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Simple relation between frustration and transition points in diluted spin glasses
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We investigate a possible relation between frustration and phase-transition points in two-dimensional spin
glasses at zero temperature. The relation consists of a condition on the average number of frustrated plaquettes
and was reported to provide very good predictions for the critical points at zero temperature, for several two-
dimensional lattices. Although there has been no proof of the relation, the good correspondence in several lattices
suggests the validity of the relation and an important role of frustration in the phase transitions. To examine the
relation further, we present a natural extension of the relation to diluted lattices and verify its effectiveness for
bond-diluted square lattices. We then confirm that the resulting points are in good agreement with the phase-
transition points in a wide range of dilution rate. Our result supports the suggestion from R. Miyazaki [J. Phys.
Soc. Jpn. 82, 094001 (2013)] for nondiluted lattices on the importance of frustration to the phase transition of
two-dimensional spin glasses at zero temperature.
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I. INTRODUCTION

Spin glasses have been one of the most attractive subjects
in statistical mechanics and have been extensively investigated
for decades [1,2]. The study of spin glasses, in particular, in
infinite dimensions, has developed several elaborate concepts
and techniques. For instance, replica symmetry breaking has
had a great influence on subsequent studies, e.g., structural
glasses [3,4] and information theory [5,6], for revealing their
complicated energy landscapes. This success motivates us to
tackle a next task, which is to establish theories of more realis-
tic models, namely, finite-dimensional spin glasses. However,
it is a very difficult task. This is partially because techniques
exploited for the infinite-dimensional models are not as useful
in finite dimensions, while it is still difficult to obtain conclu-
sive proofs with numerical simulations.

The gauge transformation [5] has been utilized as a tool
for analytically investigating finite-dimensional spin glasses
[7–15]. In particular, two-dimensional models have been well
investigated using this approach [7,8,10–15]. A consequence
of this approach is the conjecture on the vertical boundary of
the ferromagnetic phase at lower temperatures than a point in
the phase diagram, the so-called Nishimori point [16]. In two
dimensions, Ising spin glasses, with increasing the ratio p of
antiferromagnetic bonds of spins, undergo the phase transition
to the paramagnetic phase at finite temperatures T and to
the spin-glass phase at zero temperature [17], as sketched
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in Fig. 1. The conjecture states that this boundary of the
ferromagnetic phase at lower temperatures than the Nishimori
point does not depend on temperature, but is determined only
by geometrical properties. In other words, this phase boundary
is a vertical line in the p–T plane, as the dashed line in Fig. 1
shows. This conjecture was denied by subsequent detailed
studies [10,17–24]. The established phase boundary, however,
is almost vertical. This fact implies that geometrical properties
take a primary role for the phase transition, even though
the conjectured relation does not exactly hold. Note that the
importance of revealing the property of this phase transition
is not limited in the study of spin glasses. It can influence the
study of quantum computation. Indeed, this phase boundary
can be interpreted to give the error-correction threshold for
topological quantum error-correction codes [25,26].

One of the authors focused on this phase transition, ob-
served with varying p, in two-dimensional spin glasses at
zero temperature. He reported a possible relation between a
geometrical property and this phase transition without utiliz-
ing the gauge transformation [27]. The relation is represented
as a condition on a quantity concerning frustration [28–30]
in the lattice. The condition gives a very close point to the
phase-transition point. The good correspondence is found
in several two-dimensional lattices and hierarchical lattices
[31]. Moreover, the condition for the Sherrington-Kirkpatrick
model [32] exactly gives the replica symmetry solution for its
transition point at zero temperature. Unfortunately, we have
no proof that this agreement is not just an accidental one. The
above instances, however, allow us to expect some important
role of frustration in the phase transition.

Recently, some of the authors extended this argument
to bond-diluted lattices [33]. Their method mainly follows
the above one for the nondiluted lattices. Resulting points
from their method qualitatively agree with the correct phase-
transition points. However, the method was not exactly exe-
cuted. They instead used an additional ansatz to complete the
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FIG. 1. Schematic phase diagram of ±J Ising spin glass in two
dimensions in the p–T plane, where p and T denote the ratio of
antiferromagnetic bonds and temperature, respectively. The system
has paramagnetic (P), ferromagnetic (F), and spin-glass (SG) phases.
The spin-glass phase lies only at zero temperature. The critical
ratio at zero temperature is denoted by pc. The vertical dashed
line represents the conjectured boundary of the ferromagnetic phase
at lower temperatures than the Nishimori point (NP) [16], which
deviates from the correct boundary shown by the solid curve.

calculations because of the difficulty due to the inhomogene-
ity in the diluted lattices. A natural question is whether the
good correspondence is also found by the canonical extension
without the ansatz or is just caused by the ansatz.

In this paper, we examine the natural extension of the
method for nondiluted lattices [27] to bond-diluted lattices
in two dimensions without any extra ansatz. The next section
gives the prescription of the method. We describe two natural
ways of extension of the method for nondiluted lattices to the
diluted case. The effectiveness of the method is verified for
the diluted square lattice in Sec. III. We apply the method
with perturbative analysis expanded from the nondiluted case
and numerical calculations. The obtained points are compared
with the correct phase-transition points. We summarize and
discuss our results in Sec. IV.

II. PRESCRIPTION

We investigate ±J Ising spin glass [5], defined by

H = −
∑
〈i, j〉

Ji jσiσ j, (1)

where 〈i, j〉 denotes a pair of nearest-neighbor sites on a
lattice. The coupling constants Ji j are independently and
identically distributed according to the distribution P(Ji j ) =
pδ(Ji j + J ) + (1 − p)δ(Ji j − J ) with J > 0, where δ(·) is the
Dirac delta function. Note that we define p as the probability
that a bond of spins is an antiferromagnetic one. Ising spin
σi takes 1 or −1. This model has been extensively used as an
elementary model of spin glasses in finite dimensions [5]. We
only consider the model on two-dimensional lattices.

We focus on frustration for plaquettes [28–30]. A plaquette
is an elementary loop of edges on a lattice, which cannot
be divided into multiple subloops. For example, a plaquette
on a square lattice is a square composed of four edges.
When a plaquette has an odd number of antiferromagnetic
couplings, there is no spin configuration such that each link
in the plaquette gives a contribution to the energy of −J .
Consequently, there is frustration at the plaquette. Such a
plaquette is called frustrated plaquette. The average number
of frustrated plaquettes on a lattice over the bond distribution
plays a central role in the argument below. That average is
calculated as

Nfra(p) =
〈 ∑

c

1

2

(
1 −

∏
〈i, j〉∈c

Ji j

J

)〉af

p

, (2)

where c are indices for plaquettes, and 〈·〉af
p denotes the

average over the antiferromagnetic-bond distribution for p.
The coupling constants are independent of each other, and
hence we can rewrite the function as

Nfra(p) =
∑

n

N (n)
pla fn(p), (3)

fn(p) = 1
2 [1 − (1 − 2p)n], (4)

where N (n)
pla is the number of plaquettes composed of n edges

on the lattice. The function fn(p) gives the probability that a
plaquette composed of n edges is frustrated. For the square
lattice, the sum reduces to the single term for n = 4. This
expression also concerns lattices with multiple types of pla-
quettes, e.g., the kagome lattice.

One of the authors focused on the function [27] defined by

v(p) = dNfra(p)

d p

(
dNaf(p)

d p

)−1

. (5)

Here, Naf(p) is the average number of antiferromagnetic bonds
over the bond distribution for p, calculated as Naf(p) = pNedg,
where Nedg is the number of edges in the lattice. He reported
[27] that the condition v(p) = 1 gives a value of p that
is close to the phase-transition point for the model at zero
temperature. For instance, the value p � 0.1031 yielded from
the condition for the square lattice is very close to the actual
phase-transition point numerically obtained as p = 0.1033(1)
[23] or 0.1045(11) [24]. The good correspondence is found in
several two-dimensional lattices and hierarchical lattices [31].
Interestingly, the condition for the Sherrington-Kirkpatrick
model [32] exactly gives the replica symmetry solution for
its phase-transition point at zero temperature.

We extend the above argument to apply to ±J Ising spin
glass on bond-diluted lattices. Each edge in the lattices is
absent with probability q. The probability that a bond is an
antiferromagnetic one thus turns to (1 − q)p. We introduce
two ways of extension to this case. The first one generalizes
the function in Eq. (3) as the average number of frustrated pla-
quettes over diluted lattices as well as the antiferromagnetic-
bond distributions, namely,

Nfra(q, p) =
∑

n

〈
N (n)

pla

〉di
q

fn(p), (6)
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where 〈·〉di
q denotes the average over the diluted-bond distribu-

tion for q. We have utilized the fact that fn(p) is not affected
by the bond dilution. Accordingly, we define a generalized
function of v(p) in Eq. (5) by

v(q, p) = ∂Nfra(q, p)

∂ p

(
∂Naf(q, p)

∂ p

)−1

. (7)

Here, Naf(q, p) is the average number of antiferromagnetic
bonds over the bond distribution for q and p, calculated as
Naf(q, p) = (1 − q)pNedg, where Nedg is the number of edges
in the lattice without dilution. The condition v(p) = 1 is
generalized as v(q, p) = 1 for the bond-diluted lattices. For
the other extension, we calculate the average number of frus-
trated plaquettes and antiferromagnetic bonds over only the
antiferromagnetic-bond distribution on a given bond-diluted
lattice. Equation (5) then gives the function v(p) for the
lattice. We consider a bond-diluted lattice for this extension,
whereas we took the average over bond-diluted lattices for
q for the first extension. The second extension could give
different solutions of v(p) = 1 for different diluted lattices.
We expect to obtain, however, a typical solution from the
different diluted lattices due to the self-averaging property
[5] of the system. The possible typical one is regarded as the
solution obtained from our method for q. In addition, we can
consider a minor change of this extension in estimation of
the typical solution; we estimate the average of the function
v(p) over bond-diluted lattices and obtain the solution of
v(p) = 1 for the averaged function instead of the average
of solutions themselves over different lattices. Hereafter, we
examine whether the two procedures of extension give p close
to the correct phase-transition point of the model on diluted
lattices for q observed with varying p at zero temperature.

III. SQUARE LATTICE

A. Perturbative calculations

We first restrict our interest to the systems in which the
number of lacked edges is small and obtain its expansion in
terms of q. Motivated by the fact that p for the condition
v(p) = 1 for the square lattice is extremely close to the phase-
transition point [27], we analyze the model on the square
lattice. Here, we only attempt the first way of extension, where
we calculate v(q, p) in Eq. (7), because it is intractable to
analytically obtain the solutions with the second extension.
The second one will be examined with numerical calculations
in Sec. III B. It should be noted that Nedg and Npla used below
denote the numbers of edges and plaquettes, respectively, for
the lattice without dilution.

We obtain Nfra(q, p) in Eq. (6) for terms up to qn by
considering lattices in which the number of lacked edges is
smaller than n + 1. This is because the probability that a
lattice lacks n edges is qn(1 − q)Nedg−n, and because 〈N (n)

pla 〉di
q

in Nfra(q, p) is the average number of n-edge plaquettes over
those lattices. Figure 2 shows examples of square lattices
removed 1, 2, or 3 edges. Note that there can exist edges which
do not belong to any plaquette and thus do not contribute to
frustration. For instance, the edge in the eight-edge square on
the lattice shown in Fig. 2(h) does not belong to any loop of
edges. As an example of computing Nfra(q, p), let us consider

FIG. 2. Examples of square lattices without or with dilutions
treated in calculations of Nfra(q, p) for small q. Plaquettes, which
are not composed of four edges, generated by removing edges
are highlighted with thick red lines. (a) The square lattice without
dilution. Examples of square lattices lacking (b) an edge, (c), (d) two
edges, and (e)–(h) three edges. The examples are distinguished by
the number of lacked edges and the number of edges for generated
plaquettes.

a lattice lacking an edge as shown in Fig. 2(b). The probability
that such a lattice is realized is q(1 − q)Nedg−1. The number of
positions at which an edge is absent is Nedg. By removing an
edge from the primary square lattice, the number of four-edge
plaquettes reduces to Npla − 2, while a six-edge plaquette is
generated. The contribution of such lattices to Nfra(q, p) is
thus q(1 − q)Nedg−1Nedg[(Npla − 2) f4(p) + f6(p)]. Taking into
account the lattices removed 1, 2, or 3 edges, we obtain

Nfra(q, p)

= (1 − q)Nedg Npla f4(p)

+ q(1 − q)Nedg−1Nedg[(Npla − 2) f4(p) + f6(p)]

+ q2(1 − q)Nedg−2Nedg

×
{

Nedg − 7

2
[(Npla − 4) f4(p) + 2 f6(p)]

+ 3[(Npla − 3) f4(p) + f8(p)]

}

+ q3(1 − q)Nedg−3Nedg

×
{

[2(Nedg − 12) + 14(Nedg − 13)

+ (Nedg − 23)(Nedg − 14)]

× 1

3!
[(Npla − 6) f4(p) + 3 f6(p)]

+ 3(Nedg − 10)[(Npla − 5) f4(p) + f6(p) + f8(p)]
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FIG. 3. Solutions pv (q) obtained with the perturbative calcula-
tions of the first extension and with the numerical calculations of the
second one. The nth-order perturbative solution is a function of q
taking into account lower-order terms than qn+1 given in Eq. (10) for
n = 0 (without perturbation), 1, 2, and 3. The numerical simulations
are done for the lattices generated by removing edges from the square
lattice of L × L units, where L for the result shown here is 128. The
numerical solutions are estimated by averaging 104 instances. (a) The
solutions for 0 � q � 0.5. Closeups of the regions near (b) q = 0 and
(c) q = 0.5.

+ 9[(Npla − 4) f4(p) + f10(p)]

+ 2[(Npla − 4) f4(p) + f8(p)]

}
+ O(q4)

= Npla f4(p) + Nedg[−2 f4(p) + f6(p)]q

+ 3Nedg[ f4(p) − 2 f6(p) + f8(p)]q2

+ Nedg[−2 f4(p) + 15 f6(p) − 22 f8(p) + 9 f10(p)]q3

+ O(q4). (8)

Substituting this into Eq. (7), we then have

v(q, p) = 2r3[1 − 3(1 − r2)q + 3(1 − 5r2 + 4r4)q2

+ (−1 + 30r2 − 76r4 + 45r6)q3] + O(q4), (9)

where r = 1 − 2p. We have used a relation Npla = Nedg/2 for
the square lattice. The solution pv (q) of v(q, p) = 1 for q is
expanded in terms of q as

pv (q) = 1
2 − 2−4/3 − [2−4/3 − 2−2]q − [

2−4/3 − 1
4

]
q2

− [
11
6 × 2−4/3 − 4

3 × 2−5/3 − 1
4

]
q3 + O(q4). (10)

The solutions containing the terms up to qn for n = 0, 1, 2, and
3 are drawn in Fig. 3, where a result of the second extension
given in Sec. III B is also shown for comparison.

B. Numerical calculations

We run numerical simulations of the second extension,
where the solution of v(p) = 1 for each bond-diluted lattice

FIG. 4. Solutions pv (q) of v(p) = 1 estimated from 104 in-
stances of numerical simulations based on the second extension.
(a) The solutions for L = 16, 32, 64, and 128. (b) The solutions for
the averaged function over n(v)

lat lattices for n(v)
lat = 1, 10, and 100 for

L = 32.

is estimated. We first generate a bond-diluted lattice under the
periodic boundary condition in which an edge is lacked with
probability q and then count plaquettes and edges. We do not
consider whether bonds in the lattice are ferromagnetic ones
or antiferromagnetic ones, since this matter concerns only the
p dependence of Nfra(p) that is already determined by fn(p)
given in Eq. (4). We then obtain the function v(p) and the
solution of v(p) = 1 for the lattice. Sampling solutions for
a number of diluted lattices for q in this way, we estimate
the average and variance of the solutions. The average is also
denoted by pv (q) for simplicity.

Figure 3(a) shows the plot of the estimated solutions as
a function of q for 0 � q � 0.5. The perturbative solutions
based on the first extension are also displayed for compar-
ison. The square lattice before the dilution has L × L units
(squares), where L for the result shown in Fig. 3 is 128.
Solutions of v(p) = 1 are sampled from 104 lattices generated
from the distribution for q. The variance of the solutions
over different lattices is small. The averaged value is thus
regarded as the probable solution for q obtained with the
second extension of our method. In addition, the obtained nu-
merical solution of the second extension is in good agreement
with the perturbative solutions of the first extension for small
q [Fig. 3(b)]. In particular, the numerical solution and the
third-order perturbative solution show good correspondence
for q � 0.4. This result demonstrates that both of the ways of
extension lead to almost identical solutions. The perturbative
solutions, however, do not exhibit the nonconcavity found in
the numerical ones at q > 0.4 [Fig. 3(c)], where the pertur-
bative analysis expanded from q = 0 would be unreliable.
We should remark that the curve of the numerical solutions
converges to 0 with q approaching 0.5 [Fig. 3(c)], which
agrees with the exact phase-transition point at q = 0.5.

The size L dependence of the solutions is shown in
Fig. 4(a). We find no definite difference in the average of the
solutions between investigated L except for q � 0.4, where a
slight decrease is observed with increasing L. We therefore
expect that the finite-size effect of our solutions is small. On
the other hand, the variance of the solutions clearly decreases
as L increases. As mentioned above, the average of the
solutions over bond-diluted lattices agrees well with the so-
lutions of the first extension, where we obtained the solutions
with the average number of frustrated plaquettes. This finding
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and the decrease of the variance with increasing L suggest
that the small variance of the numerical solution originates
from the typicality of the number of frustrated plaquettes that
could be involved in the self-averaging property [5] of the
system.

Using a rather small lattice (L = 32), we also execute
the other procedure of estimation of the typical solution
mentioned in the end of Sec. II, where we compute the
solutions of the averaged v(p) over n(v)

lat lattices. To observe
the variance of the resulting solutions, they are sampled 104

times. This estimation for n(v)
lat = 1, hence, corresponds to

the above method, the result of which is shown in Fig. 4(a)
(L = 32). Figure 4(b) displays the average of the obtained so-
lutions with error bars over 104 samples for n(v)

lat = 1, 10, 100.
Increasing n(v)

lat does not make any definite differences in
the average of the solutions, but just suppresses the fluc-
tuation of the solutions. Therefore, we use the result for
n(v)

lat = 1 as the solution of our method for the bond-diluted
lattices.

C. Comparison with the minimum-weight
perfect-matching algorithm

We compare the obtained solution of v(p) = 1 with the
correct phase-transition point. The latter has already been es-
timated in the context of the quantum error correction for the
surface code with loss by using the minimum-weight perfect-
matching (MWPM) algorithm [34]. We, however, performed
the similar calculations in a number of points of q because we
need detailed illustration of the q dependence of the critical
point. We followed the treatment of the diluted lattices as
well as the system size, L = 16, 24, 32, and the number of
instances of diluted lattices, 5 × 104, in Ref. [34]. For given
q and L, we estimate a function of p, which is referred to as
pfail in Ref. [34], by using 5 × 104 instances of lattices. The
function is associated with the phase transition. The obtained
functions are scaled according to the finite-size scaling ansatz
in Ref. [21]. The collapse of the scaled functions for different
L gives the critical point for each q expected in the infinite-L
limit. We just estimate the expectation of the critical points
and could not explicitly show errors in our analysis.

The average pv (q) of solutions of v(p) = 1 is in good
agreement with the obtained critical values pc in the whole
range of q (0 � q � 0.5), except for q � 0.34, as shown in
Fig. 5(a). The obtained two curves for small q are highlighted
in Fig. 5(b). The correspondence at q = 0 previously found
[27] is reproduced. Interestingly, the slope of pv (q) at q = 0
is also very similar to that of pc. Moreover, they remain almost
identical curves for q � 0.14. This finding demonstrates that
our method effectively captures the q dependence of the
true phase-transition point, for small q at least. For larger q,
pv (q) departures from pc and takes a little smaller value. The
difference between them takes its maximum around q � 0.34,
but it is still small. For q � 0.34, pc decreases more rapidly
than pv (q), and they take similar values again at q � 0.4
[Fig. 5(c)]. This agreement is due to the nonconcavity for
q � 0.4 in pv (q), highlighted in Figs. 5(c) and 5(d), that also
appears in pc [Figs. 5(c) and 5(e)]. Both of the curves finally
converge to 0 with q approaching 0.5 [Fig. 5(c)]. This good
correspondence in the range of q implies a scenario that our

FIG. 5. Solutions pv (q) of v(p) = 1 for L = 128 (the same one
as shown in Fig. 3) and the phase-transition points pc estimated with
MWPM [34]. (a) The two curves for 0 � q � 0.5. Closeups of the
regions near (b) q = 0 and (c) q = 0.5. (d) pv (q) and its concave
envelope. The dashed line indicates q = 0.46 mentioned in the text.
(e) pc and its concave envelope.

simple method could give some approximate location of the
phase-transition point even for the diluted lattices, although
we have not been able to directly derive their relationship.

The nonconcavity in the curve of pc was already reported
in the previous work [34]. This was attributed to a finite-size
effect [34] caused by large plaquettes that occupy approxi-
mately half of the primary square lattice in the range for the
nonconcavity. Whether the occupation of a half of the lattice
by a plaquette occurs depends on q and L. The larger q, the
larger L we need to avoid such occupation. For the lattice size
(L = 128) used for our estimation of pv (q), such occupation
does not occur for q � 0.46 at least [34]. Nevertheless, pv (q)
exhibits the nonconcavity in q � 0.46 [Figs. 5(c) and 5(d)].
This fact implies that the nonconcavity of pv (q) is not due to
the finite-size effect. For a fair comparison between pv (q) and
pc in the range of large q, we need to clarify the origin of the
nonconcavity of pv (q) or estimate pc for larger lattices, but
this issue is out of the scope of the present study.
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IV. SUMMARY AND DISCUSSION

We presented a possible approximate relation between
frustration and the phase transition of Ising spin glasses on
two-dimensional bond-diluted lattices at zero temperature.
The relation is represented as the correspondence of points
obtained by a simple method concerning frustration and the
phase-transition points at zero temperature observed with
varying the ratio of antiferromagnetic bonds. The method is
based on extension of a previous one for lattices without
dilution [27]. We calculate v(q, p) defined by Eq. (7) using
averaged quantities over diluted lattices or v(p) defined by
Eq. (5) for each diluted lattice. Both of the functions concern
the derivative of the number of frustrated plaquettes with re-
spect to the number of antiferromagnetic bonds in the lattice.
This extension is more natural than another one previously
proposed with an additional ansatz [33]. Motivated by the
work for nondiluted lattices [27], where the condition that the
obtained function is equal to unity leads to an approximate
location of the phase-transition point, we applied the extended
method to the diluted square lattice. Consequently, we found
that both of the ways of extension typically give an almost
identical result and that the obtained curve pv (q) as a function
of q is close to the correct phase boundary pc in the range
0 � q � 0.5. For q > 0.4, pv (q) exhibits the nonconcavity as
pc, but the origin of this behavior would be different from that
of pc. This issue is left as a future work.

The present result supports the validity of our method to
approximately estimate the phase-transition points of two-
dimensional spin glasses at zero temperature on diluted lat-
tices. The obtained solutions from our method are fairly

accurate, even though what we did are only simple calcu-
lations. Hence our method has practical use for the first
approximation of the transition points. The fairly good pre-
diction with our method based only on frustration implies
the importance of frustration on the ferromagnetic–spin-glass
phase transition at zero temperature. It should be noted that
our result dose not lead to the proposition of the geometry-
induced transition at finite temperatures [16]. Our method
does not evaluate thermal effects and is not associated with the
phase transitions at finite temperatures. However, our method
might be useful to investigate geometrical aspects of the phase
transitions.

We have found the approximate correspondence between
the solutions of our method and the phase-transition points at
zero temperature, but its origin is not obvious. We need further
investigation to clarify whether this agreement is reasonable
or just an accident. We will examine other diluted lattices as
the next task. In addition, an effect from Ising spins, which
is not considered in our method at all, should be estimated to
examine the possibility that our method could be associated
with phase transitions. Investigation taking into account the
nature of Ising spins in our method could find a link to a
conventional approach to phase transitions in spin glasses,
e.g., analysis of the domain-wall energy [35,36].
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