by the vertical line in Fig. 1(a),
ever increasing with lowering ρ/ρ f memory effects make
an effective friction larger. However, for γ0 � 0.5, the op-
posite tendency is seen in Fig. 1(a). In particular, even for
γ0 essentially larger than γ

(c)
0 , the bistability region extends

dramatically; cf. Fig. 1(b). It means that even for γ0 > γ
(c)

0
the memory correlations can induce running solutions at
T = 0 and f (3)

c < f < f (1)
c , where, otherwise, all Brownian

particles would remain asymptotically trapped forever. Then
the memory makes an effective friction smaller. This result
agrees with the conclusions in Ref. [40] that hydrodynamic
memory can induce transport at T = 0 in a situation where it
would be absent otherwise, which was obtained therein for a
critically tilted piecewise linear potential. In the studied case,
pertinent tilts can be essentially smaller than the critical value
f (1)
c . One should emphasize that we are dealing here with a

strongly driven transport. It is the second result of paramount
importance, which provides a key for understanding our nu-
merical results below.

012139-3



IGOR GOYCHUK AND THORSTEN PÖSCHEL PHYSICAL REVIEW E 102, 012139 (2020)

0 0.2 0.4 0.6 0.8 1
γ0

0

0.2

0.4

0.6

0.8

1
f c(3

)

memoryless
numerics, ρ=ρf
numerics, ρ=ρf/2
numerics, ρ=0
1-exp[-(γ0/0.5528)0.8166]
1-exp[-(γ0/0.5908)0.7757]
1-exp[-(γ0/0.6501)0.6770]
4γ0/π, Risken

(a)

0 1 2 3 4 5 6 7 8 9 10
γ0

0

0.2

0.4

0.6

0.8

1

f c(3
)

memoryless
numerics, ρ=ρf
numerics, ρ=ρf/2
numerics, ρ=0
1-exp[-(γ0/0.5528)0.8166]
1-exp[-(γ0/0.5908)0.7757]
1-exp[-(γ0/0.6501)0.6770]

(a)

FIG. 1. Phase diagram of bistability at T = 0. Dependence of the
critical force f (3)

c on γ0 without and in the presence of hydrodynamic
memory effects for three fixed values of ratio ρ/ρ f shown. For f <

f (3)
c , there are no running states. Every trajectory eventually ends in a

potential well (trapped solutions). For f (3)
c < f < f (1)

c = 1, running
trajectories coexist with trapping solutions, and for f > 1 the only
running solutions remain. In the memoryless case [7], f (3)

c ≈ 4γ0/π ,
for γ0 � 0.25; see the red double-dash-dotted line in panel (a). For
γ0 � 0.5, memory effects increase the effective friction, which can
be judged upon the correspondingly increased f (3)

c . This trend is
changed to the opposite for γ0 > 0.5. The vertical line in panel (a) at
γ0 = 0.5 helps to realize this. Moreover, the regime of bistability
extends far beyond the Risken’s γ

(c)
0 ≈ 1.193 [see vertical line in

panel (b)].

B. Influence of memory on normal diffusion
in unbiased potential

Next, we expect that the dependence of the normal dif-
fusion coefficient on γ0 will also be dramatically changed
in a periodic potential, and we will check this hypothesis.
Indeed, in the case of unbiased diffusion, it is well known
that for strong friction, γ0  1, D ∝ 1/γ0, and for the consid-
ered potential simple and well-known Lifson-Jackson result
D = D0/I2

0 (U0/kBT ) holds [7,9,50]. Here I0(x) is a modified
Bessel function. This inverse friction proportionality holds at
any kBT/U0. Less known is that this scaling, D ∝ 1/γ0, is
valid also for weak friction, γ0 � 1; however, in the limit
of large barriers U0  kBT only [7]. In the memoryless case,
our numerics (depicted by black dashed line with diamonds)
perfectly agree with the Lifson-Jackson result for γ0 � 1; see
the dash-dotted red line in Fig. 2. Hydrodynamic memory,
however, remarkably changes this result even for strong fric-
tion in the range 2 < γ0 < 40. Namely, instead of the inverse

FIG. 2. Dependence of nonlinear diffusion coefficient on viscous
friction in the case of unbiased diffusion at T = 0.5. Two values
of the ratio of particles to fluid density are considered, ρ/ρ f = 1
and ρ/ρ f = 1/2, as well as the memoryless case, for comparison;
see text for details. Numerical data are shown by indigo triangles
for ρ = ρ f (with a small-γ0 fit depicted by the dashed indigo line
coming through the symbols), blue circles for ρ = ρ f /2 (with small
and large γ0 fits depicted by full blue lines coming through the
symbols), and dashed black line with diamonds, in the case of
memoryless dynamics. The analytical result for a large-friction limit
of memoryless dynamics is depicted by a dash-dotted red line, and a
small-γ0 fit to this dynamics by a full black line.

friction dependence, our numerics are more consistent with
D ∝ 1/γ 0.878

0 , even for rather strong friction in the mentioned
range; see the full blue line with circles and triangles in this
figure. For much larger friction, the Lifson-Jackson result
remains valid, however, even in the limiting case ρ → 0. Fur-
thermore, for a small friction γ0 < 1, D ∝ 1/γ a

0 in Fig. 2, with
a ≈ 0.413 for ρ = ρ f (dashed indigo line coming through
triangles) and a ≈ 0.392 for ρ = ρ f /2 (full blue line coming
through circles), which is very different from a ≈ 0.83 in
the case of normal diffusion (full black line coming through
diamonds). The latter one deviates from the high-barrier the-
oretical value a = 1 because kBT/U0 is not small enough [7],
only 0.5. The discovered nontrivial dependencies of D on γ0

due to the memory effects present the third important result
of this work. It should be mentioned also that in the case of
such equilibrium unbiased diffusion hydrodynamic memory
always increases an effective friction because it makes the
diffusion coefficient in Fig. 2 smaller at all γ0.

C. Enormous boost of diffusion acceleration
due to the memory effects

Furthermore, we study an enormous acceleration of diffu-
sion due to the memory effects in the onset of an overdamped
regime, γ0 = 2, where the memoryless diffusion enhancement
is already nicely described by the results of the overdamped
theory [cf. Eq. (8) in Ref. [20]]; see the corresponding com-
parison in our Fig. 4(a). It is one of the greatest surprises of
this work, which extends and complements recent findings in
Ref. [18]. For γ0 = 2 and ρ = ρ f /2, f (3)

c ≈ 0.920 in Fig. 1.
The giant enhancement of diffusion is hence for us to ex-
pect for some critical value f (2)

c such that f (3)
c < f (2)

c < f (1)
c .

For a small γ0, this f (2)
c corresponds to the case where the
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(a) (b)

FIG. 3. Dependence of the particle position variance on time for (a) non-Markovian and (b) Markovian diffusion at T = 0.01, γ0 = 2
and several values of force shown. In the non-Markovian case γα = 3, which corresponds to ρ = ρ f /2. M = 105 particles are used in the
ensemble averaging. Particles are always initially localized at x = 0 within one potential well with their velocities Maxwell distributed. Initial
diffusional spread is always briefly ballistic (t → 0), as indicated by the corresponding dashed black lines in the main plots. Insets show the
same dependencies in linear plot. Panel (b) makes clear that without memory effects a normal diffusion regime is quickly established once
particles leave the potential well. However, memory effects in panel (a) introduce a very long intermediate hyperdiffusive regime. Moreover,
diffusion is still anomalously fast at the end of simulations for f close to the critical tilt f (2)

c ≈ 0.937; see the full black line with circles in
(a), including the inset, which corresponds to the resonance-like value of D/D0 in Fig. 4(a) and the full magenta line with triangles up for
f = 0.936 in (a). It is fitted by a superdiffusion dependence in the inset of (a). For the case of f = 0.937 in this inset we fit with 2D(t − toff )
in the last half time decade of simulations to derive D from numerics; see the main text. For f = 0.940 a very long subdiffusive regime
astoundingly emerges in the last two time decades of simulations; cf. the light green line with squares in panel (a), including the inset. Full
lines with different symbols correspond to different values of f shown in the main plots, except for the inset in panel (a), where three lines
correspond to the fits shown in this inset.

probabilities of trapped and running states become roughly
equal [18,27,28]. At odds with intuition based on our ear-
lier results for γ0 = 0.1 in Ref. [18], this resonance-like
enhancement occurs for γ0 essentially exceeding γ

(c)
0 of the

Markovian case! Moreover, now it does not correspond to
the situation of equal probabilities of trapped and running
states; see below. The physics of this enhancement is hence
different. Some of the results on non-Markovian diffusion for
γ0 = 2, ρ = ρ f /2, and T = 0.01 are shown in Fig. 3(a). Let
us compare them with the results on the matching Markovian
diffusion in Fig. 3(b).

First, in the Markovian case the normal diffusion regime
is already well established on the scale exceeding the lattice
period 2π , 〈δx2(t )〉 > 4π2, for all values of f in this plot.
Quite on the contrary, a very long regime of transient superdif-
fusion emerges in Fig. 3(a), which extends on enormous many
potential periods, when f becomes close to the resonance-
like value f (2)

c ≈ 0.937 (for ρ = ρ f /2); see Fig. 4(a). To
derive the results for the asymptotic value D/D0 from the
numerical data in Fig. 3, we fit the 〈δx2(t )〉 dependence by
2D(t − toff ), where toff is some offset time required to account
for a very long transient period of anomalous diffusion. It can
be neglected only for Dt  Dtoff while deriving D/D0 from
numerics. For example, for a subresonance value f = 0.93 <

f (2)
c in Fig. 3(a), the asymptotic normal diffusion regime is al-

ready well established. However, for the resonance value f =
f (2)
c = 0.937, it is not; see the results depicted with circles

in the inset of Fig. 3(a) and compare with the case f = 0.936
(triangles up) to realize why one needs toff . The corresponding
value of D/D0 in Fig. 4(a) is an estimate from below. The
fantastic thousandfold enhancement D/D0 by about 18 944
times at peak, over the result neglecting the memory effects,

the enhancement factor of which is “only” about 18.2 times,
is, in fact, even larger. However, we cannot quantify it better
because the proper normal diffusion limit is not reachable
in simulations. With diminishing memory effects along with
increasing ρ/ρ f , this enhancement weakens; see the inset in
Fig. 4(a) for the neutrally buoyant case ρ = ρ f with γα = √

6
at γ0 = 2. Nevertheless, it is still impressively strong. In this
case [see inset in Fig. 4(a)], f (2)

c ≈ 0.951 with D/D0 ≈ 2590
at maximum. Generally, with diminishing γα at fixed γ0 >

γ
(c)

0 , f (2)
c moves towards f (1)

c and D diminishes gradually to
its memoryless value.

Next, at f = 0.936 and f = 0.937 in Fig. 3(a), diffusion
is anomalously fast, even near the end simulation. The inset
therein makes this clear for f = 0.936, where 〈δx2(t )〉 ∝ tκd

with κd = 1.243, which is a fit alternative to 2D(t − toff )
dependence that is not shown for this f value. It is a striking
result: Even for γ0 = 2, hydrodynamic memory effects can
turn normal diffusion into superdiffusion over many time
decades corresponding to thousands of lattice periods! This
long-lasting transient superdiffusion is explained by kinetic
heating, as Fig. 6 in Appendix C makes clear. Indeed, the ki-
netic temperature Tk (t ) = m∗〈δv2(t )〉/kB [26,36–38] defined
by the the variance of the velocity distribution P(v) increases
dramatically, i.e., Brownian particles become kinetically hot,
with their Tk substantially exceeding T of the surrounding
fluid. The velocity distribution in Appendix C is also not
Maxwellian, bimodal in the regime of enhanced diffusion.
However, differently from the case of small γ0 [18,27,28],
for the considered large γ0, f (2)

c does not correspond, even
approximately, to the situation where the local maximum
of P(v), which corresponds to the running state, compares
in amplitude with the local maximum corresponding to the
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(a) (b)

(c) (d)

FIG. 4. Diffusion coefficient and nonlinear mobility. (a, c) Enhancement of driven diffusion over the free-diffusion limit depending on the
applied force f for (a) T = 0.01 and (c) T = 0.1, γ0 = 2 and three values of γα shown. γα = 3 corresponds to ρ = ρ f /2. The inset resolves
a sharp peak for this value in the main plot for a shorter range of f and depicts for comparison the results for γα = √

6, which correspond to
ρ = ρ f . The red dashed line in the main plots depicts the analytical result of overdamped theory given by Eq. (8) in Ref. [20]. It remarkably
agrees with the memoryless result of simulations, which includes, however, the inertial effects completely. (b, d) Nonlinear mobility κ vs
driving force f for (b) T = 0.01 and (d) T = 0.1, γ0 = 2 and two values of γα corresponding to ρ = ρ f /2 and ρ = ρ f , as well as for the
memoryless case. The inset helps to resolve dramatic changes around the corresponding critical values f (2)

c , where the increase of mobility
due to the memory effects is dramatic. Both far below and far above f (2)

c the memory-induced effects in κ are negligible. For f = 2, the linear
mobility regime of κ0 = 1/η0 is already almost achieved.

trapped states. Moreover, for f = f (2)
c > f (3)

c , there are actu-
ally two running substates (within a two-state approximation),
as P(v) in Fig. 7 below reveals. Its first local maximum does
not correspond to v = 0. Moreover, the integral

∫ vc

−∞ P(v) dv,
where vc is the velocity value, which separates two running
substates, indicates that nearly 90% of all particles belong to
the first running substate. It is very different from the case
of low friction. In the latter case, the peak of D/D0 does
correspond to the situation, where, roughly speaking, one-
half of the particles are temporarily trapped, while another
one-half run [27,28], also in the presence of memory effects
[18]. Hence, for a sufficiently large γ0, the mechanism of a
huge enhancement due to memory effects differs from one
established for small γ0 [18]. Nevertheless, for strong memory
effects, f (2)

c seems to still roughly correspond to the maximum
of stationary nonequilibrium T (st)

k versus f , like for a small γ0

[18], as we detail in Appendix C.
It is very different from the matching case, where the

memory effects are neglected. Indeed, for the considered γ0

and in the memoryless case, the maximum of D has nothing
in common with the maximum of T (st)

k ; cf. Appendix C. The

particles can become kinetically very hot also in the absence
of memory effects at γ0 = 2; see Fig. 6(b) below. It seems to
be first in contradiction with the fact that the overdamped the-
ory remarkably well describes the numerical results on D/D0

enhancement in Fig. 4(a). We defer a detailed explanation of
this puzzle somewhere else. In short, due to inertial effects,
there emerge very fast oscillations in the nonequilibrium but
stationary VACF for f > 1, even for sufficiently large γ0 ∼
2–10. Following the Green-Kubo relation [11], the diffusion
coefficient is integral of VACF, and those fast oscillations re-
duce D in spite of still growing (for f > 1, in the memoryless
case) T (st)

k . It resolves the discussed apparent contradiction.
However, it leads to a paradox: Particles that are becoming
ever hotter (for a certain intermediate interval of overcritical
forces f > 1) diffuse ever slower, and D/D0 drops for f > 1.
This very striking nonequilibrium phenomenon emerging due
to inertial effects in nonlinear memoryless driven dynamics
for a sufficiently large, but not too large, friction γ0 has been
entirely overlooked thus far, to our best knowledge. It will be
studied in detail somewhere else. The inertial effects in the
Brownian motion are highly nontrivial and have been insuf-
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(a) (b)

FIG. 5. Dependence of the particles’ displacement on time in (a) non-Markovian and (b) Markovian transport at T = 0.01, γ0 = 2 and
several values of force shown in the plot. In panel (a), γα = 3, which corresponds to ρ = ρ f /2. M = 105 particles are used in the ensemble
averaging. Particles are always initially localized at x = 0 within one potential well with their velocities Maxwell distributed. Insets show the
same dependencies in the linear plot. Panel (b) makes clear that without memory effects a normal transport regime is quickly established once
particles leave the potential well. However, memory effects in panel (a) introduce a very long intermediate supertransport regime. Moreover,
transport is still anomalously fast at the end of simulations for f close to the critical tilt f (2)

c ≈ 0.937 (see inset), which corresponds to
resonance-like value of D/D0 in Fig. 4(a). Full lines with different symbols correspond to matching values of f shown in the main plots,
except for the inset in (a), where three lines correspond to the fits shown.

ficiently studied until now, even in the simplest paradigmatic
systems like the one considered.

Next, quite embarrassing, for f = 0.94, a very prolonged
hyperdiffusive, faster than ballistic, regime [see the main
plot in Fig. 3(a)] changes in the last time decade into a
subdiffusive regime with 〈δx2(t )〉 ∝ t0.783 (see the light green
line with squares in the inset therein). The latter one is
certainly transient. Nevertheless, its appearance for an already
saturated with time T (st)

k , which exceeds T by more than four
and a half times (see Fig. 6) is physically really puzzling.
Mathematically it, of course, just corresponds to a very long
transition from superlinear 〈δx2(t )〉 ∝ t2.2 scaling with time
to an asymptotically linear one. Quite paradoxically, we are
dealing here with a hot subdiffusion. For a small γ0, such a
regime occurs due to a transient cooling after the maximum
of Tk (t ) in time is passed [18]. It was revealed also for a
periodically driven memoryless underdamped diffusion in a
ratchet potential [51]. In the present case, the underlying
mechanism is, however, different. Notice also that in this case
toff is negative and the 2D(t − toff ) fit overestimates D. With
a further increase of f , the asymptotically normal regime is
gradually established.

Diffusion at higher temperature

With the increase of temperature T , the influence of mem-
ory effects on the diffusion enhancement becomes smaller.
Nevertheless, for T = 0.1 in Fig. 4(c) it is still manifestly
present. First, the diffusion maximum occurs at some f (2)

c <

1. Second, at its maximum the enhancement is three to four
times stronger than in the memoryless case, which also is
pretty well described by the analytical result of the over-
damped theory. Indeed, for ρ = ρ f /2 in Fig. 4(c), f (2)

c =
0.92. Notice that it equals f (3)

c in this case and D/D0 ≈
15.87 at maximum. It should be compared with the maximum
D/D0 ≈ 4.32 at f = 1 in the memoryless case. The memory-
induced boost is by about 3.67 times. For ρ = ρ f therein,

f (2)
c ≈ 0.93 with maximal D/D0 ≈ 12.57. The increase is still

impressive, nearly 2.91 times, and the effect is not small.

D. Hydrodynamic memory boosts nonlinear
mobility in a subcritical tilt region

Finally, we study the influence of memory effects on the
particles’ nonlinear mobility κ ( f ) = v( f )/ f , where v is the
mean particles velocity v = 〈δx(t )〉/t defined at the last half
time decade of simulations by using a v(t − toff ) fit to numer-
ical 〈δx(t )〉. The mean displacement of particles is shown in
Fig. 5(a), for the case with strong memory, ρ = ρ f /2, T =
0.01, γ0 = 2 and several values of force in a narrow interval,
f = 0.93–0.94, around f (2)

c = 0.937. It should be compared
with Fig. 5(b), where the matching memoryless case, γα = 0,
is depicted. First, it is worth noting that in the limit t → 0, the
initial transport is universally ballistic, 〈δx(t )〉 ∼ f t2/2 (m∗ =
1). For a very brief initial time period, the periodic potential
does not matter. The particles are prepared at x = 0, which
is not a mechanically equilibrium state in the biased case,
and they move first accelerating towards nearest potential
minimum. Then they start to equilibrate and 〈δx(t )〉 temporary
saturates. Notice also that the range of f variation in this
figure is so small that all the curves practically coincide during
the equilibration process with the potential well. Next, the
particles start to escape out of the potential well and travel
over many potential periods being driven by f and become
occasionally trapped in other potential wells during this pro-
cess and rereleased (notice that f is rather close to f (1)

c = 1
from below). In the memoryless case, transport is practically
normal, 〈δx(t )〉 ∝ v(t − toff ) (where toff is some offset time)
once 〈δx(t )〉 exceeds 2π – the potential period. Also, in the
case with memory, but for subcritical f = 0.930 shown by
red line with diamonds in Fig. 5(a), the normal transport
regime is established relatively fast. However, for f closer
to f (2)

c , a dramatic enhancement of transport occurs. Notice
that then transport becomes very sensitive to tiny f variations
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(compare with the initial regime for t < 100!). Remarkably, a
very long transient supertransport regime 〈δx(t )〉 ∝ tκt with
κt ≈ 1.43 emerges, which can cover about 1000 potential
periods. Of course, even in this regime, the transport is slower
in absolute terms than in the absence of hindering periodic
potential. However, hydrodynamic memory greatly acceler-
ates transport in the periodic potential near-to-critically tilted;
i.e., the memory effects in synergy with thermal fluctuations
greatly help to overcome the residual potential bumps on
the way. Interestingly, even at the end of simulations (which
take several days to run with double numerical precision and
M = 105 particles in parallel on high-performance profes-
sional GPU processors, for one curve presented) the transport
remains anomalously fast, κt ≈ 1.1, in this case; see the inset
of Fig. 4(a) for more details. The fit with v(t − toff ) (see, e.g.,
in the discussed inset for f = 0.940) then still underestimates
the actual value of v. In Fig. 4(b) we provide the nonlinear
mobility based on such an estimate in the pertinent cases,
where the normal transport regime was not possible to reach in
numerics.

The results for mobility are depicted at T = 0.01 in
Fig. 4(b) for three values of γα , including the memoryless
case. For f smaller than f = 0.9 < f (3)

c , the influence of
memory is negligible in this plot. Likewise, for a very large
f , the regime of linear mobility in the absence of poten-
tial, κ0 = 1/η0 = 0.5, is gradually achieved already for f �
2. However, near f (2)

c the enhancement of mobility by the
memory effects is tremendous. For ρ = ρ f /2, at f = 0.94,
κ = 0.2288, whereas without memory effects it is merely
0.009156. The boost of mobility is about 25 times! This is
a very striking effect. Likewise, for ρ = ρ f , at f = 0.96, κ =
0.2283, whereas without memory effects it is merely 0.02524.
The memory-caused increase is by an impressive nearly nine
times.

Important to mention is that for T = 0.01 and f close
to f (2)

c , the transport is, in fact, anomalously fast during
the major period of simulations, as Fig. 5(a) reveals. First,
〈δx(t )〉 ∝ t1.43 for intermediate times after particles started to
leave the potential well and move in the force direction. This
supertransport regime lasts for t until about 2 × 104. During
this time, particles move over about 1000 potential periods.
Notice that the transport power-law exponent κt = 1.43 is
close to 1.5, which would correspond to the case of Stokes
friction contribution ad hoc neglected [38]. One can state that
the corresponding supertransport regime is manifested here in
the presence of Stokes friction, which is an important result.
Second, even at the end of the simulation, the corresponding
power-law exponent still did not relax to unity being about
1.1. The corresponding estimates of the mean velocity, like the
one shown in the inset of Fig. 5(a) for f = 0.94 underestimate,
in fact, the corresponding value of v and the mobility in
Fig. 4(b). Comparison with Fig. 5(b), where such a regime
is absent, makes clear that this supertransport emerges due to
hydrodynamic memory effects.

Transport at higher temperature

Finally, we provide the results on nonlinear mobility en-
hancement for a larger T = 0.1 or smaller U0/(kBT ) = 10 in
Fig. 4(d). The memory-induced increase of mobility becomes

less impressive, and, nevertheless, it remains still significant.
For example, in this figure, at f = 0.93, κ = 0.2106 for
ρ = ρ f /2, κ = 0.1882 for ρ = ρ f , and κ = 0.1310 in the
memoryless case. The enhancement is by 60.75% and 43.66%
with respect to the memoryless case, correspondingly. It is not
small at all.

We conclude that also at higher temperatures the memory
effects can significantly boost both diffusion and transport
in near-to-critically tilted periodic potentials over the case
where such effects are neglected. Hydrodynamic memory
can also suppress diffusion outside the resonance-like critical
enhancement regime; see, e.g., in Fig. 4(a) for f > 1 and in
Fig. 4(c) for f > 1.15 and f < 0.7. Similar suppression was
earlier discussed in Ref. [18] for a weak friction case of γ0 =
0.1. Transport is generally enhanced for f > f (3)

c ; however, it
can also be suppressed for f < f (3)

c —see, e.g., in Fig. 4(d)
for f < 0.8. In this respect, the case of moderately strong
γ0 = 2 considered here is different from the case of small
γ0 = 0.1 investigated in Ref. [18]. Our Fig. 1 explains why.
In any case, influence of hydrodynamic memory on strongly
nonequilibrium stochastic transport can be very significant
even for moderately strong friction in the case of sufficiently
light particles.

IV. SUMMARY AND CONCLUSIONS

In summary, in this paper, we showed within a paradig-
matic model of driven nonlinear Brownian transport and dif-
fusion that hydrodynamic memory effects primarily neglected
thus far in the theory of nonlinear Brownian motion could pro-
foundly influence both diffusion and transport even for a rel-
atively strong Stokes friction. First, enormous resonance-like
enhancement of diffusion can occur for a potential tilt, which
is subcritical for such a Stokes friction taken alone, where
the pertinent overdamped theory [20] describes already very
well the numerical results in the negligence of such memory
effects. This memory-induced surplus enhancement can be
very large for light particles, by several orders of magnitude,
depending on temperature and the ratio ρ/ρ f , which measures
strength of the memory effects. Second, transport also can be
enhanced enormously at the corresponding resonance-like tilt.
Third, the transient superdiffusive and supertranport regimes
can last for a long time while covering thousands of lattice
periods. Particles can become kinetically very hot in these
anomalous regimes, with their kinetic temperature well above
the temperature of the surrounding liquid. Fourth, even un-
driven thermally equilibrium diffusion in periodic potentials
exhibit novel features manifested by an inverse fractional
dependence of the diffusion coefficient on the Stokes friction
strength.

The experimental verification of these intriguing and
highly surprising effects can be expected (cf. Appendix B) in
less viscous liquids like liquid helium at T = 4 K (above λ

point, still a normal fluid), for hollow microparticles with tai-
lored ρ, which are trapped in optically created potentials [22],
or even in more viscous yet more common fluids like diethyl
ether for nanoparticles in nanoimprinted periodic potentials
created by methods of lithography [49]. In such micro- and
nanofluidic systems, the inertial effects in Brownian motion
can become essential being greatly amplified by the hydrody-
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namic memory effect, as this work showed. We expect that
it will attract the interest of not only theoreticians but also
experimental scientists and spark subsequent research work.
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APPENDIX A: NUMERICAL APPROACH

Numerical integration of FLE (1) is based on an ap-
proximation of the power-law scaling part of memory ker-
nel by a sum of exponentials (a Prony series expansion)
and hyper-dimensional Markovian embedding of underlying
non-Markovian dynamics [18,38,44,52]. The method works
very well and leads to results which often practically co-
incide within the numerical precision tolerance of 5%–6%
(can be made better) with the analytical results available in
case of linear dynamics. The memory kernel approximation
reads [18,38]

η(t ) =
N∑

i=1

ηi[2δ(t ) − νi exp(−νit )] , (A1)

where ηi = ki/νi, ki = Cα (b)ηανα
i /|
(1 − α)|, and νi =

ν0/bi−1. The sum of exponentials obeys a fractal scaling with
a scaling parameter b. It approximates the power-law decay
[44,52–54] of this memory kernel, so that

∫ ∞
0 η(t ) dt = 0.

The choice of ν0 is related to the time step of simulation
�t , which was �t = 0.002 in most simulations. To avoid
numerical instability, ν0�t should be smaller than one.

The power-law regime extends in this approximation from
a short time (high-frequency) cutoff, ν−1

0 , to a large time
(small frequency) cutoff, τh = τl bN−1. The choice of N is
dictated by the maximal time tmax of simulations: τh should
exceed tmax by at least several times. The accuracy of the
approximation between two cutoffs is controlled by the scal-
ing parameter b > 1. The smaller b, the better the accuracy.
However, a larger N is then required. With b = 5 and Cα (b) =
1.78167 [18,38] it is about 6% for t between 0.05 and 106 for
ν0 = 100 and N = 13. It can be slightly improved to 5% by
choosing Cα (b) = 1.816, which is used in most simulations in
this paper. When required, the discussed accuracy can dras-
tically be improved to about 0.003% between 0.07 and 106

for ν0 = 100 and N = 38 with b = 2 and Cα (b) = 0.782134.
This choice would, however, also essentially increase the sim-
ulation time because of a much larger embedding dimension.
Since we are interested in reaching a maximal time range
in computer simulations, we use the same embedding with
b = 5 and N = 13 as earlier [18,38]. Even in this case, simu-
lations are very time consuming. It takes several days to reach
tmax = 106 on professional GPU processors (double-precision
accuracy) required for the reason of a trivial paralleliza-
tion: M = 105 independent Brownian particles (trajectories)

were propagated in parallel for doing ensemble averaging.
Sufficiently large tmax is required given very long transient
regimes. For the studied problem, in the neglect of memory
effects, it suffices to use �t = 0.01 in numerics [28] done here
with the second-order stochastic Heun algorithm [55]. In the
presence of memory effects, five times smaller �t = 0.002
was sufficient.

For doing Markovian embedding, one introduces a set of
N auxiliary variables ui such that the corresponding embed-
ding dynamics in the hyperspace of dimension D = N + 2
reads [18,38]

ẋ(t ) = v(t ),

m∗v̇(t ) = f (x, t ) −
N∑

i=1

ui(t ) − (η0 + η� )v(t )

+ ξ0(t ) +
√

2kBT η�ζ0(t ),

u̇i(t ) = − kiv(t ) − νiui(t ) +
√

2kBT kiνiζi(t ), (A2)

for i = 1, . . . , N , where η� = ∑N
i=1 ηi. Furthermore, ξ0(t )

and ζi(t ), i = 1, . . . , N , are N + 1 delta-correlated in time
and mutually uncorrelated white Gaussian noise sources of
zero-mean and unit intensity, 〈ζi(t )ζ j (t ′)〉 = δi jδ(t − t ′), for
i, j = 1, . . . , N , 〈ξ0(t )ζi(t ′)〉 = 0. However, the noise ζ0(t ) is
chosen as a weighted, normalized sum of other ζi(t ) [18,38],

ζ0(t ) =
N∑

i=1

√
ηi

η�

ζi(t ) . (A3)

The initial ui(0) are sampled as independent Gaussian vari-
ables with zero mean and correlations 〈ui(0)u j (0)〉 = kBT kiδi j

[38,44,52]. Initially, particles were always prepared with their
velocities Maxwell distributed at temperature T and localized
sharply at x = 0, which corresponds to the minimum of
potential in the unbiased case f = 0. One assumes besides
that v = 0 for t < t0 = 0 in Eq. (1). This is a nonequilibrium
initial preparation.

APPENDIX B: ESTIMATION OF PHYSICAL PARAMETERS

Here we address physical systems, where the studied ef-
fects can be revealed experimentally. The crucial issue here
is a sufficiently small nondimensional γ̃0, which can be ex-
pressed as

γ̃0 = 6

√
3π

2

ρ f

2ρ + ρ f

x0

R
θ, (B1)

where θ =
√

Rρ f

U0
μ =

√
R

U0ρ f
ζ , with ζ = ρ f μ being the dy-

namic viscosity. The particles’ diameter should not be much
larger than the potential period L = 2πx0. For this reason,
x0/R could hardly be much smaller than 0.1. For example,
for Brownian particles in optical vortices in Ref. [22], x0 =
52.5 nm and R = 740 nm. This yields x0/R ≈ 0.0709. To
arrive at smallest γ̃0, the strategy is hence to minimize θ .
The fluid with the lowest known dynamic and kinematic vis-
cosity is liquid helium. At T = 4 K, its dynamic viscosity is
ζ = 3.3 × 10−6 Pa s [56]. With density ρ f = 125 kg/m3 this
yields μ = 2.64 × 10−8 m2/s. Let us take U0 = 100 kBT ≈
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5.52 × 10−21 J. Then θ ≈ 3.417, and for ρ = ρ f , we obtain
γ̃0 ≈ 1.823, which is a bit smaller than γ̃0 = 2 used in this
paper. The corresponding time units in our simulations would
be τ0 = 1.26 × 10−5 s in physical units. Hence, the maximal
time tmax = 106 in our simulations would correspond to about
12.6 s. This is interesting because the regimes of anomalous
diffusion caused by hydrodynamic memory effects can reach
the timescale of seconds. The values γ̃0 10 times smaller
can be achieved if to downscale x0 and R by a factor of
100, i.e., for nanoparticles of R ∼ 7.4 nm. The corresponding
periodic nanostructures to create, e.g., electrostatic periodic
potentials for charged Brownian particles can be produced
by nanolithography [49], and nanosized hollow particles with
appropriate low mass densities can also be tailored [57].
Furthermore, for more common fluids like diethyl ether at
Tr = 298 K, ζ = 0.224 × 10−3 Pa s and ρ = 713.4 kg/m3.
For U0 = 100 kBTr ≈ 4.114 × 10−19 J, R = 740 nm, x0 =
52.5 nm we obtain θ ≈ 11.247, and for ρ = ρ f , γ̃0 ≈ 6. Next,
a ninefold reduction of both R and x0 would yield γ̃0 ≈
2. Hence, the study of inertial effects in Brownian motion,
including hydrodynamic memory effects, should be experi-
mentally feasible. Some significant experimental work in this
direction was already done for parabolic potentials optically
created [15–17]. The case of periodic potentials is, however,
more challenging.

APPENDIX C: KINETIC HEATING AND
VELOCITY DISTRIBUTION

In this Appendix, we discuss kinetic heating of Brow-
nian particles, velocity distribution P(v, t ) responsible for
this kinetic heating, and their relation to enormous diffusion
enhancement.

To begin, in the scaling of this work, renormalized
mass m∗ = 1 and kB = 1. Initially, particle velocities are

Maxwell distributed, P(v, 0) = exp[−v2/(2T )]/
√

2πT with
zero mean, 〈v(0)〉 = 0, and the variance 〈δv2(0)〉 = v2

T =
T . Here and in the following, δv(t ) = v(t ) − 〈v(t )〉. In the
absence of periodic potential and for an arbitrary strong force
f , P(v, t ) after a transient time 1/γ0 is Maxwell distributed
around the mean value 〈v〉st = f /γ0. Doing the overdamped
limit at strong friction γ0  1, one assumes that velocity
distribution remains Maxwellian (shifted by 〈v〉) at the same
temperature T and excludes the velocity variable from the
further consideration. This assumption becomes questionable
in the case of nonlinear driven dynamics even for a sufficiently
large but finite γ0. At first look, dynamics in considered tilted
washboard potentials can become close to the overdamped
case already for γ0 > γ

(c)
0 = 1.193, as the Risken’s phase

diagram might suggest; see the memoryless case in Fig. 1.
Indeed, following this diagram, the only critical force, which
seems relevant above γ

(c)
0 , is f (1)

c = 1. For γ0 > γ
(c)

0 and
f < f (1)

c at T = 0 any particle will be eventually trapped in a
potential well, whereas at f > f (1)

c it will be running. For γ0 <

γ
(c)

0 at f < f (3)
c and T = 0 all particles are eventually trapped,

whereas for f > f (3)
c the running solutions appear. Risken de-

fined an effective potential for a particle using its total energy
as a variable; see Ch. 11.6 in Ref. [7]. It displays bistability
at f (3)

c < f < f (1)
c (in our notations), and at some critical

force f (2)
c , both minima of that effective potential become

equal. In Refs. [26,27], a velocity pseudopotential, V (v) =
−kBT ln[P(v)], was considered instead of the Risken’s po-
tential, where P(v) is the velocity distribution. It turns out to
be also bistable for sufficiently small friction. One minimum
at v1 = 0 corresponds to the trapped particles, with velocity
being Maxwell distributed around this minimum, and another
minimum is located at v2 = f /γ0, with velocity also Maxwell
distributed around v2. A biparabolic velocity pseudopotential
with cusp at intersection of two parabolas provides a reason-

(a) (b)

FIG. 6. Kinetic temperature defined as Tk (t ) = 〈δv2(t )〉 in the scaled units vs time at T = 0.01 for γ0 = 2, (a) γα = 3 (ρ = ρ f /2) and
(b) γα = 0 (normal diffusion) at several values of tilting force f shown in plots. Initially, Tk (0) = T . The particles can first slightly cool down,
when they start equilibrating being localized initially in a potential well. Then they arrive again at T during this equilibration process and
start to drastically heat up, when they leave the potential well, for a sufficiently large f and t . In the case of normal diffusion, Tk (t ) arrives
at a stationary nonequilibrium value T (st)

k already for t > 100. For f < 0.9, the heating effect is almost negligible. However, the particles can
become kinetically very hot even in the absence of memory effects. For example, at the critical tilt f = 1.00 in panel (b) they are 4.5 times
kinetically hotter than their surroundings. For strong memory effects in panel (a), the maximal T (st)

k ≈ 4.76 T is arrived at f = 0.94 in this
panel. Then, with a further increasing f , T (st)

k gradually diminishes until it reaches T for a very large f . However, in the memoryless case, T (st)
k

dramatically increases further with f (see for f = 1.1) until about f = 1.5 (not shown) and only then gradually drops. This puzzling regime
is left for a separate study. M = 105 particles are used for the ensemble averaging.
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(a) (b)

FIG. 7. Velocity distribution in case of (a) diffusion with memory and (b) memoryless diffusion at T = 0.01, γ0 = 2 and several force
values shown. In panel (a), γα = 3, which corresponds to ρ = ρ f /2. Maxwell equilibrium distribution is also shown for comparison. The
emerging bimodality of P(v) for a sufficiently large f is obvious. For f = 0.937 in panel (a) the distribution is still not stationary. M = 105

particles are used to produce these distributions in each case considered.

able approximation to V (v) [26,27]. This picture of velocity
bistability remains valid, upon some modifications, also in
the presence of hydrodynamic memory effects for γ0 = 0.1
in Ref. [18].

However, this simple picture breaks down even in the
absence of memory effects for sufficiently strong friction
exceeding (about) γ0 = 0.25; see the Supplemental Material
[41] of Ref. [18], which was also confirmed quite recently
in Ref. [42]. The numerical simulations reveal that already
for γ0 = 0.3, the velocity distribution can be three modal;
see Fig. 7(a) in the Supplemental Material [41] of Ref. [18]
and, especially, panel (c) therein, for γ0 = 0.7. The running
state consists, in fact, of two velocity substates with P(v)
maxima at v

(1)
2 and v

(2)
2 such that v

(1)
2 < v2 = f /γ0 < v

(2)
2 .

Moreover, v2 corresponds to the minimum (!) and not max-
imum of P(v), as a bistable picture of V (v) [26,27], valid
only for sufficiently small γ0 [18], can misleadingly imply. For
f � f (1)

c , P(v) becomes bimodal in such a memoryless case
because of the minimum at v1 = 0, which corresponds to the
trapped particles, disappears; see panel (d) in the discussed
figure. These earlier overlooked features are important to
understand the results of this work. The velocity distribution
P(v) can be bimodal even for not too large γ0, well above the
critical force f (1)

c (until some very large f ), when the tilted
washboard potential does not have anymore some minima
and maxima at all. It is a great surprise overlooked until
recently.

Generally, P(v, t ) is time dependent for the considered
nonlinear stochastic dynamics. For a sufficiently large time,
a stationary distribution Pst (v) = lim→∞ P(v, t ) will be at-
tained. However, this limit is not always possible to reach in
our numerics, especially in the presence of memory effects.
Although the memory effects do not affect Pst (v) in the case of
linear dynamics, where it remains Maxwellian, they generally
essentially influence both P(v, t ) and Pst (v) in the case of
driven nonlinear dynamics considered.

The emerging very broad P(v, t ) velocity distribution,
which is profoundly different from the Maxwell distribution,
means that particles become kinetically very hot. The kinetic
temperature is commonly characterized by the velocity vari-
ance 〈δv2(t )〉 such that Tk (t ) = 〈δv2(t )〉 [26,36–38]. For an

equilibrium Maxwell distribution, Tk (t ) = T . It is so initially
in Fig. 6. As everywhere else in this paper, the particles
initially are localized at x = 0, which is a nonequilibruim
distribution within the potential well. During the initial equi-
libration they are first slightly cooled, and then heated up to
T again. A very interesting phenomenon occurs when the
particles diffuse out of the initial potential well. Then they can
be heated up to some Tk (t )  T , reaching finally a stationary
value T (st)

k . If f is far below f (3)
c , T (st)

k = T , as expected. For
example, for f = 0.90 in Fig. 7(a), Pst (v) is still practically
Maxwellian, and no kinetic heating occurs. However, already
for f = f (3)

c = 0.92 in Fig. 6(a), T (st)
k /T ≈ 1.15, i.e., Tk is

enhanced by about 15% over T . In the absence of memory
effects, in Fig. 6(b), the enhancement is somewhat smaller:
10% only. The deviation from T is still sufficiently small, in
both cases. The onset of Pst (v) bistability is clearly seen in
Fig. 7 for f = 0.92, also in the absence of memory effects,;
cf. Fig. 7(b). However, already for f = 0.93, the kinetic
temperature increases by ca. 70% in Fig. 6(a) versus 21%
in Fig. 6(b). Astoundingly, a tiny further increase of force
to f = 0.94 boosts T (st)

k to about T (st)
k = 4.76 T in Fig. 6(a),

which is the maximal stationary value therein. This sharp
increase should be contrasted with a still small increase in
the memoryless case in Fig. 6(b). Hence, the discussed sharp
increase is caused by the memory effects indeed. With a
further increase of f , T (st)

k gradually diminishes, and for a very
large force it finally drops down to T again (not shown). The
force range, where the Brownian particles become hot under
constant driving, is surprisingly large. It must be mentioned
also that for f = f (2)

c = 0.937 and f = 0.938, Tk (t ) still did
not reach the stationary value T (st)

k in Fig. 6(a). The corre-
sponding distribution P(v) for f = 0.937 in Fig. 7(a) is still
not stationary. This still increasing Tk (t ) in Fig. 6 correlates
with transient superdiffusion, which lasts until the end of
simulations in these cases; see Fig. 3(a). Maximum of the
corresponding asymptotic diffusion coefficient estimated in
Fig. 4(a) indeed seems to be associated with the maximum of
T (st)

k versus f , as in the case of small γ0 [18]. However, here
some profound warnings are due. First, even if Tk (t ) is already
saturated for f = 0.94 in the discussed case [cf. Fig. 6(a)]
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the corresponding diffusional behavior in Fig. 3(a) is still
transient and, unexpectedly, displays subdiffusion. For a much
smaller γ0 = 0.1 in Ref. [18] the emergence of such a transient
subdiffusion regime was connected with the regime like the
one for f = 0.95 in Fig. 6(a), when Tk (t ) drops gradually to
T (st)

k after reaching a maximum. Indeed, also for this case, a
transient subdiffusive behavior is still detectable (not shown).
However, already for f = 1, one cannot find such a regime,
even if the corresponding nonmonotonous behavior of Tk (t )
in Fig. 6(a) might imply it. It becomes simply too short to be
detectable. Second, in the memoryless case, the maximum of
T (st)

k does not correspond to the maximum of D. Indeed, in
Fig. 6(b), T (st)

k is the largest for f = 1.1 and not for f = 1.0,
which corresponds to the maximum of D in Fig. 4(a). In other
words, an increase of f beyond f (1)

c in the memoryless case
leads to a further increase of T (st)

k [cf. Fig. 6(b)], whereas
D already starts to diminish; cf. Fig. 4(a). Here a fascinat-
ing phenomenon emerges, which seems to have been com-
pletely overlooked thus far and which we defer to a separate
study. Namely, the stationary velocity autocorrelation func-
tion (VACF) starts, to our great surprise, to rapidly oscillate in
time (not shown). These oscillations correlate with transient
Tk (t ) oscillations like the ones for f = 1.1 in Fig. 6(b), which
are also quite surprising. Since the diffusion coefficient is

integral of VACF [11,45], D declines with f despite T (st)
k still

growing. This doubly unusual phenomenon indicating that the
inertial effects can remain significant for appreciably large γ0,
even in the absence of hydrodynamic memory effects, will
be studied in a separate work. It is especially striking and
surprising because the diffusion enhancement in this work is
already well described by the results of overdamped theory in
the corresponding case.

The behavior of P(v) in Fig. 7 also deserves a separate
discussion. Notice that at f = 0.90 in Fig. 7(a), P(v) is still
pretty well described by the equilibrium Maxwell distribution,
with the center, which is still practically not shifted. For
f = 0.92, the emerging velocity bistability becomes perspic-
uous. However, the first maximum is still centered at v = 0
corresponding to the trapped states. Nevertheless, already for
f = 0.93, this maximum shifts slightly to the running states,
indicating that for a finite temperature, the trapped states
are destabilized by thermal fluctuations for f > f (3)

c , in the
case considered, which is a remarkable feature. Likewise,
already at f = 1 in the case of memoryless diffusion, the first
maximum of P(v) shifts to the running states; cf. Fig. 7(b).
One might expect it because, at f = 1, the potential minima
vanish overall. However, such a distinct shift at f = 0.937 in
Fig. 7(a) is quite surprising.
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