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Inhomogeneous parametric scaling and variable-order fractional diffusion equations
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We discuss the derivation and the solutions of integrodifferential equations (variable-order time-fractional
diffusion equations) following as continuous limits for lattice continuous time random walk schemes with
power-law waiting-time probability density functions whose parameters are position-dependent. We concentrate
on subdiffusive cases and discuss two situations as examples: A system consisting of two parts with different
exponents of subdiffusion, and a system in which the subdiffusion exponent changes linearly from one end of
the interval to another one. In both cases we compare the numerical solutions of generalized master equations
describing the process on the lattice to the corresponding solutions of the continuous equations, which follow by
exact solution of the corresponding equations in the Laplace domain with subsequent numerical inversion using
the Gaver-Stehfest algorithm.
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I. INTRODUCTION

The kinetic equations with partial fractional derivatives in
temporal or spacial variables have recently attracted broad
attention and were widely used for the description of relax-
ation processes in complex media, see, e.g., [1–4] for reviews.
If, in addition to a property of being locally “complex,” the
system shows strong inhomogeneity on larger scales, the
parameters of the ensuing equations, including the order of
the corresponding derivatives, may get position-dependent. A
variant of such a situation starting from the continuous time
random walk (CTRW) with position-dependent power-law
waiting time distribution was studied in [5]. The approach
was followed in several subsequent works [6–9]. A specific
situation of a system consisting of two media with different
properties of (sub)diffusion in contact with each other was
under especially extensive consideration [10–15]. In this spe-
cial case the emphasis laid on the derivation of the matching
conditions at the boundary of the two media.

In the present work we discuss in some detail the deriva-
tion of the variable-order fractional diffusion equations for
inhomogeneous media from the corresponding generalized
master equations for CTRWs and the corresponding scaling
limits, and show how these equations naturally appear under
the limiting transitions. Two specific situations are considered
in some detail: continuous changes in the parameters of the
local waiting time distributions, as discussed in [8], and
the abrupt change at the border of the medium, in which
case the corresponding matching conditions emerge naturally
from the requirement of the existence of the scaling lim-
its, as discussed in [10]. We moreover propose a numerical
procedure to solve the corresponding equations, and check
our analytical results against numerical solutions. We also
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present the (semi)analytical and approximated solutions of the
corresponding equations for the two examples.

II. FROM THE MASTER EQUATION TO GENERALIZED
DIFFUSION EQUATION

Since the generalizations to higher dimensions are evident,
we focus on a one-dimensional situation in the present work.
We concentrate on the case of CTRWs on a regular lattice with
lattice spacing a. The off-lattice situations can be discussed by
similar methods but require a more involved analysis. We start
from the generalized master equation (GME) for CTRW on a
regular one-dimensional lattice, see Eq. (5.15) of [16],

d

dt
pi = d

dt

∫ t

0
dt ′

[
1

2
Mi−1(t − t ′)pi−1(t ′)

+ 1

2
Mi+1(t − t ′)pi+1(t ′) − Mi(t − t ′)pi(t

′)
]
, (1)

with i numbering the sites and Mi being the kernels of
site-dependent integrodifferential memory operators M̂i. This
equation, with two neighbors for each site, is valid for the
internal sites of the lattice. For boundary sites of a finite
lattice, only one neighbor, to the right or to the left of the
corresponding site, is present.

The kernel of the memory operator takes the simplest form
in the Laplace domain [5,16]

Mi(s) = ψi(s)

1 − ψi(s)
, (2)

so that for the internal sites of the system

spi(s) − pi(t = 0)

= 1

2

sψi−1(s)

1 − ψi−1(s)
pi−1(s)

+ 1

2

sψi+1(s)

1 − ψi+1(s)
pi+1(s) − sψi(s)

1 − ψi(s)
pi(s). (3)
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The function ψi(s) is the Laplace transform of the waiting
time density ψi(t ) at a site i. For the case of the usual
master equation, the function ψi(t ) is exponential, ψi(t ) =
τ−1

i exp(−t/τi ); for typical cases of anomalous diffusion it is a
power law, ψi(t ) ∼ τ−1

i (t/τi )−1−α . In both cases τi represents
the characteristic waiting time at a site i (in the first case it is
simply the mean waiting time, in the second case it is of the
order of the median waiting time).

In what follows we discuss the three following situations.
(i) The homogeneous system (all ψi are the same), which
serves as a starting point of our considerations, and the two
specific situations pertinent to heterogeneous systems. (ii) The
situation with the boundary (there are two kinds of ψi for
sites to the left and to the right of the boundary). (iii) The
situation, when ψi(t ) are gradually changing with position,
both mentioned in Sec. I. For the second situation, we discuss
the question about the matching condition on the boundary
and present a solution to the corresponding equation. For the
third one we concentrate on the question about the form of the
corresponding continuous equation, and on its solution. The
corresponding questions were posed and partially answered
in previous works [10–13]. The present work unifies the ap-
proaches, shows how the continuous equations and the match-
ing conditions arise naturally under the limiting transition to
the continuum, presents analytical solutions for some special
cases, and proposes an effective numerical scheme.

A. Homogeneous situation

In the homogeneous case one can consider the usual scal-
ing limit of large scales and long times. For the case of
fractional diffusion in an infinite homogeneous medium this
scaling procedure is discussed in detail in [17].

In the simplest case corresponding to an infinite homoge-
neous system, one can represent the procedure as follows: One
assumes that at longer times and at larger scales the solution of
the master equation pi(t ) can be interpolated by a sufficiently
smooth function p(x, t ) with p(ai, t ) = pi(t ). One rescales the
coordinate x → cx and the time t → czt , considers c → ∞,
and looks for such a value of z that the solution takes a scaling
form

p(x, t ) = 1

tβ
f
( x

tβ

)
, (4)

where the function f (ξ ) neither vanishes identically nor tends
to a delta-function. This corresponds to β = 1/z = α/2. The
procedure represents the standard asymptotic scaling at long
times, i.e., at times which are much larger than the intrinsic
timescale τ of the system, and at lengthscales which are much
larger than the intrinsic lengthscale a.

The situation discussed in the present work is different.
The asymptotic scaling described above is useless in inho-
mogeneous situations for generalized master equations, where
the final asymptotic solution is concentrated on a single
site with the smallest value of α [8,9], i.e., does tend to a
delta-function. We are not seeking for the final, but for the
intermediate asymptotics of the probability density function
(PDF), provided it exists, and essentially even not for the form
of the solution, but for the form of the equation defining it.
Therefore, the term “intermediate asymptotics” is used above

in a very similar, but not in exactly the same sense as it is used
in classical works [18,19], when the equations are given, and
their solutions are sought for.

The existence of an equation for intermediate asymptotics
implies that at some intermediate times t (i.e., in the interval
tmin � t � tmax, with tmin ∼ τ and tmax depending on the
particular situation at hand) the behavior of pi(t ) defined
at lattice sites i can be well approximated by a sufficiently
smooth function p(x, t ) of the coordinates of the sites given
by a solution of some partial (integro)differential equation,
which does not explicitly contain the lattice spacing a. In
the domain, where this approximation is applicable (i.e., at
intermediate times) this function should not change consider-
ably on scales of the order of lattice spacing, and therefore
has to be invariant under changes of this spacing provided
the macroscopic parameters of the system are kept constant
(the precise meaning of this statement will be discussed in
detail below). Therefore, the idea is, by fixing the actual time
t , to change the internal parameters a and τ of the system
so that this fixed t fulfills t � τ and that the ensuing solution
(truthfully approximating pi(t ) at the nodes of the initial lat-
tice) does not change considerably on the scales of this new a
(we will call this procedure parametric scaling, representing a
kind of “van-Hove” or “fluid” limit, see [20]). This is a scaling
limit making a simple random walk to be a standard Brownian
motion (by virtue of the Donsker’s functional central limit
theorem), when the transition a → 0, τ → 0 is made when
keeping the diffusion coefficient D ∝ a2/τ constant, i.e., a →
λa, τ → λ2τ . In this case the master equation transforms
into a Fokker-Planck equation. For CTRW in a homogeneous
setting, the concept of parametric scaling was first applied by
the authors of [21]. Note that while the asymptotic scaling
corresponds to a coarse-graining procedure, the parametric
scaling is a kind of a “fine-graining” one.

Thus, we assume that our discrete-space result pi(t ) can be
well approximated by a function p(x, t ) which is continuous
everywhere (except, maybe, for the boundaries of differ-
ent media), and try to find a reasonable partial differential
equation for this p(x, t ). The word “reasonable” refers to a
requirement that the parameters (say, D) in this equation do
not diverge or tend to zero identically almost everywhere.

Here we first show how the parametric scaling works for a
homogeneous system: We take some i and write (in time or in
Laplace domain) for any function fi(t ) or fi(s)

fi±1(z) = f (x, z) ± a
d

dx
f (x, z) + a2

2

d2

dx2
f (x, z)

± a3

6

d3

dx3
f (x, z) + · · ·

= f (x, z) ± a
d

dx
f (x, z) + a2

2

d2

dx2
f (x, z) + O(a3),

with z = t, s, where f (x, z) is the function interpolating fi(t )
or fi(s) between the lattice points with xi = ai. This means
that in the Laplace domain

sp(x, s) − p(x, t = 0) = a2

2

d2

dx2
sM(x, s)p(x, s)

+ O

(
a4

τα

)
. (5)

012133-2



INHOMOGENEOUS PARAMETRIC SCALING AND … PHYSICAL REVIEW E 102, 012133 (2020)

Since, in the case of homogeneous media, terms of order
O(a3) cancel out we are only left with terms of O(a4) and
higher. For a homogeneous system all Mi(s) are the same:
Mi(s) = M(s). Now we rescale a and τ , letting both tend to
zero, and concentrate first on the second, temporal rescaling.

We consider the initial waiting time distributions ψi,
which, for a homogeneous system, are all equal and in a
form ψ (t ) = τ−1φ(t/τ ) where τ represents a characteristic
timescale for a jump, and discuss how the functions sM(s) =
sψ (s)/[1 − ψ (s)] are changed under taking the limit of τ →
0 for fixed s. As it follows from the scaling theorem f (bt ) ↔
b−1F (s/b). Thus

1

τ
φ

(
t

τ

)
↔ φ(sτ ), (6)

and, for s fixed

sM(s) = sψ (s)

1 − ψ (s)
→ sφ(sτ )

1 − φ(sτ )
, (7)

where the argument of the Laplace-transformed ψ gets auto-
matically small for τ → 0. We note that due to normalization
lims→0 φ(s) = 1, and therefore the corresponding function
diverges for τ → 0. If the mean waiting time τ0 = 〈t〉 = cτ
exists (and is proportional to the characteristic time τ , with the
proportionality factor denoted by c), then φ(sτ ) � 1 − cτ s. It
gives us the asymptotic behavior

sM(s) � 1

cτ
. (8)

If ψ (t ) ∼ t−1−α , the asymptotic behavior is

sψ (s)

1 − ψ (s)
∼ 1

τα
s1−α. (9)

Note that the case for which the mean exists can be con-
sidered as a special case of the later situation corresponding
to α = 1. For the domains where all functions can be assumed
as smooth we get the equation (for 0 < α < 1)

spi(s) − pi(t = 0) � a2

2τα

d2

dx2
s1−α p(x, s) + O

(
a4

τα

)

= Kα

d2

dx2
s1−α p(x, s) + O

(
a4

τα

)
, (10)

with Kα = a2/2τα . Keeping this combination constant while
taking a → 0 and τ → 0 we see that the rest term vanishes
(analogous to the Kramers-Moyal expansion) while the first
one on the right-hand side (r.h.s.) stays finite. Any other
scaling of τ w.r.t. a makes no sense, since the r.h.s. of our
equation either diverges (giving rise to the trivial limit of a so-
lution vanishing everywhere), or the coefficient in front of the
lowest derivative vanishes together with all other coefficients
(formally giving rise to the solution which does not depend on
time). Therefore, if the continuous description of our problem
exists, it is given by an equation

sp(x, s) − p(x, t = 0) � a2

2τα

d2

dx2
s1−α p(x, s)

= Kα

d2

dx2
s1−α p(x, s), (11)

which, under passing to time domain, gets to be a fractional
diffusion equation with a Riemann-Liouville derivative,

∂

∂t
p(x, t ) = Kα

∂2

∂x2 0D1−α
t p(x, t ), (12)

or, for α → 1, a normal diffusion equation, the Fick’s second
law.

B. Inhomogeneous parametric scaling limit

We note that, while in the case of a homogeneous system,
when keeping the diffusion coefficient constant, it did not
matter what indeed was rescaled, a or τ , in the case of the
inhomogeneous system this matters.

Let us consider an inhomogeneous system with α = α(x)
and Kα(x)(x) being slowly changing functions of x (so that on
the initial scale α−1 dα

dx � a−1). If we consider some domain
of the system in which α and K may be considered as practi-
cally constant, the diffusion in this domain will be described
by the generalized diffusion equation, Eq. (12), with the local
coefficient of anomalous diffusion given by

Kα(x)(x) = a2

2τ (x)α(x)
. (13)

This Kα(x)(x) is a physical characteristic of the domain, to-
gether with α(x). Both can be obtained by performing mea-
surements at relatively short times, when the particles do not
leave the domain in which the parameters of diffusion do not
change considerably. Now it is necessary to think how to take
the continuous (van-Hove-like) limit correctly, i.e., whether
to rescale a or τ (x) by some factor λ while keeping their
combination, the local coefficient of anomalous diffusion,
Eq. (13), constant.

If we are looking at a rescaling scheme which will keep all
a’s the same, as it was in our initial system, i.e., taking a′ = λa
corresponding to the rescaling of all microscopic distances by
a common scaling factor λ, the τ ′(x) → 0 follows according
to the corresponding restrictions on the local behavior:

τ ′(x) = λ
2

α(x) τ (x) =
[
λ2 a2

Kα(x)(x)

] 1
α(x)

, (14)

so that all τ get an additional position dependence.
Taking, on the contrary, all τ ′(x) → λτ (x) generates

a spatially inhomogeneous lattice with a′(x) =√
2Kα(x)(x)[λτ (x)]α(x) which creates additional problems.

A function simply interpolating between the values of
pi(t ) of the initial lattice does not have a probabilistic
interpretation (because there is a different number of sites
of the new lattice between the two sites of the initial
one), and the correction for this fact needs for a more
complicated approach. The situation for the normal diffusion
on inhomogeneous lattices is considered in some detail
in [22], where it was shown that changes in τ or in a
essentially correspond to different interpretations of the
limiting Langevin equations for the Brownian motion being
the limit of the random walk scheme (namely to the Îto and to
the Stratonovich one, respectively) and therefore to different
ensuing Fokker-Planck equations (with different solutions).
These cannot hold true simultaneously unless the spurious
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drift terms are correspondingly corrected for. Our initial
scheme with symmetric jumps (constant a) corresponds to the
Îto case, and therefore the simplest approach is to keep this
symmetry all the way on.

Note that since α(x) is positive, all τ (x) tend to zero under
fine-graining, and therefore all ψ (s) tend to their small-s
asymptotic behavior. Let us now return to Eq. (5), denote
Fi(s) = sM(x, s)p(x, s), assume that M(x, s) and p(x, s) in-
terpolate the corresponding Mi and pi, and that Fj are inter-
polated by some smooth function F (x) so that F (x) = F (a j),
and perform the Taylor expansion

spi(s) − pi(t = 0) � a2 d2

dx2

s1−α(x)

2τ (x)α(x)
p(x, s)

+ τ (x)−α(x)O(a3). (15)

Now we move the position-independent a2 inside the deriva-
tive, use Eq. (14) for τ (x) expressing this via Kα(x), and neglect
the term of the higher order in a (i.e., pass to the limit a → 0):

spi(s) − pi(t = 0) = d2

dx2
Kα(x)(x)s1−α(x) p(x, s), (16)

which in the time domain reads

∂

∂t
p(x, t ) = ∂2

∂x2
Kα(x)(x) 0D1−α(x)

t p(x, t ). (17)

Note that our parametric scaling scheme gives some physical
flavor to the local scaling proposed by Straka [7], in the sense
that we now show that this scaling can be considered as a
typical condition that the continuous limit has to be taken such
that the local coefficient of anomalous diffusion (assumed to
exist) stays constant.

III. SCALING PROPERTIES

The discussions and simulations in [7,8] were performed
for slightly different systems: In the first one the initial
diffusion coefficient Kα(x)(x) was assumed constant, while
in the second the original values of τi were taken constant:
τi = τ0, which corresponds to Kα(x)(x) changing with x. In the
simulations of [8] τ0 was chosen small (τ0 = 10−3) and the
diffusion coefficient was strongly position-dependent. There-
fore, when comparing the results it is important to separate
the two effects: The genuine effect of changes in α, and
the possible effect of strong inhomogeneity of the diffusion
coefficients.

To find out the relations between the corresponding solu-
tions we first discuss what happens when we change the initial
time and lengthscales of the system.

A. Temporal scaling

First we look at the case where we choose τi = τ0 as
constant. We start from Eq. (16) and divide both parts of
the equation by s (in the time domain this corresponds to
integrating both parts of our integrodifferential equation in
time):

p(x, s) − p(x, t = 0)

s
= ∂2

∂x2

a2

2τ
α(x)
0

s−α(x) p(x, s)

= a2

2

∂2

∂x2
(τ0s)−α(x) p(x, s). (18)

Now we denote the new formal (dimensionless) Laplace
frequency by u = τ0s, express s via u, and then divide both
sides of the equation by τ0:

1

τ0
p

(
x,

u

τ0

)
− p(x . t = 0)

u
= a2

2

∂2

∂x2
u−α(x) 1

τ0
p

(
x,

u

τ0

)
.

(19)
We introduce a new function

g(x, u) = 1

τ0
p

(
x,

u

τ0

)
, (20)

and a new dimensionless time variable t̃ = t/τ0. Remember-
ing the previously mentioned scaling theorem, we see that the
function g is the (formal) Laplace transform of a function

G
(
x, t̃

) = p
(
x, τ0t̃

)
(21)

in t̃ . Therefore by changing to the dimensionless time
t̃ = t/τ0, the initial equation, Eq. (16), with Kα(x)(x) =
a2/2τ

α(x)
0 can always be changed to an equation with position-

independent effective diffusion coefficient Kc = a2/2 (i.e.,
with the numeric value of τ0 equal to unity):

∂

∂ t̃
G

(
x, t̃

) = ∂2

∂x2 0D1−α(x)
t̃ KcG

(
x, t̃

)
. (22)

This means that a system, in which Kα(x) depends on the
position as Kα(x) = a2/2τ

α(x)
0 , evolves τ−1

0 times faster (if
τ0 < 1) or slower (if τ0 > 1) than the one in which Kc was
chosen constant, with τ0 = 1.

Now let us discuss the question, what happens if the
diffusion coefficient is constant, but is not equal to a2/2.

B. Spacial scaling

To relate the solution for the system with a constant diffu-
sion coefficient Kη but with τ0 = 1 to the solution obtained in
the previous case one has to spatially rescale the system. Let
the numeric value of Kη be Kη = ηa2/2.

Let us consider a system of size L with the diffusion
coefficient Kη = ηa2/2 whose time evolution is described by
Eq. (16), and change the lengthscale x → x̃ = x/

√
η. Under

this change the length of the system changes to L̃ = L/
√

η,
and the behavior of α stays geometrically similar to the initial
one: α̃(x̃) = α(x). Now we can rewrite Eq. (16) in the new
variables:

sp(x̃, s) − p(t = 0) = 1

η

d2

dx̃2
η

a2

2
s1−α̃(x̃) p(x̃, s)

= d2

dx̃2

a2

2
s1−α̃(x̃) p(x̃, s). (23)

The Dirichlet or Neumann boundary conditions are not in-
fluenced by the coordinate rescaling. Eq. (23) is of exactly
the same form as Eq. (16) for Kc = a2/2, and thus has the
same solution. This means that the concentration profile at
time t in a system of size L with Kη = ηa2/2 is similar up to
coordinate rescaling to the concentration profile in a system of
size L̃ = L/

√
η with Kc = a2/2 considered at the same time.

This statement allows for translation between the situations
discussed in [7,8].
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IV. NUMERICAL APPROACH

Now let us present the numerical procedure for solving
the GME. These solutions will be used as a benchmark
for comparison to the semianalytical and with approximate
solutions of the generalized diffusion equations.

Starting from Eq. (3), we may write

− 1
2 sMi−1(s)pi−1(s) + [s + sMi(s)]pi(s)

− 1
2 sMi+1(s)pi+1(s) = pi(t = 0) (24)

for the internal sites of the system, and[
s + 1

2 sM1(s)
]
p1 − 1

2 sM2(s)p2 = p1(t = 0) (25)

for the sites at the boundaries of the interval. Equation (25)
follows from the choice of reflecting boundaries. For i =
[1, L] we consequently find a linear system of equations

A(s)p(s) = p(t = 0) (26)

with A(s) being a matrix of tridiagonal form depending on s
in the Laplace domain. Since the total probability within the
system is conserved, the sum of all entries in a column of A(s)
has to be s.

In the Laplace domain, the solution of Eq. (26) for the
initial condition p(t = 0) is given by p(s) = A−1(s)p(t = 0).
Having obtained this solution in the Laplace domain analyti-
cally or numerically, we have to perform its Laplace inversion
to the time domain, pointwise in space. In the present work,
we invert the corresponding expressions or data numerically
using the Gaver-Stehfest algorithm [23] which is best suited
for finding inverse Laplace transforms of real functions whose
originals do not oscillate. This is how the corresponding
datapoints in Figs. 2 and 3 are obtained.

V. EXAMPLE I: SYSTEM WITH TWO DOMAINS

A. Matching conditions on the boundary of two media

Let us now discuss the matching conditions of the prob-
ability density on the border of two different, homogeneous
subdiffusive media characterized by different parameters α

and Kα . The problem of a CTRW with different exponents
α on the two sides of a border was posed in [5]. In this work
the matching conditions for the case were simply guessed, and
guessed wrongly. As mentioned in [14] the boundary condi-
tions were corrected in [15] and afterwards widely discussed
[10–13].

To find the correct matching conditions we return to
Eq. (1), and put down the corresponding equations explicitly
for sites 2 and 3 immediately to the left and to the right of the
boundary, see Fig. 1:

d

dt
p2(t ) = 1

2 M̂1 p1(t ) + 1
2 M̂3 p3(t ) − M̂2 p2(t ),

d

dt
p3(t ) = 1

2 M̂2 p2(t ) + 1
2 M̂4 p4(t ) − M̂3 p3(t ). (27)

Here M̂1 = M̂2 = M̂− correspond to the memory operators
pertinent to medium 1, and M̂3 = M̂4 = M̂+ are the memory
operators in medium 2. In the Laplace domain the equations

FIG. 1. Enumeration of sites at the boundary of two media as
applied in Eq. (27).

read

sp2(s) − p2(t0) = 1
2 sM− p1(s) + 1

2 sM+ p3(s) − sM− p2(s),

sp3(s) − p3(t0) = 1
2 sM− p2(s) + 1

2 sM+ p4(s) − sM+ p3(s).
(28)

Now we denote p2(s) = p−(s), p3(s) = p+(s), and approx-
imate p1(s) and p4(s) via the derivatives of the continuous
p±(x, s) right and left from the boundary. For example, to the
right of the boundary we get

sp+(x, s) − p+(x, t = 0)

= 1

2
sM− p− − sM+ p+

+ 1

2

[
sM+ p+ + a

d

dx
sM+ p+

+ a2

2

d2

dx2
sM+ p+ + O(M+a3)

]
, (29)

where on the right-hand side of the equation all p± are to
be understood as p±(x, s) and M± are M±(s). Proceeding
analogically for the left of the border and rearranging the
terms in both equations we find

sM− p− − sM+ p+ + a
d

dx
sM+ p+ = O(1),

sM+ p+ − sM− p− − a
d

dx
sM− p− = O(1). (30)

Now we make a transition to the continuum taking a → 0 as
before, and keeping the diffusion coefficients Kα± = a2/τ

α±
±

constant, so that τ± → 0. The Laplace representations of the
memory kernels then tend to

sM±(s) � τ
−α±
± s1−α± , (31)

according to Eq. (9). Note that under the limiting transition the
combinations 1/τ

α±
± and a/τ

α±
± diverge, a2/τ

α±
± stays constant,

and a3/τ
α±
± and higher orders in a vanish. We now assume

that the solution for p±(x, s) exists and is smooth for x > 0
and for x < 0, with a possible singularity on the border. Under
this assumption the terms which diverge the strongest, namely
sM− p− and sM+ p+ in Eq. (30) have to cancel one another,
and we get the first matching condition at the internal border

τ
−α−
− s1−α− p−(x, s) = τ

−α+
+ s1−α+ p+(x, s). (32)

Adding the two equations of Eq. (30) we find that the weaker
diverging terms of order O(a) also need to cancel and we get

τ
−α−
− s1−α− d

dx
p−(x, s) = τ

−α+
+ s1−α+ d

dx
p+(x, s). (33)
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FIG. 2. The PDF p(x, t ) in a system with α− = 0.8 in its left and
α+ = 0.9 in its right part for t = 10−2 (upper panel) and for t = 103

(lower panel). The system consists of 100 sites, and the border is
placed between sites 50 and 51. The initial condition is pi(t = 0) =
1/100. The characteristic times are chosen with τ± = τ = 10−5.
The graph shows the full numerical solution (black crosses), the
(semi)analytical solution as obtained by numerical Laplace inversion
of Eq. (36) (red dotted line), and the approximation as given by
Eq. (39) (blue dashed line).

The probability density and its first spacial derivative in the
Laplace domain show a jump on the boundary. These relations
in the Laplace domain can be transformed to the time do-
main leading to integral relations for the probability densities
and their derivatives on the boundaries. From Eq. (32) it
follows that

p+(s)

p−(s)
= τ

α+
+

τ
α−
−

sα+−α− , (34)

so that for s → 0 p−(s) � p+(s) if α− < α+ (or vice versa,
in the opposite case). This inequality in the Laplace domain is
translated into a similar one in the time domain. Therefore, at
intermediate times, an inhomogeneous concentration profile
establishes itself, leading to a particle flux from the domain
with the larger value of α into the domain with the smaller

value of α, and at longer times the whole probability concen-
trates in the domain with the smaller value of α, as shown in
Fig. 2.

B. Analytical solution in the Laplace domain

Equation (16) is an inhomogenous linear differential equa-
tion of second order. For the case of two domains, its solutions
can be easily found for each domain separately, and then
matched. The corresponding general solutions read

p−(x, s) = A−eγ−x + B−e−γ−x + p(t = 0)

s
,

(35)

p+(x, s) = C+eγ+x + D+e−γ+x + p(t = 0)

s
,

with γ±(s) = √
2(sτ )α±/a0, and with four integration con-

stants A−, B−,C+, and D+. The boundary conditions at the
outer boundaries of the system, which are taken to be reflect-
ing (no-flux) ones, ∂x p−|x=0 = 0 and ∂x p+|x=L = 0, fix two of
the integration constants. With these conditions we obtain the
following expressions for p±(x, s):

p−(x, s) = 2A− cosh(γ−x) + p(t = 0)

s
,

p+(x, s) = C+(eγ+x + e2γ+Le−γ+x ) + p(t = 0)

s
. (36)

The integration constants C+ and A− follow then from the
matching conditions, Eqs. (32) and (33) and read

C+ = (� − 1) tanh
(
γ− L

2

)
p(t = 0)

�s

×
[(

eγ+ L
2 − e2γ+Le−γ+ l

2
)γ+
γ−

− tanh

(
γ−

L

2

)(
eγ+ L

2 + e2γ+Le−γ+ l
2
)]−1

(37)

and

A− = C+�
γ+
γ−

(
eγ+ L

2 − e2γ+Le−γ+ l
2
)

2 sinh
(
γ− L

2

)
with �(s) = p+(s)/p−(s) as given by Eq. (34). Having the
analytical solution in the Laplace domain we can numerically
invert it to the time domain. As is evident from Fig. 2, this
semianalytical solution can hardly be distinguished from the
full numerical solution of a discrete system [i.e., the solution
of Eq. (26) with the subsequent Laplace inversion]. We can
also give simple analytical estimates of how the system be-
haves for very short and for very long times. Assuming that in
the time domain the behavior of p(x, t ) for fixed x is a power
law, possibly modulated by some slowly varying function, one
can perform the Laplace inversion for very short and for very
long times approximately, applying a Tauberian theorem:

f (t ) ∼= tρ−1L(t )

� (38)

f (s) ∼= �(ρ)s−ρL(1/s)
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FIG. 3. The PDF p(x, t ) in a system with linearly changing
α(x) for time t = 0.1 (upper panel) and t = 105 (lower panel). We
used α(x) = 0.4 + 0.005x for x = [1, 100]. Choosing τ = 10−5 led
to Kα(0) = 100 on the left boundary and Kα(L) ≈ 3 × 104 on the
right boundary of the interval. The initial condition is p(x, t = 0) =
1/100. The results of the numerical solution of the GME are shown
as crosses, the (semi)analytical solution obtained by a numerical
Laplace inversion of the analytical solution, Eq. (45) are shown as
red dotted lines, and the results of approximate analytical inversion,
Eq. (39), by the blue dashed ones.

with L(t ) being a slowly varying function of its argument.
Therefore, we may write

p(x, t ) ≈ 1

t
p

(
x, s = 1

t

)
(39)

[since we do not know ρ exactly, we simply assume that
1/�(ρ) is of the order of unity, and omit this prefactor]. As
it can be seen in Figs. 2 and 3 for the cases of the two
domains with constant α(x), and of linearly changing α(x) (as
discussed in the next section), respectively, the approximation,
Eq. (39), performs for large times very well, and for small
times has a relative accuracy of the order of 10%.

VI. EXAMPLE II : LINEAR CHANGE IN α(x)

Now we turn to another example, the system with the
linear change in α(x) as discussed in [8]. Starting from the
equation in the Laplace domain, Eq. (16), and introducing a
new dependent variable Fs(x) defined according to

p(x, s) = sα(x)−1

Kα(x)
Fs(x), (40)

we obtain for this new variable the equation

sα(x)

Kα(x)
Fs(x) − p(t = 0) = ∂2

∂x2
Fs(x), (41)

a linear inhomogeneous second-order differential equation
with a constant coefficient in front of the second derivative.
We now look at the case where the diffusion exponent grows
linear with spatial coordinate: α(x) = c + bx. Assuming τ to
be constant, and therefore taking Kα(x) = a2/2τα(x), we may
write

∂2

∂x2
Fs(x) − ωeεxFs(x) + p(t = 0) = 0, (42)

with ω = 2(sτ )c/a2
0 and ε = ln(sτ )b. Equation (42) can be

put into a form of an inhomogeneous Bessel equation. There
exist several variable transformations to get to the Bessel
equation, two of which are presented in the Appendix. The
necessity of presenting two different variable transformations
is connected with the necessity of showing that the solutions
of Eq. (41) in the corresponding domains are real.

First we substitute ζ = 2
√

ωε−1eεx/2 and define Fs(x) =
g(ζ ). The second spacial derivative becomes now

∂2Fs(x)

∂x2
= ∂2g(ζ )

∂ζ 2

(
∂ζ (x)

∂x

)2

+ ∂g(ζ )

∂ζ

∂2ζ (x)

∂x2
. (43)

Plugging this expression into our original equation, Eq. (42),
with ∂xζ (x) = √

ωeεx/2 and ∂2
x ζ (x) = ε

2

√
ωeεx/2, we get the

inhomogeneous Bessel equation:

ζ 2 ∂2g(ζ )

∂ζ 2
+ ζ

∂g(ζ )

∂ζ
− ζ 2g(ζ ) = − 4

ε2
p(t = 0). (44)

The solution to the homogeneous part of this equation is a
linear combination of the modified Bessel functions I0 and K0.
A particular solution of the inhomogeneous equation is the
sum of products of I0 and K0 with Meijer G-functions. Thus,
solving Eq. (16) for a linearly growing α(x) and reflecting
boundary conditions it we get:

p(x, s) = 2(sτ )α(x)

sa2
0

{
C1I0(ζ ) + C2K0(ζ ) + p(t = 0)

ε2

×
[

I0(ζ )G01
33

(
ζ 2

4

∣∣∣∣ 1
0, 0, 0

)
− 2K0(ζ )

× G01
23

(−ζ 2

4

∣∣∣∣ 1
0, 0, 0

)]}
. (45)

The constants C1 and C2, and the procedure of finding the
particular solution can also be found in the Appendix. The
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Meijer G-Function Gmn
p q(ζ | a1, . . . , ap

b1, . . . , bq
) is defined as

Gmn
p q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)

= 1

2π i

∫
γ L

�m
j=1�(b j + s)�n

j=1�(1 − a j − s)

�
p
j=n+1�(a j + s)�q

j=m+1�(1 − b j − s)
x−sds,

(46)

(see, e.g., p. 793 of [24]).
The solution of Eq. (41) has to be real since its multi-

plication by another real function should give the Laplace
transform of the PDF. The full solution for the PDF, Eq. (45),
is evidently real for ζ > 0, when both Bessel functions and the
Meijer G-Function of a positive argument are real. However,
for ζ < 0 (i.e., for τ s < 1) the function K0(ζ ) of a negative
argument may acquire an imaginary part. Since the overall
structure of the solution, Eq. (45), involving integration con-
stants given by quite complex expressions, is quite awkward
for the analysis, it is not immediately obvious that the solution
Eq. (45) stays real also for ζ < 0. Here, another change of
variables outlined in the Appendix, shows that the solution
stays real also for ζ < 0. Since the solution of Eq. (41) is
unique, these two different solutions have to match for ζ → 0.
We did not check this analytically, but from the numerics
show that they did indeed match. The numerical inverse
Laplace transform of the analytical solution, Eq. (45), was
again performed by using the Gaver-Stehfest algorithm. The
(semi)analytical solution of Eq. (16) with a linearly growing
exponent α(x) was then compared to the full numerical solu-
tion for a discrete system. The results of such a comparison are
presented in Fig. 3 together with the analytical approximation
as given by Eq. (39), showing that the solution of the con-
tinuous equation indeed excellently reproduces the numerical
solution of the GME.

VII. CONCLUSION

In this article, we discuss the continuous limit of a lat-
tice CTRW scheme with power-law WTDs at lattice sites,
with position-dependent parameters. The parametric scaling
of local parameters in the WTD leads to a variable-order
time-fractional diffusion equation. Different choices of local
parameters of the WTDs change the behavior of the subd-
iffusion coefficient of the system, but the solutions of the
corresponding equations can be related to each other in terms
of their temporal and spacial rescaling.

As examples we discussed two different situations. The
first one corresponds to a system with a border separating two
different media, with different exponents of the power-law
WTDs. For this case we derive the matching conditions of
the solutions on that border. As a second example we study
a system where the diffusion exponent changes linearly with
the position.

For both examples we compare numerical solutions of the
initial GMEs with the ones of the variable-order diffusion
equations, and show that they perfectly match. Both solutions
are first obtained in the Laplace domain (numerically for
GME, analytically for its continuous counterpart) and than
transformed numerically to the time domain with the help
of the Gaver-Stehfest algorithm. We moreover show that

approximate analytical solutions of the continuous problem
can be obtained for short and for long times by applying a
Tauberian theorem.

APPENDIX

In this Appendix we first discuss another variable trans-
formation reducing Eq. (41) to a Bessel equation, and then
discuss the form of the general solution and the values of
integration constants in Eq. (45) of the main text.

In Sec. VI we mentioned that the total solution of Eq. (41)
has to be real. For the presented solution, Eq. (45), this is only
evident if τ s > 1 (ζ > 0) because only then can the modified
Bessel functions stay real. For τ s < 1 (ζ < 0) K0 of a negative
argument is, in general, complex. This is why we look for
another variable transformation x → ζ̃ so that ζ̃ stays positive
in the domain τ s < 1. To this end we look at the system
mirrored with respect to the middle of the interval. Equation
(41) then reads

sα̃(y)

Kα̃(y)
F̃s(y) − p(t = 0) = ∂2

∂y2
F̃s(y) (A1)

with the substitution y = L − x and F̃s(y) = Fs(x). The equa-
tion is of the same form as Eq. (41) but with

α̃(y) = α(x) = c∗ + b∗y (A2)

with c∗ = c + bL and b∗ = −b. We can now introduce a new
independent variable

ζ̃ (y) = 2

√
2(sτ )c∗

a2
0

1

− ln (sτ )
e− ln (sτ )y/2 (A3)

to get to the Bessel equation. The variable changes from y or
x to ζ̃ (y) and ζ (x) are of the same form but with different
parameters. The new independent variable ζ̃ (y) is positive for
τ s < 1 and thus F̃s(y) for this case is evidently real. Since
F̃s(y) = Fs(x) the total solution is real for both cases τ s < 1
and τ s > 1.

Now we discuss the procedure of solving Eq. (44) and
therefore also Eq. (A1) since they only differ in their parame-
ter values.

The solution of Eq. (44) is a sum of a particular solution
of the inhomogeneous equation and of a general solution
of the corresponding homogeneous one. The solution of the
homogeneous equation is a linear combination of the modified
Bessel functions of first and second kind (I0 and K0):

g(ζ ) = gp(ζ ) + ghom(ζ )

= gp(ζ ) + C1I0(ζ ) + C2K0(ζ ). (A4)

To find the particular solution for the inhomogeneous equation
we use the ansatz gp(ζ ) = A1(ζ )I0(ζ ) + A2(ζ )K0(ζ ) (varia-
tion of the constants). The derivatives of A1(ζ ) and A2(ζ ) are
given by

A′
1(ζ ) = K0(ζ )

W (ζ )

4p(t = 0)

ε2ζ 2
,

(A5)

A′
2(ζ ) = − I0(ζ )

W (ζ )

4p(t = 0)

ε2ζ 2
,
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with W (ζ ) = I0(ζ )K1(ζ ) − I1(ζ )K0(ζ ) being the Wronsky
determinant. Integrating these terms with MATHEMATICA we
find the complete form of the particular solution

gp(ζ ) = p(t = 0)

ε2

×
[

I0(ζ )G0 1
3 3

(
ζ 2

4

∣∣∣∣ 1
0, 0, 0

)

− 2K0(ζ )G0 1
2 3

(−ζ 2

4

∣∣∣∣ 1
0, 0, 0

)]
. (A6)

For getting the complete solution we still have to determine
the integration constants C1 and C2 which follow from the no-

flux boundary conditions at x = 0 and x = L. Thus

J

∣∣∣∣
x=0,L

= ∂

∂x
[Kα(x)s

1−α(x) p(x, s)]x=0,L

= ∂

∂x
Fs(x)

∣∣∣∣
x=0,L

= 0. (A7)

Since ∂xFs = g(ζ )
∂ζ

∂ζ

∂x and ∂xζ (x) = √
ωeεx/2 = 0 we can put

g(ζ )

∂ζ

∣∣∣∣
x=0,L

= 0. (A8)

To fulfill these condition we need to set the constants as
follows:

C1 = −p(t = 0)

λ2[I1(ζL )K1(ζ0) − I1(ζ0)K1(ζL )]

[
2K1(ζ0)K1(ζL )G2

(−ζ 2
0

4

)
+ 2K1(ζ0)K1(ζL )G2

(−ζ 2
L

4

)

− I1(ζ0)K1(ζL )G1

(
ζ 2

0

4

)
− I1(ζL )K1(ζ0)G1

(
ζ 2

L

4

)]
,

C2 = −p(t = 0)

λ2[I1(ζL )K1(ζ0) − I1(ζ0)K1(ζL )]

[
2I1(ζL )K1(ζ0)G2

(−ζ 2
0

4

)

+ 2I1(ζ0)K1(ζL )G2

(−ζ 2
L

4

)
− I1(ζ0)I1(ζL )G1

(
ζ 2

0

4

)
− I1(ζ0)I1(ζL )G1

(
ζ 2

L

4

)]
,

where the following abbreviations were used:

G1(x) = G01
33

(
x

∣∣∣∣ 1
0, 0, 0

)
,

G2(x) = G01
23

(
x

∣∣∣∣ 1
0, 0, 0

)
,

ζ0 = 2
√

ω

ε
,

ζL = 2
√

ω

ε
eεL/2.

Going back to Fs(x) we can write down

Fs(x) = C1I0

(
2
√

ω

ε
eεx/2

)
+ C2K0

(
2
√

ω

ε
eεx/2

)
+ F p

s ,

(A9)

and thus for the PDF

p(x, s) = 2(sτ )α(x)

sa2
0

Fs(x). (A10)
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