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We consider a quantum system such as a qubit, interacting with a bath of fermions as in the Fröhlich polaron
model. The interaction Hamiltonian is thus linear in the system variable and quadratic in the fermions. Using the
recently developed extension of Feynman-Vernon theory to nonharmonic baths we evaluate quadratic and the
quartic terms in the influence action. We find that for this model the quartic term vanish by symmetry arguments.
Although the influence of the bath on the system is of the same form as from bosonic harmonic oscillators up to
effects to sixth order in the system-bath interaction, the temperature dependence is nevertheless rather different,
unless rather contrived models are considered.
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I. INTRODUCTION

The theory of open quantum systems has attracted in-
creased attention in recent years, motivated by advances quan-
tum information theory [1] and emerging quantum technolo-
gies [2,3]. For these to become practically useful in a broad
range of applications a main roadblock to overcome is the
strong tendency of large quantum systems to turn classical due
to interactions with the rest of the world [4–6]. Open quantum
systems encompass the various concepts and analytic and
numerical techniques that have been developed to describe
and estimate the development of a quantum system interacting
with an environment [7,8].

A special place in open quantum system theory belongs
to problems where a general system (the system of inter-
est) interacts linearly with one or several baths of harmonic
oscillators. One reason is that resistive elements in a small
electrical circuit can be modeled as many LC elements in
parallel, of which each one obeys the equation of a harmonic
oscillator. At very low temperature as in quantum technology
applications, these harmanic oscillators should be quantised
[9]. A related reason is the number of physical environments
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(phonons, photons) that can also be directly described this
way. In the Lagrangian formulation of quantum mechanics
[10] the development of a wave function (unitary operator
U ) is described by a path integral, while the development
of a density matrix (quantum operation U · U †) is described
by two path integrals, one (forward path) for U and one
(backward path) for U †. A third reason why harmonic os-
cillator baths are interesting is that the paths of such baths
can be integrated out yielding the famous Feynman-Vernon
theory [11]. The only trace of the bath (or baths) is then the
Feynman-Vernon action, quadratic terms in the forward and
backward paths.

Nevertheless, most physical environments do only approx-
imately or not at all consist of degrees of freedom that can
be described as bosonic harmonic oscillators. Conduction
band electrons in normal metals are for instance obviously
fermions. Even if these fermions by themselves are free (and
hence can be treated as fermionic harmonic oscillators), in the
open quantum system context it is their interaction with the
system of interest that counts. If that system is a quantum
variable such as a qubit, the simplest interaction that can be
considered is quadratic in the fermionic variables and linear in
the system of interest. As a term in an interaction Hamiltonain
that is Xab where X is the quantum variable of the system
of interest and a and b are creation or destruction operators
of the fermions. Interaction Hamiltonians of this type appear
in the Fröhlich polaron model of the motion of a conduction
electron in an ionic crystal [12,13]. In Feynman’s variational
treatment, one electron is modelled as a nonrelativistic particle
interacting with a bath of bosonic harmonic operators which
are then integrated out. Here we are interested in the opposite
case where one bosonic degree of freedom, i.e., the qubit,
describes the system of interest, and we want to “integrate
out” the fermions. One problem with such an approach is that
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fermionic functional integrals (Grassman integrals) are math-
ematically nontrivial objects. Another is that for the Fröhlich-
like coupling both the bath Hamiltonian and the interaction
are quadratic in the fermionic degrees of freedom; the result
is hence two fermionic functional determinants depending on
the forward and backward histories of the system of interest
acting as external fields.

An approach to similar problems, used for a long time
in condensed matter theory, is Keldysh techniques [14,15].
While essentially equivalent to Feynman-Vernon theory,
Keldysh theory was developed for other applications, and
encompassing from the start fermionic baths. The kernels of
the quadratic terms in Feynman-Vernon theory can thus be
identified with pairwise bath correlation functions, in Keldysh
theory referred to as “dressed nonequilibrium Greens func-
tions.” Here we will instead follow the recently developed
extension of the Feynman-Vernon theory to nonharmonic
baths [16]. One advantage of this approach is that it gives
access also to terms in Feynman-Vernon influence functional
higher than quadratic. Let us remark that from the functional
integral point of view it is obvious that such terms must exist:
While the bath can always be integrated out in principle, it
is only for harmonic (bosonic or fermionic) baths that all the
integrals are Gaussian and can be done in closed form. A main
result of Ref. [16] is that higher-order Feynman-Vernon terms
depend on cumulants of bath correlation functions. The first
nonstandard term in the extended Feynman-Vernon theory
for the dynamics of the system hence involves fourth-order
cumulants of the correlation functions of the compound bath
variables ab, i.e., eighth-order fermionic correlations. Perhaps
suprisingly we find that for the Fröhlich-coupled system these
terms actually cancel in the influence function.

The paper is organized as follows. In Sec. II we state the
problem and make general remarks of what one can expect
of the solution. In Sec. III we assume as a concrete example
that the variable is a qubit (a two-state system) coupled to the
bath as in the spin-boson problem, and state more precisely
the system-bath interaction we study in the rest of the paper.
In Sec. IV we present the structure of the first term of the
Feynamn-Vernon action and show that the second term in the
expansion of the action vanishes in our model. In Sec. V
the standard (second-order) Feynamn-Vernon action of the
considered model is compared to that of a harmonic bosonic
bath. Appendices A and B contain summaries of technical
details from Ref. [16], included for completeness. Appendix
C presents the detailed argument that in the considered model
is no fourth-order contribution to the generalized Feynman-
Vernon action.

II. STATEMENT OF THE PROBLEM

Let us consider a system consisting of one bosonic variable
and a bath of free fermions as discussed above. That means a
Hamiltonian

ĤTOT = ĤS + ĤINT + ĤB, (1)

where the first term ĤS is the Hamiltonian of the system. For
a bosonic variable the evolution operator corresponding to ĤS

can be written as a path integral

US = e− i
h̄ ĤSτ =

∫
DXe

i
h̄ S[X ], (2)

where S[X ] is the action of path X . The evolution operator
acting on density matrices is similarly a double path integral
over a “forward path” and a “backward path”

US · U †
S =

∫
DXDYe

i
h̄ S[X ]− i

h̄ S[Y ]·, (3)

where the slot marks where the initial density matrix is to be
inserted.

The free bath Hamiltonian in Eq. (1) is

ĤB =
∑

k

Ekĉ†
k ĉk, (4)

where ĉ†
k (ĉk) is the creation (destruction) of fermions, and the

interaction Hamiltonian is of the type (below we will use a
more specific model)

ĤINT = X̂
∑
k,l

gkl ĉ
†
k ĉl . (5)

X̂ in the above is the operator corresponding to the path
integral variables X and Y in Eqs. (2) and (3).

Initially the bath and the system are assumed independent,
and the bath is in thermal equilibrium at inverse temperature
β. The evolution operator of the system is the quantum map
(or quantum operator) given by

�· = TrB[U (ρB(β ) ⊗ ·)U †], (6)

where Û = e− i
h̄ (ĤS+ĤINT+ĤB )τ is the total evolution operator of

the combined system and bath, ρB(β ) is the initial equilibrium
density matrix of the bath, and · marks where to insert the
initial density matrix of the system.

Suppose that the evolution of the bath can also be written
as a double path integral. If so the bath can be integrated out,
so that we have

�· =
∫

DXDYe
i
h̄ S[X ]− i

h̄ S[Y ]F[X,Y ]· (7)

The new term compared to Eq. (3) is the Feynman-Vernon
influence functional, i.e., what remains after integrating out
the bath paths while the system paths are held fixed. Although
important general properties of the influence functional were
stated in Ref. [11], in practice this formalism has mostly been
used for when the baths are free bosons interacting linearly
with a system. In that case all the path integrals over the
baths are Gaussians, and F can be written as e

i
h̄ Si[X,Y ]− 1

h̄ Sr [X,Y ],
where Si[X,Y ] and Sr[X,Y ] are two explicit quadratic func-
tionals of the forward and backward system paths, usually
known as Feynman-Vernon action.

However, it is not necessary to assume that the bath can
be represented as path integrals. As reviewed in Ref. [8] and
rederived in Ref. [16], the super-operator � in Eq. (6) can
be computed perturbatively, and the terms translated back to
a double path integral over the system. In this way one can
identify the kernels in the actions Si[X,Y ] and Sr[X,Y ] as
being equilibrium pair correlations in the bath. Importantly
this holds for any equilibrium bath. The price to pay if the bath
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is not harmonic is that there are higher-order terms that are,
respectively, fourth, sixth, etc., order in the system variables
X and Y .

III. A QUBIT COUPLED TO A FERMIONIC BATH
AS IN SPIN-BOSON PROBLEM

For concreteness, and since this would be a main applica-
tion to quantum information science, we now assume that the
system of interest is a a qubit (a two-state system) governed
by a system Hamiltonian,

ĤS = ε

2
σ̂z + h̄

�

2
σ̂x. (8)

The evolution operator e− i
h̄ ĤSτ can be represented by inserting

resolution of the identity between very small time increments
δτ . The first term in Eq. (8) then only contributes if the
state stays the same between two small time increments;
that contribution is e± i

h̄
ε
2 δτ . The parameter ε is hence the

level splitting. The second term in Eq. (8), however, only
contributes if the state changes over a small time increment,
and the contribution is (±i �

2 δτ ). The parameter �/2, which
has dimension of a rate, is hence the tunneling element.

The paths in X and Y in the path integral in Eq. (3) are
nothing but a way to represent e− i

h̄ ĤSτ and e
i
h̄ ĤSτ , and are

hence piecewise constant, equal to ±1. Before continuing we
note a clash of conventions: X and Y are in the literature
on open quantum systems used to refer to the history of a
system variable which is intergrated over. In our case these
are the histories (forward and backward) of a representation
of σ̂z, and X̂ is also used for the system part of the interaction
Hamiltonian. This is the convention we follow. In the quantum
information literature X̂ and Ŷ instead refer to the operators σ̂x

and σ̂y, while the operator σ̂z is written Ẑ . We do not follow
this convention.

Now, it is convenient to include the contributions from the
level splitting in the actions in Eq. (3), and the contributions
from the tunneling elements in the path measures DX and
DY . If so DX and DY are nothing but the path probabilities
of (classical) Poisson point processes, except that the jump
rates are purely imaginary. That is, we can interpret X as
si, n, t1, . . . , tn where si is the initial state (up or down), n is
the number of jumps and t1 < t2 < . . . are the jump times. The
purely imaginary path measures are then

∫
DX (·) =

∑
n

n∏
s=1

(
±i

�

2

)∫
dts(·). (9)

The advantage of the above is that it can accommodate also
a coupling to a bath when that coupling is proportional to σz.
When the bath is composed of bosonic harmonic oscillators
this is the spin-boson problem; the above path integral was
developed by Leggett and collaborators for that problem in
Ref. [17].

For our problem we will consider the interaction Hamilto-
nian is

ĤINT =
∑
k, l

gkl X̂ (ĉk + ĉ†
k )(ĉl + ĉ†

l ), (10)

where X̂ (σ̂z) is the system part of the interaction, ĉ†
l , ĉ†

k (ĉk, ĉl )
are the creation (destruction) operators of two fermions, and
gkl is a coupling constant. Due to the anticommutation rules
for fermions we can set gkl = −glk .

For the following sections it is convenient to introduce
an interaction representation based on Eqs. (4) and (8). Bath
destruction operators transform as

ĉi(t ) = e
i
h̄ ĤBt ĉie

− i
h̄ ĤBt = ĉie

−iωit , (11)

where ωi ≡ Ei/h̄, and bath creation operators as ĉ†
i (t ) =

ĉ†
i eiωit . Explicit form of the transformed system operator X̂

in Eq. (10) is not relevant for further considerations. In this
representation the interaction Hamiltonian is

ĤINT(t ) =
∑
k,l

gklX (t )(ĉke−iωkt + ĉ†
keiωkt )

× (ĉl e
−iωl t + ĉ†

l eiωl t ). (12)

We also assume that the bath is initially in a thermal state
where ρ = e−β

∑
k Ek ĉ†

k ĉk with β ≡ h̄/(kBT ).

IV. THE GENERALIZED FEYNMAN-VERNON
ACTION TERMS

In most cases discussed in literature Feynman-Vernon ac-
tion is of the second order in the system paths. This occurs,
e.g., for a system interacting linearly with a bath of free
bosons. However, for other type of baths and couplings higher
order terms in the action appear. A systematic way of dealing
with such situations was formulated in Ref. [16] and for the
convenience of the reader is summarized in Appendices A
and B. In that approach the total Feynman-Vernon action is
expressed as a sum of different-order terms (i.e., involving
different number of system paths). In the Appendix B we show
that expression for the the usual quadratic Feynman-Vernon
action can be rewritten such that

S(2) = − h̄

2

∫ t

t0

dt1

∫ t

t0

dt2C(t1, t2)J
[
Yt2 ,Yt1 , Xt1 , Xt2

]
,

where J [. . .] is a quadratic functional over paths of the
system, which explicit form is given by Eq. (B5), Xs and Ys are
forward and backward path of the system evaluated at time s,
and C(t1, t2) is the bath correlation function. For the problem
considered here it reads

C(t1, t2) = −
∑
k,l

g2
kl〈Q̂k (t1)Q̂k (t2)〉〈Q̂l (t1)Q̂l (t2)〉, (13)

where Q̂k (ti ) ≡ ĉke−iωkti + ĉ†
keiωkti and

〈Q̂k (t1)Q̂k (t2)〉 ≡ cos ωk (t1 − t2)

− i sin ωk (t1 − t2) tanh
βEk

2
(14)

is thermal expectation value of fermionic operators. Deriva-
tion of the above result relies on two simple facts. The first
is that, in general, consecutive action terms depend on the
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following bath correlation functions

C(t1, . . . , t2n) =
∑

k1,...k2n,l1,...,k2n

gk1l1 . . . gk2nl2n

× Tr[Q̂k1 (t1)Q̂l1 (t1) . . . Q̂k2n (t2n)Q̂l2n(t2n)ρ].

The above is nonzero only if the number of all fermion indices
k’s and l’s is even. For the quadratic action term we find that
the only nonzero contribution is

Tr[Q̂k (t1)Q̂l (t1)Q̂k (t2)Q̂l (t2)ρ]

= −Tr[Q̂k (t1)Q̂k (t2)Q̂l (t1)Q̂l (t2)ρ],

from which Eq. (14) immediately follows.
The third-order term is automatically zero as it contains

odd number of indices k and l .
The fourth-order term reads

S(4) = (−i)4

4!h̄4

∫ t1

ti

dt1

∫ t f

ti

dt2

∫ t f

ti

dt3

∫ t f

ti

dt4
∑

d1,d2,d3,d4

Gd1,d2;d3,d4
4 (t1, t2, t3, t4)× X d1

s (t1)X d2
s (t2)X d3

s (t3)X d4
s (t4),

(15)

where

Gd1,d2,d3,d4
4 (t1, t2, t3, t4)

= Cd1,d2,d3,d4 (t1, t2, t3, d4) − Cd1,d2 (t1, t2)Cd3,d4 (t3, t4)

−Cd1,d3 (t1, t3)Cd2,d4 (t2, t4) − Cd1,d4 (t1, t4)Cd2,d3 (t2, t3)

(16)

is the fourth-order super-operator cumulant involving super-
operator correlation functions of the bath

Cd1,··· ,d2n (t1, · · · , tn)

=
∑

k1,...k2n,l1,...,k2n

gk1l1 . . . gk2nl2n

× Tr
{←−T [

Q̂d1
k1

(t1)Q̂d2
l1

(t1) . . . Q̂d2n−1

k2n
(t2n)Q̂d2n

l2n (t2n)
]
ρ
}
.

(17)

Indices di± indicate, on which side of the environment density
matrix an operator acts (left or right for +, −, respectively).
As for now d1, · · · d4 will be fixed and dependence on them
will be dropped. We show that, due to cancellations, there is
no fourth-order contribution to the Feynman-Vernon action.
Here we present the main steps of the argument, the details
can be found in Appendix C. First, the fourth-order correlation
function in our model reads

C(t1, t2, t3, t4) =
∑

k1,l1,...k4,l4

gk1l1 . . . gk4l4 (18)

Tr
[
Q̂k1 (t1)Q̂l1 (t1) . . . Q̂k4 (t4)Q̂l4 (t4)ρ

]
. (19)

Note that integration in Eq. (17) is performed with respect to
unordered times. To avoid confusion, the time-ordered times
will be referred to as si. The nonzero terms in the sum Eq. (20)
are those in which a given index (e.g., ki) appears an even
number of times. Therefore, we can distinguish the following
cases:

(1) Pairwise groupings. Here a given index appears only
twice. In the Appendix C we show that it is sufficient to
consider groupings of ki and l j indices, respectively. An
example of such a grouping is k1 = k2 = k, k3 = k4 = k′ and
similarly for l j . This term reads

g2
kl g

2
k′l ′Tr [ Q̂k (s1)Q̂k (s2)Q̂k′ (s3)Q̂k′ (s4)

× [Q̂l (s1)Q̂l (s2)Q̂l ′ (s3)Q̂l ′ (s4)] (20)

= g2
kl g

2
k′l ′Tr [[12]k[34]k′ [12]l [34]l ′ ], (21)

where the expression was written using time-ordered times
si and we introduced a new notation [i j]k ≡ Q̂k (si )Q̂k (s j ),
which will be helpful in further considerations. If the super-
operator indices d1, · · · d4 are fixed, then we can relate
time-ordered times to unordered times: s1 = tx , s2 = ty, s3 =
tz , s4 = tw. Now we consider a new time ordering (depending
on d1, . . . d4) of operators Q̂m(si ), where m ∈ {k, k, l, l ′}

Sd,m(x, y) = Td,m(x, y) = −→T
∏

i∈(x,y);di=−
Qm(ti ) (22)

×←−T
∏

j∈(x,y);di=+
Qm(t j ), (23)

if the order of the operators is the same as (x, y), and

Sd,m(x, y) = −Td,m(x, y), (24)

for the opposite order. In this way we can rewrite the term
[12]k[34]k′ as S(1234 → xyzw)Sd,k (x, y)Sd,k (w, z), where
S(p → q) is a permutation sign. Subsequently, in the
Appendix C we show that pairwise groupings terms can be
rewritten as a sum over all such permutations. We examine
properties of those permutations under change of time vari-
ables and exchange of indices and show which terms cancel.
The final contribution from the pairwise groupings is found to
be ∑

k,l,k′,l ′
g2

kl g
2
k′l ′ (〈12〉k〈34〉k′ 〈12〉l〈34〉l ′

+〈13〉k〈24〉k′ 〈13〉l〈24〉l ′

+〈14〉k〈23〉k′ 〈14〉l〈23〉l ′ ), (25)

where 〈ab〉m ≡ 〈Q̂m(ta)Q̂m(tb)〉. More detailed discussion can
be found in Appendix C 1.

(2) Four k grouping, pairwise l grouping. An example
of such a term (in the operator notation introduced in the
previous point) is∑
k,l,l ′

g2
klg

2
kl ′Tr[[1234]k ([12]l [34]l ′−[13]l [24]l ′ + [14]l [23]l ′ )].

(26)
The kth part of this expression can be evaluated using Wicks
theorem. Then one applies essentially the same arguments as
those mentioned in the previous case, as the reasoning does
not rely on the particular arrangement of k, l indices. Thus,
the final contribution of those terms is found to be∑

k,l,l ′
g2

kl g
2
kl ′ (〈12〉k〈34〉k〈12〉l〈34〉l ′

+ 〈13〉k〈24〉k〈13〉l〈24〉l ′

+ 〈14〉k〈23〉k〈14〉l〈23〉l ′ ). (27)
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(3) Four k, l grouping. In the operator notation we can
write ∑

kl

g4
kl Tr[[1234]k[1234]l ]. (28)

We use Wicks theorem and arguments from previous cases to
show that these terms equal∑

k,l

g4
kl (〈12〉k〈34〉k〈12〉l〈34〉l

+〈13〉k〈24〉k〈13〉l〈24〉l

+〈14〉k〈23〉k〈14〉l〈23〉l ). (29)

Finally, we need to subtract from above results the counter-
terms from Eq. (18), i.e., the products of two-times correlation
functions. Direct calculation shows (see Appendix C) that
there is a total cancellation of those terms. As a result, for
the considered model there is no contribution from the fourth-
order term.

V. PHYSICAL ANALYSIS OF THE QUADRATIC
ACTION TERMS

In this section we analyze the quadratic term of the action.
Our aim is to compare it to the action for a harmonic bosonic
bath. We consider linear as well as bi-linear coupling in the
bath operators.

The easiest way to investigate the linear case is by rewriting
the Feynman-Vernon action with the help of imaginary and
real parts of the kernel kI (t ) and kR(t ), respectively. The
general expression reads

S(2) = − h̄

2

∫ t

t f

dt
∫ t

t
ds(Xt − Yt )kR(t − s)(Xs + Ys) (30)

+ (Xt − Yt )kI (t − s)(Xs − Ys), (31)

where Xt ,Yt correspond to forward and backward path of a
system operator. For the fermionic bath considered here the
kernels kI (t ) and kR(t ) are, respectively,

kI
F (t1 − t2)

= 2i
∑
k,l

g2
kl

[
sin [ωk (t1 − t2)] cos [ωl (t1 − t2)] tanh

βEk

2

+ cos [ωk (t1 − t2)] sin [ωl (t1 − t2)] tanh
βEl

2

]

kR
F (t1 − t2)

= −2
∑
k,l

g2
kl

[
cos [ωk (t1 − t2)] cos [ωl (t1 − t2)]

− sin [ωk (t1 − t2)] sin [ωl (t1 − t2)] tanh
βEk

2
tanh

βEl

2

]
,

whereas for bosonic baths coupled linearly to the system (see,
e.g., Ref. [8]):

kI
B(t1 − t2) = i

∑
k

c2
k

2mkωk
sin ωk (t1 − t2),

kR
B (t1 − t2) =

∑
k

c2
k

2mkωk
coth

(
βωk

2

)
cos ωk (t1 − t2).

(32)

Let us now discuss differences and similarities between those
expressions. Imaginary kernels modify action and hence de-
scribe dissipation. For harmonic bosonic baths imaginary
kernel is temperature independent, what is not the case for the
model consider here. However, we can consider two tempera-
ture regimes with a simpler behavior. In the low temperature
regime (β 
 1) the fermionic kernel resembles the bosonic
one kI (s − u) ≈ 2i

∑
k,l g2

kl sin [(ωk + ωl )(s − u)], with fre-
quency of a bosonic mode replaced by sum of frequen-
cies of interacting fermions. In the opposite regime, i.e.,
high temperatures (β � 1) the dissipation kernel vanishes.
However, the real kernel introduces noise and is responsi-
ble for decoherence process. In the bosonic case decoher-
ence strength increases with temperature. For the fermionic
model in the low temperature limit (β 
 1) the real ker-
nel kR(s − u) ≈ −2

∑
k,l g2

kl cos [(ωk + ωl )(s − u)] is similar
to the bosonic one. However, magnitude of the fermionic
kernel does not grow with temperature: The high temper-
ature limit (β � 1) of the real kernel reads kI (s − u) ≈
−2

∑
k,l g2

kl cos [ωk (s − u)] cos [ωl (s − u)]. As we can see,
for the low temperatures the fermionic bath behaves similarly
to the bosonic one and the differences between them are most
important in the high temperature regime.

The formalism described here is general and can be applied
also to bosonic systems coupled bilinearly to a free bosonic
bath. In such a case, fermionic operators ĉk, ĉ†

k are replaced
with their bosonic counterparts âk, â†

k that obey the canoni-
cal commutation relations [âk, â†

l ] = δk,l (other commutators
vanish). Apart from this change the form of the interaction
Hamiltonian Eq. (13) and the free bath Hamiltonian Eq. (4)
remains the same. Therefore, the structure of the results is
similar to the discussed fermionic case, and the differences
steam from the different (commutation) relations for the
bosonic operators. In particular we find that the second-order
action for the bi-linear coupling to the bosonic bath is

kI
BB(t1 − t2)

= 2i
∑
k,l

g2
kl

{
sin [ωk (t1 − t2)] cos [ωl (t1 − t2)] coth

βEk

2

+ cos [ωk (t1 − t2)] sin [ωl (t1 − t2)] coth
βEl

2

}

kR
BB(t1 − t2)

= 2
∑
k,l

g2
kl

{
cos [ωk (t1 − t2)] cos [ωl (t1 − t2)] coth

βEk

2

× coth
βEl

2
− sin [ωk (t1 − t2)] sin [ωl (t1 − t2)]

}
.

From the above one can see that the following substitution
allows to recover results for the bosonic bilinear bath from the
fermionic one,

kI
BB(t1 − t2) = coth

βEk

2
coth

βEl

2
kR

F (t1 − t2), (33)

and the same relation holds for the real part of the kernel
kR

BB(t1 − t2).
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VI. DISCUSSION

In this paper we addressed the model of a quantum vari-
able such as a qubit interacting with a fermionic bath. The
coupling between the qubit and the bath is quadratic in
fermionic operators, and the bath is initially in a thermal
state. To investigate this system we employed the extension
of the Feynman-Vernon influence functional technique that al-
lows to systematically study higher-order contributions to the
Feynamn-Vernon action that arise from system-bath interac-
tion being nonlinear with respect to bath operators. We explic-
itly computed the second-order contribution to the Feynman-
Vernon action. While this is the standard term having the same
functional form also in the case of bosonic harmonic baths, the
dependence on temperature will in general be different for a
fermionic bath with two-fermion coupling. We identified one
regime where nevertheless the fermionic environment mimics
a bosonic one.

Finally, we showed that the fourth-order terms in the gener-
alized Feynman-Vernon influence action vanish for the model
considered. The first nonzero corrections to Feynman-Vernon

or Keldysh theory are hence of sixth order in the system-bath
interaction coefficient.

The theory developed here applies to engineered quan-
tum systems (superconducting qubits) interacting with normal
metal leads or baths. The experimental study of such systems
has primarily been pursued in quantum thermodynamics with
potential applications to ultrasensitive calorimetry and ther-
mometry; for a theoretical proposal and later theoretical inves-
tigations, see Refs. [18,19]. A second field where the current
theory can apply is to the spin-semiconductor problem, for
levels of doping such that the semiconductor is in a metallic
phase; for an extensive review, see Ref. [20]. Finally, we note
that the qubit-fermion problem has been studied previously
from the theoretical side [21–23]: We hope to have brought
new light and new methods to these issues.
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APPENDIX A: NONHARMONIC BATHS AND CLUSTER EXPANSIONS

Here we briefly sketch how the cumulant expansion can be used to express influence of the bath on the system. First, we
summarize necessary notation from Ref. [16]. That paper employs the super-operator approach to find dynamics of the system
interacting with the environment: A map governing evolution of system operators is obtained by tracing out bath degrees of
freedom from the formal solution of the full (i.e., including system and the bath) Liouvillevon Neumann equation. A crucial step
in performing the trace is evaluation of multitime superoperator correlation functions (correlation functions with indices) in the
bath, which are defined in terms of ordinary bath correlation by

Cd1,··· ,dn (t1, · · · , tn) = Tr

⎡
⎣−→T B

⎛
⎝ ∏

di=′′−′′
Q̂di

B (ti )

⎞
⎠←−T B

⎛
⎝ ∏

di=′′+′′
Q̂di

B (ti )

⎞
⎠ρB(t0)

⎤
⎦, (A1)

where QB(ti ) are time evolved bath operators from the interaction part of the Hamiltonian (in interaction picture) and ρB(t0) is
the initial state of the bath. As the starting point was Liouvillevon Neumann equation, one needs to include indecies d1, · · · , dn

to time-order the operators in two groups, one (di = “−′′) acting from the right on the bath density matrix in ascending time
order, and other other (di = “+′′) acting from the left in descending time order.

Let us recall that, for the ordinary operator correlation functions, successive orders of cumulants (cluster expansion) are
defined inductively as

G1(t1) = C(t1),

G2(t1, t2) = C(t1, t2) − G1(t1)G1(t2),

G3(t1, t2, t3) = C(t1, t2, t3) − G1(t1)G1(t2)G1(t3) − G1(t1)G2(t2, t3) − G1(t2)G2(t1, t3) − G1(t3)G2(t1, t2),
...

The only difference between standard and super-operator correlation functions is that the latter need to be time ordered of time
as determined by the indices d1, . . . , dN . Once this is done one can write a general cumulant expansion as

Cd1,···dN (t1, · · · , tN ) =
∑

(all possible groupings)

∏
(groups of one time)

G1(t )
∏

(groups of two times)

G2(t, t ′) · · · , (A2)

where N can be even or odd, and where the times on the right-hand side are inserted after the reordering. All odd-order cumulants
vanish for a bath where the Hamiltonian is an even function (as in our case) and the second-order cumulant is the same as the
second-order correlation function. The first nontrivial cumulant is then

Gd1,d2,d3,d4
4 (t1, t2, t3, t4) = Cd1,d2,d3,d4 (t1, t2, t3, d4) − Cd1,d2 (t1, t2)Cd3,d4 (t3, t4) − Cd1,d3 (t1, t3)Cd2,d4 (t2, t4)

−Cd1,d4 (t1, t4)Cd2,d3 (t2, t3), (A3)
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where we have retained the super-operator notation on the right-hand side. All cumulants beyond G2 vanish for correlation
functions of (classical) Gaussian processes [24]. This also holds as for operator correlation functions of harmonic bosonic baths,
because in the path integral language these are all determined by Gaussian integrals. Alternatively, all higher-order operator
correlation functions are in a bath of free bosons by Wick theorem given by combinations of pairwise operator correlation
functions, which give same expressions as the cumulants used here. For free fermions all higher-order correlation functions are
also given in terms of pairwise combinations of pairwise correlation functions, but with signs, and therefore different from the
cumulants used here.

APPENDIX B: GENERALIZED FEYNMAN-VERNON ACTIONS

This Appendix summarizes the derivation of the generalized Feynman-Vernon action from [16] and relates it to the cluster
expansion. The multitime superoperator function in Eq. (A1) multiplies superoperator representation of the system operator.
The connection to the path integral formulation is established in the following way: For indices di = “ <′′ the super-operators
correspond to forward paths Xi, whereas for indices di = “ >′′ to a backward paths Yi (with a negative sign). It is convenient to
allow for an explicit time-dependence of the interaction such that the interaction Hamiltonian is ĤINT(t ) = φ(t )X̂

∑
k,l gkl ĉ

†
k ĉl

where the bath-dependent coupling coefficients gkl are time-independent. A general bath correlation function is represented as in
Eq. (??) then a relevant series summation is performed. As a result, one obtains a reduced system propagator of the form Eq. (7),
where contributions to the generalized Feynman-Vernon action S(n,m) contain n number of X and m number Y as

S(n,m) = (−i)n(i)m

h̄n+m

∫ t

t0

ds1φ(s1)
∫ s1

t0

ds2φ(s2) · · ·
∫ t

t0

du1φ(u1)
∫ u1

t0

du2φ(u2) · · · Xs1 Xs2 · · · Xsn

× · Yu1Yu2 · · ·Yum Gn+m(um, . . . , u1, s1, . . . , sn). (B1)

The last term in the above expression is the cumulant of the operator correlation function with an appropriate time ordering (first
times for the backward path in reverse chronological order, then times for the forward path in chronological order). The term
corresponding to m + n = 2 is the standard quadratic Feynman-Vernon action as given by Eq. (13).

Renaming the variables so that times are always ordered s > u and rewriting the resulting expression in terms of sum and
difference of system paths χs = Xs + Ys and ξs = Xs − Ys gives∑

n+m=2

S(n,m) = −1

2

∫ t

t0

dsξsφ(s)
∫ s

t0

duφ(u)(χuA + ξuB), (B2)

where A, B are difference and sum of bath correlation functions at different times,

A = C(s, u) − C(u, s), (B3)

B = C(s, u) + C(u, s). (B4)

We want to simplify the above expression with regard to the correlation function and shift all time reorderings to the system
operators. Therefore we rewrite it as∫ t

ti

dt1

∫ t

ti

dt2C(t1, t2)[�(t2 − t1)Xt1 Xt2 + �(t1 − t2)Yt1Yt2 − Yt1 Xt2 ], (B5)

where �(t − t ′) is the Heaviside step function. The next term of the action is a sum of all contributions of total order three,
however, in our case it vanishes and will be not discussed here.

APPENDIX C: CALCULATION OF THE FOURTH-ORDER CUMULANT

To show that in the considered model the fourth-order cumulant vanishes we will exploit several properties of the super-
operator expression for the fourth order Feynman-Vernon action, which reads

(−i)4

4!h̄4

∫ t1

ti

dt1

∫ t f

ti

dt2

∫ t f

ti

dt3

∫ t f

ti

dt4
∑

d1,d2,d3,d4

Gd1,d2;d3,d4
4 (t1, t2, t3, t4)X d1

s (t1)X d2
s (t2)X d3

s (t3)X d4
s (t4), (C1)

where

Gd1,d2,d3,d4
4 (t1, t2, t3, t4) = Cd1,d2,d3,d4 (t1, t2, t3, d4) − Cd1,d2 (t1, t2)Cd3,d4 (t3, t4)

−Cd1,d3 (t1, t3)Cd2,d4 (t2, t4) − Cd1,d4 (t1, t4)Cd2,d3 (t2, t3), (C2)

is the fourth-order superoperator cumulant involving super-operator correlation functions of the bath

Cd1,··· ,dn (t1, · · · , tn) =
∑

k1,...k2n,l1,...,k2n

gk1l1 . . . gk2nl2n Tr
{←−T [

Q̂k1 (t1)Q̂l1 (t1) . . . Q̂k2n (t2n)Q̂l2n(t2n)
]
ρ
}
. (C3)
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As for now, d1, d2, d3, d4 will be fixed and dependence on them will be dropped. The key step in providing expression for the
cumulant is calculation of the fourth-order correlation function, which for our model reads

C(t1, t2, t3, t4) =
∑

k1,l1,k2,l2,k3,l3,k4,l4

gk1l1 gk2l2 gk3l3 gk4l4 Tr[Q̂k1 (t1)Q̂l1 (t1)Q̂k2 (t2)Q̂l2 (t2)Q̂k3 (t3)Q̂l3 (t3)Q̂k4 (t4)Q̂l4 (t4)ρ]. (C4)

In the above equation there will be four fermionic operators with indices ki as well as four with indices l j . The nonzero
contributions to the action come from pairing of indices: Expressions with an odd number of an indices ki, li vanish. To provide
the final result in the simplest form we deal with different possible pairings of the fermion operators case by case. We also note
that the time integrals over t1, t2, t3, t4 in Eq. (C1) are unconstrained, although they can also be written as time-ordered integrals.
To avoid confusion with the notation time-ordered times will be denoted as s1, s2, s3, s4.

1. Case I: Pairwise groupings

Here we treat the terms, in which if ki = k j or ki = l j from some indices i and j, then they are different from all the other k and
l (e.g., k1 = k2 = k k3 = k4 = k′). Furthermore, we can divide those terms into two categories: “Separated-pairing” and “mixed
pairing” terms. For “Separated-pairing” k indices are paired among each other and the same holds for l . In “mixed pairing” terms
k’s might br paired with l’s. Subsequently, we observe that “mixed-pairing” terms can be brought into “separated-pairing” form
with the help of a permutation k j ↔ l j (note that such permutations do not change the overall sign of terms). As a result, is is
sufficient to consider “separated-pairing” terms with an additional factor 4 and in such a way all the terms are accounted for.
Now we use the fact that all fermionic operators with k indices can be moved to the left and, if time ordering is preserved, the
sign of this expression remains the same. The possible pairings for k’s are

Q̂k (s1)Q̂k (s2)Q̂k′ (s3)Q̂k′ (s4) ≡ [12]k[34]k′ , (C5)

Q̂k (s1)Q̂k′ (s2)Q̂k (s3)Q̂k′ (s4) = −Q̂k (s1)Q̂k (s3)Q̂k′ (s2)Q̂k′ (s4) ≡ −[13]k[24]k′ , (C6)

Q̂k (s1)Q̂k′ (s2)Q̂k′ (s3)Q̂k (s4) = Q̂k (s1)Q̂k (s4)Q̂k′ (s2)Q̂k′ (s3) ≡ [14]k[23]k′ , (C7)

where we introduced a symbolic notation: The first and second square bracket groups operators with k and k′, respectively,
and number inside bracket denote indices of reordered times si. To get the total operator acting on ρB in Eq. (C4) one needs
to multiply the k, k; operators with l, l ′ operators and include appropriate combination of coupling constants. In fact there are
just two possible pre-factors: g2

kl g
2
k′l ′ for terms of a form [ab]k[cd]k′ [ab]l [cd]l ′ and gklgkl ′gk′l gk′l ′ for all others. It will prove

convenient to write the resulting expression in the following form(
g2

kl g
2
k′l ′ − gklgkl ′gk′l gk′l ′

)
([12]k[34]k′ [12]l [34]l ′ + [13]k[24]k′ [13]l [24]l ′ + [14]k[23]k′ [14]l [23]l ′ ) (C8)

+(
g2

klg
2
k′l ′ + gkl gkl ′gk′l gk′l ′

)
([12]k[34]k′ − [13]k[24]k′ + [14]k[23]k′ )([12]l [34]l ′ − [13]l [24]l ′ + [14]l [23]l ′ ). (C9)

The above expressions are written using reordered times s1, s2, s3, s4. Assuming that superoperator indices d1, d2, d3, d4 are fixed
we relate reordered times to unconstrained times in the following way:

s1 = tx s2 = ty s3 = tz s4 = tw, (C10)

where indices x, y, z,w are related to values in1, 2, 3, 4 through a permutation,

(x, y, z,w) = Pd,t (1, 2, 3, 4), (C11)

where indices d, t indicate dependence of the permutation on the superoperator ordering di and unconstrained times t j . Then
we have that, e.g., [12]k = Q̂k (s1)Q̂k (s2) = Q̂k (ta)Q̂k (tb). We now show that Eq. (C9) vanish. Consider a new d-dependent time
ordering of operators Q̂m(t ), where m ∈ {k, k′, l, l}

Sd,m(x, y) = Td,m(x, y) = −→T
∏

i∈(x,y);di=−
Q̂m(ti )

←−T
∏

j∈(x,y);di=+
Q̂m(t j ), (C12)

if the order of the operators is the same as (x, y), and

Sd,m(x, y) = −Td,m(x, y), (C13)

if the order of the operators is the opposite of (x, y). Additionally we will need the sign of a permutation S(m → n), then we can
rewrite the first bracket in Eq. (C9) as

[12]k[34]k′ − [13]k[24]k′ + [14]k[23]k′ = S(1234 → xyzw)Sd,k (a, b)Sd,k′ (c, d ) + S(1234 → xzyw)Sd,k (a, c)Sd,k′ (b, d )

+ S(1234 → xwyz)Sd,k (a, d )Sd,k′ (b, c). (C14)

012136-8



FRÖHLICH-COUPLED QUBITS INTERACTING WITH … PHYSICAL REVIEW E 102, 012136 (2020)

The above expression is a sum that goes over three permutations of (xywz) where the first is the identity, S(abcd → abcd ) = 1.
It can be extended to the sum over all 24 permutations of (abcd )

[12]k[34]k′ − [13]k[24]k′ + [14]k[23]k′ = 1

8

[∑
xyzw

S(1234 → xyzw)Sd,k (x, y)Sd,k′ (z,w)

]
. (C15)

The same argument applies to the l, l ′ terms in the second bracket of Eq. (C9) so we can rewrite both brackets as

1

64

[∑
xyzw

S(1234 → xyzw)Sd,k (x, y)Sd,k′ (z,w)

]⎡
⎣ ∑

x′y′z′w′
S(1234 → x′y′z′w′)Sd,k (x′, y′)Sd,k′ (z′,w′)

⎤
⎦. (C16)

Let us consider product of two terms from the two sums

1

64
S(1234 → xyzw)Sd,k (x, y)Sd,k′ (z,w)S(1234 → x′y′z′w′)Sd,k (x′, y′)Sd,k′ (z′,w′). (C17)

We need to consider the following cases:
(1) The same pairing, i.e.,
(a) xy = x′y′ and zw = z′w′,
(b) xy = z′w′ and zw = x′y′.
Those terms are of the same structure as the ones in Eq. (C8).
(2) Different pairing, e.g., 1

64 S(1234 → xyzw)Sd,k (x, y)Sd,k′ (z,w)S(1234 → xzyw)Sd,l (x, z)Sd,l ′ (y,w). The overall expres-
sion is summed over indices di and integrated over times t j . Consider therefore the following change of variables:

t ′
x = ty d ′

x = dy t ′
y = tx d ′

y = dx, (C18)

with the rest of them unchanged. Now we will analyze how such a change affects the sign of the considered term (it is useful to
bring in the dependence of t and t ′). We have

S(1234 → xyzw) unchanged,

Sd,k (x, y; t ) → Sd ′,k (x, y; t ′) unchanged,

Sd,k (z,w; t ) → Sd ′,k (z,w; t ′) unchanged,

S(1234 → xzyw) unchanged,

Sd,k (x, z; t ) → Sd ′,k (x, z; t ′) changed,

Sd,k (y,w; t ) = Sd ′,k′ (y,w; t ′) changed.

We compare the above to the effect of permuting indices x ↔ y,

S(1234 → xyzw) → S(1234 → yxzw) = −S(1234 → xyzw),

Sd,k (x, y; t ) → Sd,k (y, x; t ) = −Sd,k (x, y; t ),

Sd,k (z,w; t ) unchanged,

S(1234 → xzyw) → S(1234 → yzxw) = −S(1234 → xzyw) unchanged,

Sd,k (x, z; t ) → Sd,k (y, z; t ) changed,

Sd,k (y,w; t ) = Sd,k′ (x,w; t ) changed. (C19)

From definition of Sd,k (x, z; t ) it follows that

Sd ′,k (x, z; t ′) = Sd,k (y, z; t ) and Sd ′,k (y,w; t ′) = Sd,k (x,w; t ), (C20)

and all the above same relations hold for k′, l, l ′. Therefore, we found that all terms where the pairing is not the same cancel
pairwise. As a result, the only nonzero term, from Eqs. (C8) and (C9), is

g2
kl g

2
k′l ′ ([12]k[34]k′[12]l [34]l ′ + [13]k[24]k′ [13]l [24]l ′ + [14]k[23]k′ [14]l [23]l ′ ). (C21)

Performing the trace yields the following result:∑
k,l,k′,l ′

g2
kl g

2
k′l ′ (〈12〉k〈34〉k′ 〈12〉l〈34〉l ′ + 〈13〉k〈24〉k′ 〈13〉l〈24〉l ′ + 〈14〉k〈23〉k′ 〈14〉l〈23〉l ′ ), (C22)

where 〈ab〉k〈ab〉m ≡ 〈Q̂m(ta)Q̂m(tb)〉 is thermal expectation value and we restored the sum over bath degrees of freedom.
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2. Case II: Four k grouping, pairwise l grouping

An example of such indices arrangement is k1 = k2 = k3 = k4 = k l1 = l2 = l l3 = l4 = l ′. Using the operator notation
introduced in the previous case we find that the relevant expression is

g2
klg

2
kl ′ [1234]k ([12]l [34]l ′ − [13]l [24]l ′ + [14]l [23]l ′ ). (C23)

This can be evaluated into

g2
klg

2
kl ′ (〈12〉k〈34〉k − 〈13〉k〈24〉k + 〈14〉k〈23〉k )(〈12〉k〈34〉l ′ − 〈13〉k〈24〉l ′ + 〈14〉k〈23〉l ′ ), (C24)

where 〈ab〉k is thermal expectation value. The above expression can be simplified using exactly the same discussion as in the
previous Subsection. The reason for this is that it does not involve indices k’s and l’s but only time orderings and signs of
permutations. Therefore, we find that the final expression is∑

k,l,l ′
g2

kl g
2
kl ′ (〈12〉k〈34〉k〈12〉l〈34〉l ′ + 〈13〉k〈24〉k〈13〉l〈24〉l ′ + 〈14〉k〈23〉k〈14〉l〈23〉l ′ ), (C25)

where we restored the sum over bath degrees of freedom.

3. Case III: Four k, l grouping

In the operator notation we can write

g4
kl [1234]k[1234]l , (C26)

using Wicks theorem this evaluates into

g4
kl (〈12〉k〈34〉k − 〈13〉k〈24〉k + 〈14〉k〈23〉k )(〈12〉l〈34〉l − 〈13〉l〈24〉l + 〈14〉l〈23〉l ). (C27)

Here again we can apply reasoning from Appendix C 1, so finally we have∑
k,l

g4
kl (〈12〉k〈34〉k〈12〉l〈34〉l + 〈13〉k〈24〉k〈13〉l〈24〉l + 〈14〉k〈23〉k〈14〉l〈23〉l ). (C28)

4. Counter terms and the final result

Appendices C 1, C 2, and C 3 were devoted to calculation of correlation function involving four times. To obtain final
expression for the fourth-order cumulant one needs to subtract from those results products of two times correlation functions.
We find

C(t1, t2)C(t3, t4) + C(t1, t3)C(t2, t4) + C(t1, t4)C(t2, t3)

=
∑

k,k′,l,l ′
(〈12〉k〈34〉k′ 〈12〉l〈34〉l ′ + 〈13〉k〈24〉k′ 〈13〉l〈24〉l ′ + 〈14〉k〈23〉k′ 〈14〉l〈23〉l ′ ), (C29)

×
∑
k,l,l ′

(〈12〉k〈34〉k〈12〉l〈34〉l ′ + 〈13〉k〈24〉k〈13〉l〈24〉l ′ + 〈14〉k〈23〉k〈14〉l〈23〉l ′ ), (C30)

×
∑
k,l,

g4
kl 2(〈12〉k〈34〉k〈12〉l〈34〉l + 〈13〉k〈24〉k〈13〉l〈24〉l + 〈14〉k〈23〉k〈14〉l〈23〉l ). (C31)

Comparing the above equations to the results of Appendices C 1, C 2, and C 3, we find that Eq. (C29) equals Eq. (C22), Eq. (C30)
equals Eq. (C25), and Eq. (C31) equals Eq. (C28). As a result, in our model the fourth-order cumulant vanishes.
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