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Minimal statistical-mechanical model for multihyperuniform patterns in avian retina
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Birds are known for their extremely acute sense of vision. The very peculiar structural distribution of five
different types of cones in the retina underlies this exquisite ability to sample light. It was recently found that each
cone population as well as their total population display a disordered pattern in which long-wavelength density
fluctuations vanish [Jiao et al., Phys. Rev. E 89, 022721 (2014)]. This property, known as hyperuniformity,
is also present in perfect crystals. In situations like the avian retina in which both the global structure and
that of each component display hyperuniformity, the system is said to be multihyperuniform. In this work,
we aim at devising a minimal statistical-mechanical model that can reproduce the main features of the spatial
distribution of photoreceptors in avian retina, namely the presence of disorder, multihyperuniformity, and local
heterocoordination. This last feature is key to avoiding local clustering of the same type of photoreceptors,
an undesirable feature for the efficient sampling of light. For this purpose, we formulate a minimal statistical-
mechanical model that definitively exhibits the required structural properties: an equimolar three-component
mixture (one component to sample each primary color: red, green, and blue) of nonadditive hard disks to
which a long-range logarithmic repulsion is added between like particles. Interestingly, a Voronoi analysis of our
idealized system of photoreceptors shows that the space-filling Voronoi polygons display a rather uniform area
distribution, symmetrically centered around that of a regular lattice, a structural property also found in human
retina. Disordered multihyperuniformity offers an alternative to generate photoreceptor patterns with minimal
long-range concentration and density fluctuations. This is the key to overcoming the difficulties in devising an

efficient visual system in which crystal-like order is absent.
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I. INTRODUCTION

Sampling light is one of the essential activities that enables
living organisms to interact with the surrounding environ-
ment. From simple devices such as the stigma that provides
“vision” in certain classes of microalgae [1], to the sophis-
ticated compound eyes of arthropods [2,3], living organisms
have developed increasingly efficient ways to map visual
information from the external world onto signals that can be
processed by their cognitive systems. The case of arthropod
eyes is particularly interesting. It is known from classical
sampling theory [4] that an optimal sampling of light can
be achieved by a hexagonal array of photodetectors. This is
actually the pattern adopted by ommatidia (the optical units
forming a compound eye) in arthropods. Compound eyes
are imaging systems with low aberration, a wide-angle field
of view, and infinite field depth [5]. These properties have
motivated intense research into the development of bionic
compound eyes intended for small robots [6] or sensors for
digital cameras [5].

When it comes to vertebrates, with the exception of some
teleost fish [7,8] and some reptiles [9], the situation is dif-
ferent, and structural disorder in photoreceptor patterns is the
general trend. From this standpoint, birds are in a class of their
own. They possess one of the most elaborate visual systems
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among vertebrates. In avian retina, one can find five different
types of cones [10-14]. In addition, 10-20 % of the rods are
responsible for night and peripheral vision—being mostly
absent from the central area of the retina [15]. In contrast
with the regular shape of ommatidia in insects, photorecep-
tors in bird retina are polydisperse in both size and number
[16,17]. This variation provides an adaptive advantage; by
changing the relative numbers and even the pigmentation of
the cones, bird species can have visual capabilities that are
adapted to different habitats (sea birds have a high density of
red/yellow cones for hazy conditions, nocturnal birds have
an extremely high density of luminance double cones, etc.).
However, polydispersity is known to frustrate crystallization
[18], so an alternative to the regular hexagonal pattern of
arthropod eyes is needed if we want to preserve a good
sampling of light. In this regard, Jiao and co-workers [8]
found that the spatial distribution of photoreceptors in chicken
retina retained some “hidden order” reminiscent of crystalline
patterns. Namely, they found that long-range density and
concentration fluctuations were vanishingly small, i.e., the
patterns are hyperuniform [19].

Hyperuniformity can be quantified by means of two inti-
mately connected structural properties. In two dimensions, the
number variance of cones associated with a spherical sam-
pling window of radius R, defined as o3 (R) = (N?)g — (N)z,
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where N is the number of cones contained in the window
of radius R, and (---)g denotes an average over sampling
windows. A 2D system is hyperuniform if al\z,(R) grows more
slowly than R?, which is the scaling for ordinary disordered
patterns. In Ref. [8], it was found that this quantity obeys the
following hyperuniform large-R asymptotic scaling:

on(R) xR (1)

in the plane. This is one of the possible scalings of hyperuni-
form systems, also characteristic of crystalline-like order in
two dimensions (class I following Ref. [20]). Secondly, it is
known that density fluctuations in Fourier space are directly
related to the structure factor. This is defined for a set of
points/particles with number density p by

S(Q) =1+ ph(Q), 2

where Q is the wave vector, and 7(Q) is the spatial Fourier
transform of h(r) = g>(r) — 1, with g, (r) the pair distribution
function of the point/particle configuration. Equivalently, a
hyperuniform system is one in which S(Q) tends to zero as the
wave number Q = |Q)| tends to zero. It is possible to show [20]
that for a statistically homogenous and isotropic hyperuniform
system satisfying Eq. (1) in two dimensions,

S(Q) x Q% (@ — 0) 3)

with o > 0. Since Eq. (1) holds for each cone distribution, we
will have a relation like (3) for the structure factor computed
from each cone pattern, as was found by Jiao and co-workers
[8], 1.e.,
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for each cone type i. This implies that density fluctuations of
the corresponding point patterns will vanish for long wave-
lengths, i.e., when Q — 0. The same applies to the overall
point pattern. This property was termed “multihyperunifor-
mity” in Ref. [8].

Interestingly, since Torquato and Stillinger [19] introduced
the concept of hyperuniformity and stressed its significance
in structurally disordered materials, such exotic “states of
matter” have been found in a wide variety of systems. A
partial list of examples includes amorphous dielectric net-
works with large and complete photonic band gaps [21,22],
dense transparent disordered media [23], the enhanced pin-
ning of vortices in arrays in superconductors [24], certain
composites with desirable transport, dielectric, and fracture
properties [25-28], sand piles and other avalanche models
[29,30], driven nonequilibrium granular and colloidal systems
[31-33], and even immune system receptors [34]; all of these
examples have in common the presence of hyperuniformity.

One might ask why hyperuniformity plays such a crucial
role in the quality of vision in birds. As mentioned, the optimal
sampling configuration of photoreceptors corresponds to a
perfectly regular hexagonal arrangement. Hyperuniformity
prevents long-wavelength fluctuations in the photoreceptor
density (or a concentration of different species) that would
otherwise be present in a structurally disordered configu-
ration of photoreceptors. The presence of such fluctuations
is certainly not a desirable property for an accurate image
representation. Perfectly regular arrangements such as the

hexagonal patterns of ommatidia are hyperuniform, but in
the case of bird retina, crystal-like order is preempted by
polydispersity. Thus disordered hyperuniform patterns might
well be a good compromise solution. Multihyperuniformity
will guarantee the same sampling quality for each type of
photoreceptors and aids in ensuring local heterocoordination,
which is key to preventing the unwanted clustering of same
color photoreceptors.

After these considerations, it is our aim to build a minimal
statistical mechanical model that can reproduce the main
characteristics of the photoreceptor distribution. In addition
to disorder, these characteristics include multihyperuniformity
on the one hand, and local heterocoordination on the other.
By this we mean that photoreceptors of the same type should
not be allowed to cluster together if color sensitivity is to be
uniformly distributed on space. In fact, in Ref. [35] it was
shown that a system can be multihyperuniform and display
a strong degree of clustering (chain formation in Ref. [35]).
From images of actual chicken cone distributions (see Fig. 1
in Ref. [13]) it is readily apparent that cones of different types
tend to cluster together, i.e., their spatial distribution displays
local heterocoordination. In contrast with heterocoordination,
multihyperuniformity is not a local property; it implies the
presence of long-range density/concentration correlations for
each component.

The findings of Ref. [35] suggest that a mixture with
logarithmic long-range repulsions and nonadditive hard-core
volume exclusions can display the desired characteristics.
Nonadditivity in this context means that (i) the exclusion
diameters between unlike particles differ from the arithmetic
mean of those between like particles, and (ii) long-range
repulsions between unlike particles are different from the
geometric mean of the potential between like particles. This
implies that cross interactions do not fulfill the Lorentz-
Berthelot (LB) mixing rules. To properly account for the
presence of heterocoordination, both the long-range and the
short-range hard-core repulsions have to be nonadditive. In
the latter instance, the imbalance between unlike and like
particle repulsions leads to heterocoordination at low densi-
ties. When packing effects become dominant, it is the steric
effect of negative nonadditivity that leads to local heteroco-
ordination. Strictly speaking, the model in Refs. [35,36] is
a two-dimensional Coulomb plasma. Obviously, in our case
the logarithmic repulsion is to be thought of as an effective
interaction between photoreceptor cells to mimic “real” cone-
cone interactions. These are mediated by complex cellular
entities, and their genesis is unknown to biologists.

It is instructive to compare our model with the multiscale
packing model proposed by Jiao et al. [8]. As in the present
instance, the multiscale model has two interaction ranges,
namely a hard-core repulsion (polydisperse and additive)
and a soft-core long-range repulsion. Polydispersity prevents
crystallization (as negative nonadditivity does in our model),
and the soft-core repulsion leads to multihyperuniformity. To
that aim, the parameters of the soft-core interaction are tuned
by means of an inverse Monte Carlo optimization algorithm
that forces the model’s structure factor to agree with the
experimental data. In our model, multihyperuniformity is an
immediate consequence of the long range and nonadditivity
of the logarithmic interactions. Note that, additionally, the
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long-range multiscale interactions vanish for separations be-
yond /2/(31/2p), and this means the results will not be
strictly hyperuniform. This is due to the fact that in a dis-
ordered mixture, the interaction potential must comply with
a certain long-range asymptotic behavior [35] [see Eq. (7)
below], which is not the case in the multiscale model. In-
terestingly, both models yield a small wave-number decay
for the structure factor of the entire cone population ~Q>.
The experimental values seem to agree better with a linear
decay [8], although the statistical uncertainties are too large to
make a definite conclusion. Interestingly, three-dimensional
Coulomb plasmas confined in a plane are known to have
structure factors that decay linearly with the wave number as
O — 0 [37], by which our model could easily be transformed
into one that reproduces the apparent experimental decay.
Finally, we will see that a Voronoi analysis of the dis-
ordered hyperuniform patterns further illustrates the hidden
connection between these and the fully ordered crystal struc-
tures. The area distribution of Voronoi polygons is relatively
uniform and centered around that of a crystal-like pattern.
This uniformity, also found in the Voronoi tessellation of
photoreceptors in human retina [38], is in our case the result of
the presence of a long-ranged monotonic repulsive interaction.

II. MODEL AND METHODS

As mentioned, our minimal model of “retina” consists of
three classes of photoreceptors [red-green-blue (RGB)] in
which, following Ref. [35], interactions will be defined in
terms of a purely repulsive logarithmic potential. In addition,
in order to guarantee heterocoordination from moderate to
high densities, the particles will have a hard-core volume
exclusion defined by a hard-disk diameter o, with unlike
particles having a distance of minimum approach (1 + A)o,
with A < 0. From Ref. [35], we know that A > 0 induces the
formation of stable clusters of like particles due to the combi-
nation of long-range-like particle repulsions and an effective
short-range attraction between like particles due to volume
effects. It is worth stressing that in our “minimal model,”
for computational simplicity, the number of components is
reduced to the minimum, three. One can straightforwardly ex-
tend the model to four [cyan-magenta-yellow-black (CMYK)]
or five types (including the luminance cones as in bird retina)
of cones. Leaving aside the rods, whose distribution is highly
inhomogeneous (being almost absent from the central area of
the retina), the polydispersity introduced by the different cone
types is not too large. Therefore, no significant qualitative
difference in the results is to be expected by reducing the
number of cone types to the minimum, i.e., RGB.

The net interaction between particles of type i and j can be
explicitly written as

00 if r < [14 A1 —8;)]o,

’Buij(r):{—yijlnr/o if r >[4 A —8;)]o, )

where y;; is an effective coupling parameter, and §;; is Kro-
necker’s symbol. Our minimal model is fully symmetric,
with u; = uyy Vi and u;; = up Vi # j. For the logarithmic
repulsion, the coupling parameter is expressed as

ifi=j,

ifi]. ©)

r
Yij = AT

with 0 < A < 1. The parameter A controls the nonadditivity
of the long-range interactions. Setting A < 1 leads to a multi-
hyperuniform system, whereas A = 1 produces a globally hy-
peruniform system in which individual photoreceptor patterns
are not hyperuniform (see Fig. 2 below).

Now, from our study on binary mixtures in Refs. [35,36]
we know that disordered systems with long-ranged repulsive
interactions, whose small wave-number scaling in Fourier
space follows

lim B;(0) o 0 (M

with o > 0, will exhibit hyperuniformity. In Ref. [35] we
found the conditions that cross interactions must fulfill for
a binary system to be multihyperuniform. Here we extend
our analysis, based on the Ornstein-Zernike (OZ) theory for
mixtures, to multicomponent systems. A detailed presentation
can be found in Appendix A. Our key result here is that
an n-component system, in which the small wave-number
behavior of the particle-particle interactions follows (7), will
be multihyperuniform—i.e., comply with Eq. (4)—if

lim [@(Q)| # 0, (®)
0—0
where |- - - | denotes a matrix determinant, and the elements

of the matrix @1(Q) are the Fourier transform of the species-
species interactions, u;;(r). It can be shown that a sufficient
condition for Eq. (8) to be fulfilled is that

éig})[ﬁii(Q)ﬁjj(Q) — (01 # 0, €))

which actually means that cross interactions must not com-
ply with the Lorentz-Berthelot mixing rules in the long-
wavelength limit. We had already found this for binary mix-
tures in Ref. [35]. In practice, for our model system this
means that A < 1. Here we will simply set A = 0, which
reduces cross interactions to bare hard-core repulsions. The
degree of unlike particle aggregation can be tuned at will by
modifying the value of the A-parameter: the larger its value,
the larger the unlike particle repulsion. As A — 1, the local
heterocoordination disappears.

The low-Q asymptotics of the structure factor when all
densities are identical (p; = p/3 Vi) simplifies considerably.
A detailed derivation based on the low-Q expansion of the
OZ equation can be found in Appendix B. In our particular
case, given the symmetry of the interactions and compositions
and setting A = 0, from Eq. (B2) in Appendix B the limiting
behavior of the partial structure factors reduces to

lim $i(Q) = Q*/Q2mpl), Vi,
(10)
lim 5;,(Q) = pej;(0)0"/ (2 pT')’, Vi #

with Efi.(Q) being the Fourier transform of the short-range
component of the direct correlation function (see Appendix B
for further details), which is nonzero and finite as Q — 0.
When considering mixtures, it is important to monitor the
global hyperuniformity using the the number-number struc-
ture factor. This is simply the net structure factor given by
Eq. (2) where the pair distribution function is computed using
all particle types. In practice, it can also be computed from the
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(b)

FIG. 1. Snapshots of Monte Carlo configurations of our three-component minimal model of retina with RGB receptors with po? = 0.2
(left) and po? = 0.8 (right). The interaction is defined by a coupling ¥ = 5 and a nonadditivity parameter A = —0.2.

addition of the partial structure factors as

S\(Q) =) Sii(Q). (11
iJ

From Eq. (10), we then have
lim Su(0) = 30%/@2npl) + bQ*, (12)

where b = 3p&f(0)/ 27 pT').

The systems studied in this work have been analyzed using
an integral equation approach based on the OZ equation,
Eq. (A1) in Appendix A, with a reference hypernetted chain
(RHNC) closure [Eq. (11) in Ref. [36]]. We refer the reader to
[36] for further details on the numerical approach to solve this
equation. We have also performed extensive canonical (NvT)
Monte Carlo simulations, in which the energy of the periodic
system is evaluated using the Ewald technique with conduct-
ing boundary conditions [36,39]. Computational details of the
simulations are identical to those of Ref. [36].

III. RESULTS

We will first consider two instances of photoreceptor
patterns for low density (po? = 0.2) and moderate density
(po? = 0.8), with an interspecies hard-core exclusion defined
by A = —0.2 (ie., 0;; = 0.80;;). The coupling factor of the
long-range interaction is set to I' =35, and the long-range
cross interactions are set to zero [i.e., A =0 in (6)]. This
means that unlike particles will only interact via a pure hard-
core exclusion. For comparison, we will also show results for
A = 1, which will only display global hyperuniformity. Partial
densities for each photoreceptor type are po?/3.

Two characteristic Monte Carlo snapshots of the low-
and high-density multihyperuniform systems are presented
in Fig. 1. One can appreciate in the snapshot of Fig. 1(a)
for po? = 0.2 that photoreceptors of different type tend to
aggregate in clusters with heterocoordination. These clusters
form a low-density fluidlike structure, with average inter-

cluster distances ~3 — 40. When comparing this illustration
with real representations of bird cone distributions (see Fig. 1
in Ref. [13]), the similarity is evident. At higher densities
(po? = 0.8), packing effects become dominant and clustering
is not so apparent, but heterocoordination is still clearly seen
in the snapshot of Fig. 1(b). The cluster-size distribution
(not shown) is monotonously decreasing, with no dominant
cluster size. This is a consequence of the lack of a competing
short-range attraction that would counteract the long-range
repulsion and would thus stabilize finite-size clusters, as was
the case for A > 0 in Ref. [35].

A. Structure factor analysis

In Fig. 2, we plot the partial and total structure factors
corresponding to the systems described above. The multihype-
runiform character of the system is clearly illustrated by their
vanishing behavior for low-Q. In the insets, one can observe
that they closely follow the asymptotic behavior described by
Eqgs. (10) and (12). Theory and simulation agree to a very large
extent.

For comparison, we also plot the theoretical results for
po?=0.2 and A = 1. Now, this choice of the long-range
cross interactions leads to a globally hyperuniform configu-
ration, as confirmed by the behavior of Syn(Q) as QO — O.
In contrast, the partial structure factor does not vanish for
Q — 0 (which rules out multihyperuniformity). Given the
low density, the result is close to that of an ideal gas, for
which S;;(Q) ~ x; ¥V Q. Reducing A, which actually implies
decreasing (or in our present case, eliminating) the unlike
long-range repulsive interactions, induces a certain degree of
clustering between unlike particles. This effect is visible when
comparing the total structure factor at low density (lower
graph, red curve in Fig. 2) for . = 0 and 1. Only in the case
of A =0 does Sy, (Q) exhibit a prepeak at Qo ~ 1.9. This
reflects the presence of clustering with a correlation length
of ~3.20, which we have already qualitatively detected in
the snapshot of Fig. 1(a). In summary, the combination of
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FIG. 2. Total and partial structure factors of our model photore-
ceptor system displaying multihyperuniformity for low and moderate
number densities (see the legend). Solid and dash-dotted curves
correspond to theoretical (RHNC) calculations, symbols denote
Monte Carlo data. Dashed curves in the insets represent the low-Q
regime derived from Eq. (10). Partial structure factors correspond to
correlations between like particles. For comparison, we show on blue
dash-dotted curves the structure factors for a system displaying only
global hyperuniformity [A = 1 in Eq. (5)].

very long-ranged repulsions between like particles with non-
additive unlike interactions both in the short and long range
reproduces the features sought for in our minimal statistical
mechanical model of retina.

B. Mimicking avian retina

How do our model results compare with a real structure
factor obtained from a distribution of avian photoreceptors ?
One must first bear in mind that in bird retina, five different
types of cones [8] are present in unequal numbers, so in
principle our model departs significantly from the real situ-
ation. Nonetheless, a simple inspection of the experimental
structure factors presented in Fig. 9 of Ref. [8] indicates that
basically all cone types qualitatively display similar partial
structure factors. The global structure factor is qualitatively
different, with very little structure at low Q values. Therefore,
it seems reasonable to compare our model system with actual
experimental results from a qualitative standpoint. To that
aim, we have adjusted the coupling constant I of our effective
potential to match the results of [8]. Density is basically
coupled to I' (except for subtle hard-core effects not visible
in the low Q behavior of the structure factor), so we have
set po? = 0.8 and kept it fixed. As in Ref. [8], O is scaled
with the position of the structure factor maximum, which
sets the length scale to the appropriate value in order to ease

i T T
2| ¢ Red photoreceptors
4
| — model system ::’
1.5 ¢
—
g =
w1
0.5+
0 -
L *
R
oy b0
Yo N
s 1+ “0 * *
o
\’E L
n
0.5
+ All photoreceptors
0 | |
0 0.5 1.5 2

1
QQ,

FIG. 3. Total and partial structure factor of the symmetric three-
component plasma with negative nonadditivity for A = 0, po? =
0.8, I' = 30 compared with those from avian photoreceptors from
Ref. [8]. In the upper curve, only the red photoreceptors are pre-
sented. Solid curves correspond to RHNC calculations, symbols to
experimental data [8]. The partial structure factor is normalized to
1, and the Q axis is scaled with the position of the maximum that is
equivalent to adjusting o to the effective experimental value in the
photoreceptor correlations.

the comparison. This is equivalent to rescaling the data so
as to account for the different size of each cone type. We
observe that the behavior of our simple model depicted in
Fig. 3 agrees qualitatively with the experimental data. As a
matter of fact, even if in Ref. [8] the experimental low-Q
behavior seems to follow a linear decay instead of the Q2
dependence of our model, the quadratic dependence appears
acceptable. As mentioned, the multiscale packing model also
proposed by Jiao and co-workers [8] to fit the experimental
data displays the same quadratic decay. The other salient
feature that is observed in Fig. 3 is the lack of structure
of Sx\n(Q) for low Q values. This feature is visible both in
our simple model (although somewhat enhanced) and in the
experimental data. It is apparent that our minimal model is
capable of reproducing key features of the spatial patterns
displayed by photoreceptors in actual bird retina.

C. Voronoi analysis

When thinking of photoreceptors, one must also take into
account that their ability to reproduce an image is directly
related to the area they sample. This suggests that a Voronoi
analysis of our point configurations will provide information
as to the sampling area corresponding to each particle. We
have therefore performed a characterization of the spatial
configurations of our model system using Voronoi tessella-
tions. We have studied the corresponding area distribution
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FIG. 4. Voronoi tessellations corresponding to the red cones with p,.q02 = 0.2/3 (left) of the photoreceptor model and all the photorecep-

tors (right) for total density po? = 0.2.

of the Voronoi polygons. To put these results in perspective,
we have also performed a corresponding analysis for purely
random two-dimensional point configurations, as well as con-
figurations obtained from molecular dynamics simulations for
2D fluids of Lennard-Jones (LJ) particles and LJ particles
with added Coulomb repulsion. For these cases, we have
used similar density conditions and supercritical temperatures
(kgT /e = 2.0, where kg is Boltzmann’s constant and 7 is the
absolute temperature). When referring to LJ results, € and o
correspond to the well depth and particle size, respectively.
In the case of LJ particles with Coulombic repulsion, the
competition between short-range attractive and long-range
repulsive forces leads to the formation of stable clusters that
nonetheless display hyperuniformity. Upon examination of
Fig. 4, one can clearly appreciate that in our model system,
the Voronoi tessellation exhibits a fairly regular distribution of
the polygon areas. A similar observation was made by Legras
et al. [38] when analyzing the cone distribution in human
retina. However, when comparing with tessellations for LJ
fluids or random distributions (left graph in Fig. 5) at similar
density, one finds that these have a much larger dispersion in
their areas. The effect is even more apparent when competing
long-range Coulombic repulsions are added (right graph of
Fig. 5). This system, which is also hyperuniform, displays a
considerably degree of clustering, and in turn a considerable
dispersion in the sizes of the Voronoi polygons.

All these effects can be more quantitatively analyzed by
examining the normalized area distributions. These are plot-
ted for our photoreceptor model in Fig. 6 versus the area
scaled with the corresponding particle densities, pA. The
corresponding curves for random configurations, LJ fluids,
and LJ fluid + Coulombic repulsions are to be found in Fig. 7.

Figure 6 reveals that our model leads to area distributions
that are symmetrized with respect to the regular lattice result,
pA = 1. It is interesting to note that in all cases the curves

apparently follow a Gaussian distribution. This is in sharp
contrast with the area distributions for the LJ fluids (with
and without Coulombic repulsion) that are plotted in Fig. 7,
which are clearly asymmetric. It is important to note that the
symmetrization of the area distributions is not a consequence
of hyperuniformity. In Ref. [40], it was found that certain
stealthy hyperuniform patterns led to asymmetric distribu-
tions similar to those of random configurations. This is also
illustrated by the shape of the area distribution of Voronoi
polygons of LJ particles with added Coulombic repulsions.
Although these form hyperuniform patterns, there is a high
degree of clustering due to the presence of interparticle attrac-
tions. This strongly modifies the local environment leading
to asymmetric area distributions. Hyperuniformity is a large-
scale property and remains unaffected by changes in the short-
range ordering.

The area distribution of Voronoi polygons from random
point configurations is known to follow approximately a I
distribution of the form [41]

¢ c—1 _—cx
pdf(x) = rot ¢ (13)
where c is a fitting parameter and I'(c) is the transcendental
I'-function. In Fig. 7, one can see that the distributions for
low-density LJ (with and without Coulombic repulsions) and
purely random point configurations can accurately be fitted
to Eq. (13). In the upper graph of Fig. 7 we have results for
the single species configuration for the LJ fluid at po? = 0.8.
In this instance, correlations are important and no reasonable
fit to Eq. (13) is possible. Interestingly, the curves apparently
follow a log-normal distribution, a ubiquitous distribution that
describes multiple natural growth processes due to accumula-

tion. The corresponding functional form is

pdf(x) = = exp(— log(x/n)*/(2¢%),  (14)
X

1
V2m¢?
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FIG. 5. Voronoi tessellations corresponding to a LJ fluid configuration for po?> = 0.2 (left) and a LJ fluid with added Coulomb repulsion
at po? =0.1111, and kT /e = 2 (right). The inset on the right figure is a zoom of the central area of the simulation cell. Effects of clustering
due to the competing short-range attraction and long-range repulsion are clearly seen. The low-density LJ configuration yields a Voronoi
tessellation indistinguishable from that of a random configuration of points.

where ¢ and p are two fitting parameters. Note that the curve
is plotted versus pA in a log-scale and looks almost Gaussian.
This should be exactly the case when the distribution follows
Eq. (14). The vertical line represents the §-function distribu-
tion corresponding to the Voronoi tessellation of the regular
square lattice, i.e., §(pA — 1), and one can see that the curves
are not symmetric with respect to it. For our retina model, the
marked symmetry of the Voronoi area distribution is due to
the fact that the interactions are monotonic and repulsive, and
thus tend to produce very regular local environments. This is
illustrated by the uniform linear behavior of number variance
01%, (R) for both the global and the single species photoreceptor
configurations in our model, as can be seen in Fig. 8. The same
linear dependence is found in the experimental photoreceptor
distributions (see Fig. 4 in Ref. [8]).

Further clarification is offered by an analysis of the sam-
pling window dependence of the scaled number variance
0% (R)/R?, where the R* in the denominator corresponds to the
scaling of typical disordered nonhyperuniform systems [19].
We will consider two disordered hyperuniform systems: one
composed of LJ particles with added Coulombic repulsion
(which exhibits stable clusters), and the other with cut and
shifted LJ interactions at 2!/°¢, plus Coulombic repulsion
(entirely repulsive, no clustering), presented Fig. 9. As a refer-
ence, we also plot the values for a plain LJ system at the same
density (nonhyperuniform system). The number variance in
the latter instance is monotonous and scales quadratically with
R, whereas for both hyperuniform systems it scales linearly,
and in the presence of clustering a marked nonmonotonous
behavior is apparent for small sampling windows. This is clear
contrast with the monotonic dependence of the results for our
photoreceptor model (cf. Fig. 8) and those of real avian cones
(Fig. 4 of Ref. [8]).

Finally, we see that hyperuniform configurations that dis-
play clustering (and asymmetric area distributions of their
Voronoi tessellations) present a number variance with a clear
nonmonotonic behavior for small sampling windows. One can
then interpret the symmetrization of the area distribution in
a disordered media as a consequence of the minimization of
repulsive interactions, maximizing the area around each point
in the configuration, and reflecting random deviations from
the crystalline (ordered hyperuniform) state. This, together
with the strong suppression of long-wavelength density and
concentration fluctuations, leads to what could possibly be
optimal photoreceptor patterns.

IV. CONCLUDING REMARKS

In summary, we have shown that two key features of the
experimental patterns of photoreceptors in bird retina, namely
multihyperuniformity and heterocoordination, can be cap-
tured by a simple model with logarithmic repulsions between
like particles and hard-core exclusions with negative nonaddi-
tivity between the unlike ones. The fact that disordered hyper-
uniform systems represent topological states of matter sharing
fluid and crystal-like properties makes them the solution of
choice when regular arrangements such as those of arthropod
eyes are hampered by the variability of the photoreceptors
(e.g., unequal sizes and numbers). Present-day bio-inspired
optical devices rely on regular arrangements [5,42]. In certain
instances, the combination of different types of receptors and
in different numbers might be required, compromising the
feasibility of regular arrays of receptors. Disordered multi-
hyperuniformity might then offer an alternative to overcome
these difficulties.
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FIG. 6. Scaled area distribution of the Voronoi polygons for
hyperuniform states: high-density (upper graph) and low-density
(lower graph) single species and global configurations of the three-
component plasma. Hyperuniformity symmetrizes the area distribu-
tions around the value of the square regular lattice [§(pA — 1)], and
the curves follow an apparent Gaussian distribution (as shown by the
fits represented by dashed curves).

A natural extension of this work should be its application
to non-Euclidean geometries. Steps in this direction can be
found in the works of Meyra et al. [43] and Bozi¢ and
Copar [44] for spherical surfaces. Actually designs on curved
surfaces have already been proposed for regular arrays in
Ref. [5]. Disordered hyperuniform systems on curved surfaces
might well have a potentially larger impact on technological
applications. An analysis along these lines of photoreceptor
patterns in humans [38] might also be of interest to further
our understanding of our complex visual system. In fact, in
Ref. [38] it was found that human cones tend to preserve
locally hexagonal arrangements, even if the cone patterns
are disordered and nonhyperuniform. A preliminary Voronoi
analysis of the area distributions taken from Ref. [38] shows
that these are also relatively symmetric. However, photore-
ceptor patterns in human retina (and in birds as well) are
also dependent on the eccentricity. This implies that a specific
modeling taking into account the positional dependence of
photoreceptor composition and density based on experimental
information would be needed for a more accurate modeling
of each specific retinal region. One should expect to find
heterocoordination (probably with the exception of the periph-
eral region, where there is a marked concentration of rods),
otherwise the sampling of light would be degraded. As to
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1
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z | e
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FIG. 7. Scaled area distribution of the Voronoi polygons for LJ +
repulsive Coulomb and LJ interacting particles together with random
configurations. Dashed lines correspond to fits to Egs. (13) and (14).
The random and low-density LJ configurations (lower graph) agree
with I'-distributions—Eq. (13)—whereas when correlation effects
become appreciable (upper graph) the curves follow an apparent
log-normal distribution—Eq. (14). Notice the log scale on the pA
axis.

multihyperuniformity, this issue deserves further study, given
the fact that not all the retinal regions necessarily have the
same degree of visual acuity, e.g. the density of cones in
the peripheral region of the avian retina is relatively low and
inhomogeneous, with a large number of rods taking care of
night vision.

T
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FIG. 8. Number variance o3(R) dependence of sample window
radius, R, for both the global and the single species photoreceptor
model configurations.
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FIG. 9. Scaled number variance o2 (R)/R* dependence of sample
window radius, R, for LJ, LJ + Coulombic repulsion, and purely
repulsive soft potential (LJ cut and shifted at r/o =25, ie.,
WCA)+Coulombic repulsion. The last two systems are hyperuni-
form and hence crz\z,(R)/R2 — 0. Due to the presence of clustering,
LJ + Coulomb repulsion exhibits a clear nonmonotonous behavior
forR/o < 4.

Finally, retinal ganglion cells (RGCs) have a spatial distri-
bution apparently very similar to that of photoreceptors (see,
e.g., Fig. 1 in Ref. [45]). An analysis along the lines of the one
presented here and in Ref. [8] would be straightforward. One
should expect that the ganglion cell distribution would also
preserve hyperuniformity, given the fact that RGCs perform
the functional integration of the signals from a given number
of photoreceptors over a certain spatial scale. The simplest
solution to this problem would be to apply a spatial coarse-
graining procedure, where the photoreceptors present in a
given area are replaced by a single entity, constrained by
the condition that the newly generated configuration corre-
sponding to the RGCs retains hyperuniformity. Thus, from the
spatial configuration of the model photoreceptor cells in the
retina, one could infer the corresponding structure of the inner
RGC layer. To that aim, the spatial scale of photoreceptor
cells whose signals are to be integrated by a corresponding
ganglion cell must be known.
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APPENDIX A: A GENERAL CONDITION FOR
MULTIHYPERUNIFORMITY IN MIXTURES

In the general case of an n-component mixture, the
Ornstein-Zernike equation in Fourier space reads

hij(Q) = &;(Q) + ZEiI(Q)plillj(Q)a (AL)
I

where 7; ;(Q) and &;;(Q) are the Fourier transforms of the
total correlation function, h;;(r), and the direct correlation
function, c¢;;(r), respectively, p; is the number density of
species [, and the subscripts denote different species. This
gives for the symmetrized partial structure factors

. M;;(0)
8ij + (oip))*hij(Q) = === (A2)

I-Cl
Here M;; is the (ij) minor of the I — C matrix, I is the
identity matrix, [C];; = (0;0;)"/?¢;;(Q), and | - - - | denotes the

determinant of the n x n matrix. When this quantity vanishes
as Q — 0, the system will be multihyperuniform.
Now, if

gr%eii(Q) x Q™ Vi (A3)
with o > 0, then

lim M;;(Q) oc Q771 (A4)

Additionally, one might expand the denominator in (A2) [46],
n—1

I-Cl=1-|C|—) TiC/T, (AS5)
i=1

where I' |C/I| is the sum of the combination of determinants
in which the ith row of C is replaced by the corresponding
row of I. Now, when |C| # 0, it turns out that

égl})ll—cl=—élinol(3|0<Q : (A6)

It can be shown that

ICl = (]‘[pi)|c| (A7)
i=1

with  [e];; = ¢;;(Q). When Eq. (A3) is satisfied,
then th_)() ELJ(Q) = — limQ_)() ﬂﬁ,/(Q), by which
limg_, Bii;;(Q) o« 0%, Using Egs. (A4), (A6), and (A2),
one gets

lim 8 + (pip))"*hij(@) < O ¥ (i ), (AB)

and therefore all the structure factors will vanish as Q — 0.
This implies that the system will be multihyperuniform if the
conditions

gllig}) Biii(Q) o O7°, (A9)

éim0 [a(Q)| # 0, (A10)
are satisfied, where [u];; = ii;;(Q). This is a generalization of
Eq. (7) in Ref. [35].

APPENDIX B: ASYMPTOTICS IN THE SYMMETRIC
THREE-COMPONENT CASE

In the case of mixtures, one must monitor the small wave-
number behavior of the partial structure factors. These quanti-
ties can be expressed in terms of the corresponding atom-atom
total correlation functions as

S:;(0) = x:(8;j + px;hij(Q)). (B1)
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Now, when all densities are identical, such that p; = p/3 Vi,
where p is the total number density, and the interactions are
given by Eq. (5), one can solve Eq. (A1) in Fourier space and
obtain for the partial structure factors

20— pi (&) +2%) 0% + 2 pi T (1 + 1)
Q*det|I — C| '

éig%) Si(Q)=20

ER z 27T,0,'F)\,
—) (B2)

1 P = i i j 2 lj
él_)H%)Slj(Q) Xi (511 + px;0 Q*det|I — C|

with i # j, and with the determinant in the denominator given
by

Q'detll - C| = [Q* — pi(&f — &) Q% + 2w i (1 — 1)]
x [Q® — p1 (2§ +285) Q> + 27 piT(1 +20)],

where the Fourier transforms of the direct correla-
tion functions are separated into a short-range compo-
nent [E,’f(Q) and &,(Q)] and Coulomb-like contributions,
namely &;(Q) = Eﬁ(Q) + 271F/Q2, Vi, and ¢;; = Ef]-(Q) +
27 Al /Q?, Vi# j. We know that the zero-wave-number
limit of the short-range components is always finite and
nonzero.

From Eq. (B2) we find that whenever A # 1 and A # —1/2,
then limg_,¢ S;i(Q) Q? for all species, that is, the system
will be multihyperuniform. Also, in the fully symmetric
case, A = —1/2 corresponds precisely to a two-dimensional
Coulomb electrolyte, where we have 1/3 of the particles with
charge +1 and 2/3 of the particles with charge —1/2. This
system will then behave as a “regular fluid” and does not even
display global hyperuniformity due to the screening effects
[35]. The A = 1 case will not be multihyperuniform, but it will
preserve the global hyperuniformity of the single-component
two-dimensional Coulomb plasma.
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