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The spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is exactly solved in a magnetic
field within the framework of the generalized star-triangle transformation and the method of exact recursion
relations. The generalized star-triangle transformation establishes an exact mapping correspondence with the
effective spin-1/2 Ising model on a triangular Husimi lattice with a temperature-dependent field, pair and
triplet interactions, which is subsequently rigorously treated by making use of exact recursion relations. The
ground-state phase diagram of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice, which bears
a close resemblance with a triangulated kagomé lattice, involves, in total, two classical and three quantum ground
states manifested in respective low-temperature magnetization curves as intermediate plateaus at 1/9, 1/3, and
5/9 of the saturation magnetization. It is verified that the fractional magnetization plateaus of quantum nature
have character of either dimerized or trimerized ground states. A low-temperature magnetization curve of the
spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice resembling a triangulated kagome lattice may
exhibit either no intermediate plateau, a single 1/3 plateau, a single 5/9 plateau, or a sequence of 1/9, 1/3, and
5/9 plateaus depending on a character and relative size of two considered coupling constants.
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I. INTRODUCTION

A rigorous solution of two-dimensional frustrated Heisen-
berg spin models by state-of-the-art analytical and numerical
techniques represents a challenging topic of modern statistical
physics with regard to an outstanding diversity of their low-
temperature magnetic behavior closely related to nonnegli-
gible effect of quantum fluctuations [1–4]. The geometric
spin frustration is frequently indispensable for an observation
of fractional quantized plateaus in low-temperature magne-
tization curves of two-dimensional Heisenberg spin models,
which appear as a direct consequence of field-driven stabiliza-
tion of often peculiar quantum ground states with a finite en-
ergy gap in a respective excitation spectrum [5–7]. It should be
pointed out, moreover, that theoretical predictions of several
exotic quantum ground states have already been experimen-
tally testified by high-field measurements performed on a few
paradigmatic prototypes of two-dimensional quantum spin
models, such as a Shastry-Sutherland compound SrCu(BO3)2

[8–12], a triangular-lattice compound Cs2CuBr4 [13,14] or
kagome-lattice compounds Cu3(titmb)2(OCOCH3)6 [15] and
CdCu3(OH)6(NO3)2 [16].

Bearing this in mind, it appears worthwhile to investigate
the microscopic nature of intriguing quantum ground states
emergent in low-temperature magnetization curves of two-
dimensional frustrated Heisenberg spin systems as interme-
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diate plateaus at fractional values of the saturation magneti-
zation. A subtle nature of quantum ground states, however,
necessitates application of nonperturbative (at best, exact
analytical or numerical) approaches, which are mostly inap-
plicable to two-dimensional frustrated quantum Heisenberg
spin models due to insurmountable computational complex-
ities [1–4]. Recently, the numerical tensor-network methods
were employed in order to study a geometric frustration of
the quantum Heisenberg spin models on the Husimi lattice,
which refers to a deep interior of recursive tree built up
from interconnected polygons [17]. Compared to this, the
method of exact recursion relations [18–21] offers a substan-
tial simplification of a rigorous treatment of the frustrated
Ising spin models defined on the Husimi lattices [22–32]. It
should be pointed out, moreover, that this rigorous method in
combination with algebraic mapping transformations can be
straightforwardly adapted in order to obtain exact solutions
for the frustrated Ising-Heisenberg models composed of clas-
sical Ising and quantum Heisenberg spins, which are valid also
at nonzero temperatures and magnetic fields [33–36].

In the present paper, we will exactly solve the spin-1/2
Ising-Heisenberg model on a triangulated Husimi lattice,
which bears a close resemblance with the triangulated kagome
lattice as the underlying magnetic lattice of a series of poly-
meric coordination compounds Cu9X2(cpa)6 · nH2O (cpa =
carboxypentonic acid; X = F, Cl, Br) [37–39]. The magnetic
compounds Cu9X2(cpa)6 · nH2O belong to a prominent class
of highly frustrated materials with no spontaneous magnetic
orderings down to 1.7 K [40,41] and a striking intermedi-
ate plateau around 1/3 of the saturation magnetization in a
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FIG. 1. A schematic illustration of the spin-1/2 Ising-Heisenberg
model on a triangulated Husimi lattice with the ramification number
q = 2. Small and large spheres denote lattice positions of the Heisen-
berg and Ising spins, respectively. The Heisenberg coupling JH is
schematically represented by solid lines, whereas the Ising coupling
JI is shown by dotted lines. A circle delimits the kth triangle-in-
triangles unit described by the cluster Hamiltonian (3).

high-field magnetization curve [42,43]. Recent experimental
measurements on magnetic compounds Cu9X2(cpa)6 · nH2O
additionally verified anomalous low-temperature thermody-
namics [44,45] as well as the enhanced magnetocaloric effect
[46,47].

It should be stressed that the spin-1/2 Ising-Heisenberg
model on triangulated kagome [48,49], triangular [50,51],
and Husimi [52,53] lattices have been exactly solved in a
zero magnetic field, whereas the effect of nonzero magnetic
fields has been comprehensively studied just for triangulated
kagome [49] and triangular [51] lattices at absolute zero
temperature yet. It has been convincingly evidenced in the
previous studies [48–53] that the geometric frustration of the
spin-1/2 Ising-Heisenberg model on the triangulated lattices
is responsible either for a peculiar quantum long-range order
or disorder at finite temperatures. For instance, the spin-1/2
Ising-Heisenberg model on a triangulated Husimi lattice ex-
hibits, in a highly frustrated parameter region, a spontaneous
long-range order or disorder depending on a size of the
ramification number [52].

The outline of this paper is as follows. The spin-1/2
Ising-Heisenberg model on a triangulated Husimi lattice will
be introduced in Sec. II together with a few basic steps
of its exact treatment. The most interesting results for the
ground-state and magnetization process will be thoroughly
analyzed in Sec. III. A brief summary of the most important
findings and the main conclusions are then summarized in
Sec. IV.

II. MODEL AND METHOD

Let us consider the spin-1/2 Ising-Heisenberg model on
a triangulated Husimi lattice to be further abbreviated as
IHM-THL, which is schematically depicted in Fig. 1 for
the particular choice of the ramification number q = 2. The

term triangulated Husimi lattice denotes a deep interior of
a recursively built triangles-in-triangles Husimi tree, which
consists of two different types of lattice sites schematically
shown in Fig. 1 by large and small spheres, respectively.
It is supposed that the lattice sites from all inner (outer)
triangles of the triangulated Husimi lattice shown by small
(large) spheres are occupied by the Heisenberg (Ising) spins.
The total Hamiltonian of the IHM-THL in a presence of the
external magnetic field can be accordingly defined as follows:

Ĥ = −JH

∑
〈i, j〉

Ŝi · Ŝ j − JI

∑
〈 j,k〉

Ŝz
j σ̂

z
k − hI

N∑
k=1

σ̂ z
k − hH

Nq∑
j=1

Ŝz
j,

(1)

where (Ŝi · Ŝ j ) = Ŝx
i Ŝx

j + Ŝy
i Ŝy

j + Ŝz
i Ŝz

j, Ŝα
j (α = x, y, z) and

σ̂ z
k denote spatial components of the spin-1/2 operator as-

signed to the Heisenberg and Ising spins from the lattice sites
forming inner and outer triangles of a triangulated Husimi lat-
tice, respectively. The interaction term JH labels the exchange
interaction between the nearest-neighbor Heisenberg spins,
the interaction term JI denotes the Ising coupling between
the nearest-neighbor Heisenberg and Ising spins, N denotes
the total number of the Ising spins, and q is the ramification
number that determines how many triangle-in-triangles units
meet at each site of outer triangles. Finally, Zeeman’s terms hI

and hH account for the magnetostatic energy of the Ising and
Heisenberg spins in a presence of the longitudinal magnetic
field.

The total Hamiltonian (1) of the IHM-THL can be decom-
posed into a sum taken over the cluster Hamiltonians,

Ĥ =
Nq/3∑
k=1

Ĥk, (2)

whereas each cluster Hamiltonian Ĥk involves all interac-
tion terms of three Heisenberg spins from the kth triangle-
in-triangles unit (see Fig. 1) further referred to as the kth
Heisenberg trimer,

Ĥk = −JH

3∑
i=1

�Sk,i · �Sk,i+1 − JI

3∑
i=1

σ̂ z
k,i

(
Ŝz

k,i + Ŝz
k,i+1

)

− hH

3∑
i=1

Ŝz
k,i − hI

q

3∑
i=1

σ̂ z
k,i. (3)

Note that the cyclic condition Sk,4 ≡ Sk,1 is assumed in Eq. (3)
and the factor 1/q at the last term ensures a correct counting
of Zeeman’s term hI pertinent to the Ising spins, which is
symmetrically split into q different cluster Hamiltonians of
the triangle-in-triangles units sharing one and the same lattice
site. Owing to a validity of the commutation relation between
different cluster Hamiltonians [Ĥi, Ĥ j] = 0, the partition
function of the IHM-THL can be partially factorized into the
following product:

Z =
∑
{σ }

Nq/3∏
k=1

Trk exp(−βĤk ) =
∑
{σ }

Nq/3∏
k=1

Zk
(
σ z

k,1, σ
z
k,2, σ

z
k,3

)
,

(4)

where β = 1/(kBT ), kB is Boltzmann’s constant, T is the
absolute temperature, the symbol

∑
{σ } denotes a summation
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over all available configurations of the Ising spins, and the
symbol Trk = TrSk,1 TrSk,2 TrSk,3 stands for a trace over spin
degrees of freedom of the kth Heisenberg trimer. The math-
ematical structure of Eq. (4) implies that one may perform
a trace over spin degrees of freedom of different Heisenberg
trimers independently of each other. If doing so, one gets
an explicit form of Boltzmann’s weight Zk , which exclu-
sively depends just on the three Ising spins σk,1, σk,2, and
σk,3 attached to the kth Heisenberg trimer. Subsequently, the
effective Boltzmann’s weight Zk can be replaced with an
equivalent expression through the generalized star-triangle
transformation [33–36],

Zk
(
σ z

k,1, σ
z
k,2, σ

z
k,3

)
= Trk exp(−βĤk )

= A exp

[
βR2

(
σ z

k,1σ
z
k,2 + σ z

k,2σ
z
k,3 + σ z

k,3σ
z
k,1

)

+βR3σ
z
k,1σ

z
k,2σ

z
k,3 + βR1

q

(
σ z

k,1 + σ z
k,2 + σ z

k,3

)]
. (5)

The star-triangle transformation represents, in fact, a set of
eight algebraic equations, which can be obtained from the
mapping relation (5) by substituting all available spin config-
urations of the three Ising spins σk,1, σk,2, and σk,3. Owing
to the symmetry, one merely gets four independent equations
explicitly given in Appendix A [see Eqs. (A1)–(A4)], which
unambiguously determine yet unspecified mapping parame-
ters A, R1, R2, and R3,

A = (
V1V2V

3
3 V 3

4

)1/8
, (6)

βR1 = βhI + q

4
ln

(
V1V3

V2V4

)
, (7)

βR2 = 1

2
ln

(
V1V2

V3V4

)
, (8)

βR3 = ln

(
V1V 3

4

V2V 3
3

)
. (9)

At this stage, one may directly substitute the star-triangle
transformation (5) into the factorized form of the partition
function (4) in order to get a rigorous mapping relationship,

Z (β, JI, JH, hI, hH, q) = ANq/3Zeff (β, R1, R2, R3, q), (10)

which connects the partition function Z of the IHM-THL
with the partition function Zeff of the effective spin-1/2 Ising
model on a triangular Husimi lattice schematically illustrated
on the right-hand side of Fig. 2 and mathematically given by
the Hamiltonian,

Heff = −R2

Nq∑
〈i, j〉

σ z
i σ z

j − R3

Nq/3∑
〈i, j,k〉

σ z
i σ z

j σ
z
k − R1

N∑
i=1

σ z
i . (11)

The first summation in Eq. (11) runs over the nearest-
neighbor spin pairs, the second summation runs over the tri-
angular unit cells, and, hence, the mapping parameters R1, R2

and R3 given by Eqs. (7)–(9) determine the effective field
(R1), the effective pair (R2) and triplet (R3) interactions of the
corresponding spin-1/2 Ising model on a triangular Husimi

FIG. 2. The mapping correspondence between the IHM-THL
and the effective spin-1/2 Ising model on a triangular Husimi lattice
with the temperature-dependent field R1, the pair interaction R2, and
the triplet interaction R3 established by the star-triangle transforma-
tion (5).

lattice, whereas the mapping parameter A is just a simple
multiplicative factor in the established mapping relation (10)
between both partition functions. It is noteworthy that the
similar mapping relation also holds between the Gibbs free
energy G of the IHM-THL and the Gibbs free energy Geff

of the effective spin-1/2 Ising model on a triangular Husimi

FIG. 3. The effective mapping parameters R1, R2, and R3 versus
magnetic field h = hI = hH for the IHM-THL with the antiferromag-
netic Ising coupling JI < 0 and the ramification number q = 2 at two
different temperatures kBT/|J1| = 0.01 (solid lines) and 0.2 (dotted
lines). Two representative values of the Heisenberg interaction are
considered: (a) JH/|JI| = 1.0 (ferromagnetic case); (b) JH/|JI| =
−1.0 (antiferromagnetic case).
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lattice,

G = −kBT ln Z = Geff (R1, R2, R3) − NqkBT

3
ln A. (12)

It should be pointed out that the mapping parameters
R1, R2, and R3 of the effective spin-1/2 Ising model on
a triangular Husimi lattice basically depend on a magnetic
field, interaction parameters, as well as temperature. For il-
lustration, Fig. 3 depicts typical dependences of the effective
mapping parameters R1, R2, and R3 on a relative size of the
magnetic field at two different temperatures and two selected
values of the interaction ratio. It is quite clear from Fig. 3 that
the magnetic field generally causes a highly nonmonotonous
dependence of the effective interactions R1, R2, and R3, which
may even change its character (sign) as, for instance, the effec-
tive pair and triplet interactions R2 and R3 plotted in Fig. 3(b).
On the other hand, the rising temperature generally suppresses
a relative strength of the mapping parameters R1, R2, and
R3, which tend to zero in the asymptotic limit of the infinite
temperature T → ∞. Note, furthermore, that the effective
field and triplet interaction R1 and R3 result from the action
of the external magnetic field represented by the Hamiltonian
parameters hI and hH because both these mapping parameters
tend to zero in the zero-field limit hI, hH → 0.

In the following, our particular attention will be focused
on a rigorous analysis of the magnetization process of the
IHM-THL. To this end, it is necessary to calculate statistical

mean values determining the single-site magnetization of the
Ising spins mI ≡ 〈σ̂ z

k 〉 and the single-site magnetization of the
Heisenberg spins mH ≡ 〈Ŝz

k〉. The single-site magnetization of
the Ising spins can be calculated by differentiating the Gibbs
free energy (12) with respect to the relevant magnetic field hI,

mI = − 1

N

∂G

∂hI
= − 1

N

(
∂Geff

∂R1

)
∂R1

∂hI
= meff (R1, R2, R3).

(13)
According to Eq. (13), the single-site magnetization of the
Ising spins of the IHM-THL directly equals the single-site
magnetization of the spin-1/2 Ising model on a triangular
Husimi lattice defined through the Hamiltonian (11) depend-
ing on the effective field R1, the effective pair interaction R2,
and the effective triplet interaction R3 as given by Eqs. (7)–
(9). It should be pointed out, moreover, that the canonical
ensemble average meff ≡ 〈σ̂ z

k 〉eff determining the single-site
magnetization of the spin-1/2 Ising model on a triangular
Husimi lattice defined through the Hamiltonian (11) can be
rather easily calculated by the method of exact recursion
relations [21] by following the same steps as previously used
for a zero-field limit of the investigated model system [52],

meff ≡ 〈
σ z

k

〉
eff = 1

2

[
exp (βR1) − xq

exp (βR1) + xq

]
, (14)

whereas the quantity x = limn→∞ xn represents a stable fixed
point of the recurrence relation,

xn = exp(2βR1) + 2 exp
(
βR1 + βR3

4

)
xq−1

n−1 + exp(βR2)x2q−2
n−1

exp
(
2βR1 + βR2 + βR3

4

) + 2 exp(βR1)xq−1
n−1 + exp

(
βR3

4

)
x2q−2

n−1

. (15)

It could be, thus, concluded that magnetization of the effective
spin-1/2 Ising model on a triangular Husimi lattice can be
calculated from Eqs. (14) and (15) after solving the latter
recursion relation iteratively. In view of the established map-
ping relation (13) between the magnetizations mI and meff , the
exact calculation of the single-site magnetization of the Ising
spins of the IHM-THL is also completed.

On the other hand, the single-site magnetization of the
Heisenberg spins mH ≡ 〈Ŝz

k〉 of the IHM-THL can be ex-
pressed in terms of the effective magnetization meff ≡ 〈σ z

k 〉eff ,
the effective pair correlation function εeff ≡ 〈σ z

k,1σ
z
k,2〉eff and

the effective triplet correlation function τeff ≡ 〈σ z
k,1σ

z
k,2σ

z
k,3〉eff

of the corresponding spin-1/2 Ising model on a triangular
Husimi lattice,

mH = − 1

Nq

∂G

∂hH

= 1

3

∂ ln A

∂βhH
+ mI

q

∂R1

∂hH
+ εeff

∂R2

∂hH
+ τeff

3

∂R3

∂hH
. (16)

A differentiation of the mapping parameters R1, R2, and R3

given by Eqs. (7)–(9) with respect to the relevant magnetic
field hH gives the following formula for the magnetization of

the Heisenberg spins of the IHM-THL:

mH = 1

24

[
W1

V1
+ W2

V2
+ 3

W3

V3
+ 3

W4

V4

]

+ meff

4

[
W1

V1
− W2

V2
+ W3

V3
− W4

V4

]

+ εeff

2

[
W1

V1
+ W2

V2
− W3

V3
− W4

V4

]

+ τeff

3

[
W1

V1
− W2

V2
− 3

W3

V3
+ 3

W4

V4

]
, (17)

where the newly defined functions W1, W2, W3, and W4 enter-
ing into Eq. (17) are given in Appendix B.

To complete an exact calculation of the single-site magneti-
zation of the Heisenberg spins for the IHM-THL, it is just nec-
essary to determine the pair and triplet correlation functions
of the effective spin-1/2 Ising model on a triangular Husimi
lattice, which can be also calculated within the framework
of exact recursion relations [21] by following the same steps
as previously used for a zero-field limit of the investigated
model system [52]. The exact results for the pair and triplet
correlation functions εeff and τeff can be, consequently, written
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in this compact form

εeff = 〈
σ z

i σ z
j

〉
eff = 1

4

[
exp(βR1)ω − vxq−1

exp(βR1) + xq

]
, (18)

τeff = 〈
σ z

i σ z
j σ

z
k

〉
eff = 1

8

(
exp (βR1)y − zxq−1

exp (βR1) + xq

)
, (19)

which are expressed in terms of the newly defined parameters
ω, v, y and z given in Appendix B.

In this way, we have completed also the exact calculation
of the single-site magnetization of the Heisenberg spins of the
IHM-THL. Last but not least, one may proceed to a straight-
forward calculation of the total magnetization per one spin,
which can be expressed through the previously calculated
single-site magnetizations of the Ising and Heisenberg spins
mI and mH according to the formula,

mT = (mI + qmH)/(1 + q). (20)

It is noteworthy that the formula (20) correctly takes into
account the total number of the Ising (N) and Heisenberg (Nq)
spins within a triangulated Husimi lattice with the ramification
number q.

III. RESULTS AND DISCUSSION

In this section, we will proceed to a discussion of the
most interesting results for the ground state and magnetiza-
tion curves of the IHM-THL by considering the particular
case with the ramification number q = 2, which mimics a
magnetic structure of the polymeric coordination compounds
Cu9X2(cpa)6 · nH2O commonly referred to as a triangulated
kagome lattice [37–39]. It is worthwhile to recall that the
magnetic properties of the spin-1/2 Ising-Heisenberg model
on triangulated kagome [48,49] and related Husimi [52,53]
lattices at zero as well as nonzero temperatures were, up to
now, comprehensively studied just at a zero magnetic field,
whereas the effect of the external magnetic field upon its
magnetic properties was examined just for a triangulated
kagome lattice at zero temperature yet [49]. The readers inter-
ested in further details concerned with the magnetic behavior
of the IHM-THL in the zero magnetic field are referred to
our previous study [52]. However, it should be, nevertheless,
mentioned that the IHM-THL with the particular value of the
ramification number q = 2 displays either a ferromagnetic
(for JI > 0) or a ferrimagnetic (for JI < 0) long-range order
with nonzero spontaneous magnetization at sufficiently low
temperatures in the parameter space JH/|JI| > −2/3, whereas
the frustrated parameter region JH/|JI| < −2/3 supports the
existence of a disordered spin-liquid phase with zero sponta-
neous magnetization at all temperatures. In what follows, we
will, therefore, examine, in detail, the magnetization curves of
the spin-1/2 Ising-Heisenberg model on a related triangulated
Husimi lattice at nonzero temperatures and may bring new
insights into low-temperature magnetization curves of the
polymeric complexes Cu9X2(cpa)6 · nH2O [40–43]. To reduce
the number of free parameters, a strength of the Ising coupling
constant |JI| will, henceforth, serve as an energy unit when
defining two dimensionless parameters kBT/|JI|, JH/|JI|, and
h/|JI| (h ≡ hI = hH) measuring a relative size of temperature,
interaction ratio, and magnetic field, respectively.

A. Antiferromagnetic Ising coupling JI < 0

Our attention will be, at first, devoted to the ground state
and magnetization process of the IHM-THL with the ramifi-
cation number q = 2 and the antiferromagnetic Ising coupling
JI < 0. Under this assumption, one may find five different
ground states, which can be classified as

(1) the classical ferrimagnetic phase |I〉,

|I〉 =
∏
k, j

|↓ ↓↓〉σk, j ⊗ |↑↑↑〉Sk, j , (21)

(2) the classical ferromagnetic phase |II〉,

|II〉 =
∏
k, j

|↑ ↑↑〉σk, j ⊗ |↑↑↑〉Sk, j , (22)

(3) the up-up-up (uuu) dimerized phase |III〉,

|III〉 =
∏
k, j

|↑ ↑↑〉σk, j ⊗
{ 1√

2
(|↑ ↓↓〉 − |↓↑↓〉)Sk, j ,

1√
2
(|↓ ↑↓〉 − |↓↓↑〉)Sk, j .

(23)

(4) the up-up-down (uud) trimerized phase |IV〉,

|IV〉 =
∏
k, j

|↑ ↑↓〉σk, j

⊗
[

cos α|↑ ↓↑〉 − sin α√
2

(|↑ ↑↓〉 + |↓↑↑〉)

]
Sk, j

,

(24)

(5) the up-up-up (uuu) dimerized ground-state |V〉,

|V〉 =
∏
k, j

|↑ ↑↑〉σk, j ⊗
{ 1√

2
(|↑ ↓↑〉 − |↓↑↑〉)Sk, j

1√
2
(|↑ ↑↓〉 − |↑↓↑〉)Sk, j

. (25)

Note that the eigenvectors (21)–(25) are written as a tensor
product of two state vectors, whereas the former (latter) state
vector determines spin orderings of three Ising spins σk, j

(Heisenberg spins Sk, j) from the kth triangle-in-triangles unit
described by the cluster Hamiltonian (3). The mixing angle
determining probability amplitudes within the uud trimerized
ground-state |IV〉 is given by α = 1

2 arctan (
√

8JH
JH+2JI

). For better
illustration, the relevant spin arrangements of the triangle-in-
triangles units pertinent to the individual ground-states (21)–
(25) are schematically visualized in Fig. 4 and will be de-
scribed in a more detail below. The overall ground-state phase
diagram is plotted in Fig. 5 on the JH/|JI| − h/|JI| plane,
whereas analytical expressions for depicted ground-state
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II : III :1/9-plateauI :1/3-plateau saturation

IV : V : -plateau1/3-plateau 5/9

= ( )/ 2

= cos
- sin
- sin

/ 2
/ 2

FIG. 4. Typical spin arrangements of one triangle-in-triangles
unit within five available ground states (21)–(25) of the IHM-THL
with the ramification number q = 2: the classical ferrimagnetic phase
|I〉, the classical ferromagnetic phase |II〉, the uuu dimerized phase
|III〉, the uud trimerized phase |IV〉, and the uuu dimerized state |V〉.
An oval stands for a dimer-singlet state, whereas a trimerized state
involving a quantum superposition of three uud states is marked by a
shaded triangle.

phase boundaries read as follows:

I/II:
h

|JI| = 2,

I/III:
h

|JI| = −2 − 3
JH

|JI| ,

I/IV:
JH

|JI| = −4

5
,

I/V:
h

|JI| = 4 + 3
JH

|JI| ,

II/V:
h

|JI| = 1 − 3

2

JH

|JI| ,

FIG. 5. The ground-state phase diagram of the IHM-THL on the
JH/|JI| − h/|JI| plane established by considering the antiferromag-
netic Ising coupling JI < 0.

III/IV:
h

|JI| = 1 − 3

2

JH

|JI| −
√(

1 − 1

2

JH

|JI|
)2

+ 2

(
JH

|JI|
)2

,

IV/V:
h

|JI| = 1 + 3

2

JH

|JI| +
√(

1 − 1

2

JH

|JI|
)2

+ 2

(
JH

|JI|
)2

.

It is evident that the first two classical ground-states |I〉
and |II〉 differ just in a relative orientation of the Ising
and Heisenberg spins, which are contrarily aligned within
the classical ferrimagnetic phase (21) and equally aligned
within the classical ferromagnetic phase (22). These classical
phases emerge as the respective ground states predominantly
in the parameter region with the ferromagnetic (JH/|JI| >

0) or weak antiferromagnetic (JH/|JI| � 0) character of the
Heisenberg coupling in accordance with the ground-state
phase diagram (see Fig. 5). The antiparallel alignment of the
Ising and Heisenberg spins detected within the classical fer-
rimagnetic phase (21) originates from the antiferromagnetic
Ising interaction JI < 0, and it should manifest itself in the
zero-temperature magnetization curve as an intermediate 1/3
plateau when the total magnetization is scaled with respect to
the saturation magnetization. At high enough magnetic fields,
the total magnetization naturally reaches full saturation due
to a perfect alignment of all Ising and Heisenberg spins into
a direction of the external magnetic field within the classical
ferromagnetic phase (22).

A much more intriguing situation appears whenever a
geometric spin frustration arising out from the sufficiently
strong antiferromagnetic Heisenberg interaction JH/|JI| � 0
comes into play. Under this condition, there appear another
three ground-states |III〉, |IV〉, and |V〉, which are according
to the respective eigenvectors (23)–(25) of purely quantum
origin as the Heisenberg trimers are being subject to a quan-
tum superposition of either two states (the uuu dimerized
phases |III〉 and |V〉) or three states (the uud trimerized phase
|IV〉). At lowest magnetic fields, the uuu dimerized phase |III〉
with a remarkable quantum superposition of the Heisenberg
trimers constitutes the ground state in which two Heisenberg
spins are being subject to a singlet pairing (23), and the
third Heisenberg spin is oriented in opposite to the magnetic
field with regard to the antiferromagnetic nature of the Ising
coupling JI < 0 with the fully polarized Ising spins. Note,
furthermore, that there exist two linearly independent ways
of the singlet pairing within each Heisenberg trimer of the
uuu dimerized phase |III〉, which should be accordingly highly
macroscopically degenerate. The uuu dimerized phase |III〉
manifests itself in zero-temperature magnetization curves as
an intermediate 1/9 plateau, which is, in general, enlarged
upon reinforcement of the antiferromagnetic Heisenberg cou-
pling JH/|JI|.

At moderate magnetic fields, the ground state is formed
by the uud trimerized phase |IV〉, which involves a quantum
superposition of three uud states of the Heisenberg trimers
surrounded by three enclosing Ising spins being in the similar
but yet classical uud spin arrangement. It should be noted that
the Ising spins, which are coupled to two Heisenberg spins
with a local positive magnetization being subject to a quantum
reduction of the magnetization, are aligned in opposite to the
magnetic field with regard to the antiferromagnetic character
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FIG. 6. Isothermal magnetization curves of the IHM-THL with the antiferromagnetic Ising coupling JI < 0 at two different temperatures
kBT/JI = 0.01 (solid lines) and 0.05 (dotted lines) when considering four different values of the interaction ratio: (a) JH/|JI| = 1.0;
(b) JH/|JI| = −0.75; (c) JH/|JI| = −1.0; (d) JH/|JI| = −2.0. The single-site magnetization of the Ising (mI) and Heisenberg (mH) spins are
plotted in addition to the total magnetization (mT).

of the Ising coupling JI < 0 (see Fig. 4 for a schematic illus-
tration). The uud trimerized phase |IV〉 should be responsible
in zero-temperature magnetization curves for the presence
of another intermediate 1/3 plateau, which is, however, of
completely different origin as the intermediate 1/3 plateau
previously ascribed to the classical ferrimagnetic phase |I〉.
The intermediate 1/3 plateau due to the uud trimerized phase
|IV〉 generally shrinks upon strengthening of the antiferro-
magnetic Heisenberg coupling JH/|JI|.

Last, but not least, one encounters at sufficiently high
magnetic fields the other uuu dimerized phase |V〉, whose
magnetic spin ordering is quite similar to the low-field uuu
dimerized phase |III〉. As a matter of fact, all Ising spins are
fully aligned towards the magnetic field, and there still exist
two linearly independent ways of a singlet pairing (25) within
each Heisenberg trimer of the uuu dimerized phase |V〉, which
accordingly exhibits a high macroscopic degeneracy. The only
difference with respect to the uuu dimerized phase |III〉 lies in
that the third Heisenberg spin is in the uuu dimerized phase
|V〉 polarized by the external magnetic field, which surpasses
the effect of antiferromagnetic Ising coupling JI < 0. The uuu
dimerized phases |III〉 and |V〉, thus, differ from each other
through the total spin of the Heisenberg trimers, which takes
the value of Sz

T = 1/2 for the uuu dimerized phase |V〉 in
contrast with the value of Sz

T = −1/2 present within the uuu
dimerized phase |III〉. The uuu dimerized phase |V〉 should
cause, in zero-temperature magnetization curves, existence of
the intermediate 5/9 plateau.

Now, a few comments are in order concerning with a
direct comparison of the ground-state phase diagram of the
IHM-THL with that one previously reported for the spin-1/2
Ising-Heisenberg model on a triangulated kagome lattice (cf.
Fig. 5 with Fig. 9(a) from Ref. [49]). From this comparison, it
is quite evident that the ground-state phase diagrams of both
models are not only qualitatively similar, but also the nature
of individual ground states is quite analogous. The zero-
temperature magnetization curves of the IHM-THL should
accordingly exhibit the completely same sequence of inter-
mediate magnetization plateaus at 1/9, 1/3, and 5/9 of the
saturation magnetization as previously reported for the spin-
1/2 Ising-Heisenberg model on a triangulated kagome lattice
[49]. From this perspective, the IHM-THL captures well a
physical mechanism behind the formation of the intermediate
magnetization plateaus including their microscopic origin.
However, the specific nature of the underlying triangulated
Husimi lattice may be responsible for different degeneracies
of some spin arrangements that might be a possible reason
for small deviations in the respective magnetization curves at
nonzero temperatures.

Let us corroborate the aforementioned ground-state anal-
ysis by a detailed examination of the low-temperature mag-
netization curves of the IHM-THL. To this end, the total
magnetization is plotted in Fig. 6 against the magnetic field
along with the single-site magnetizations of the Ising and
Heisenberg spins at two different temperatures and four se-
lected values of the interaction ratio JH/|JI|. Figure 6(a)
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JOZEF STREČKA AND CESUR EKIZ PHYSICAL REVIEW E 102, 012132 (2020)

displays the low-temperature magnetization curve involving
a single intermediate 1/3 plateau, which is typically found for
the particular cases with either ferromagnetic or weak antifer-
romagnetic Heisenberg coupling JH/|JI| > −2/3. Under this
condition, the relevant results for the single-site magnetization
of the Ising and Heisenberg spins are consistent with the spin
arrangement of the classical ferrimagnetic phase (21) ascribed
to the intermediate 1/3 plateau.

On the other hand, the low-temperature magnetization
curves of the IHM-THL with sufficiently strong antiferromag-
netic Heisenberg coupling JH/|JI| < −2/3 are much more
intricate because they involve three intermediate plateaus
at 1/9, 1/3, and 5/9 of the saturation magnetization [see
Figs. 6(b)–6(d)]. If the antiferromagnetic Heisenberg coupling
is of moderate strength JH/|JI| ∈ (−4/5,−2/3), then, the first
intermediate 1/9 plateau corresponding to the uuu dimerized
phase |III〉 is successively followed by the second intermedi-
ate 1/3 plateau with the spin arrangement of the classical ferri-
magnetic phase |I〉, whereas the third intermediate 5/9 plateau
is pertinent to the uuu dimerized phase |V〉. The single-site
magnetizations of the Ising and Heisenberg spins depicted in
Fig. 6(b) are in concordance with the aforementioned mech-
anism for the formation of the intermediate magnetization
plateaus as well as with the established ground-state phase
diagram shown in Fig. 5.

Although the low-temperature magnetization curves of
the IHM-THL at stronger values of the antiferromagnetic
Heisenberg coupling JH/|JI| < −4/5 still exhibit three in-
termediate plateaus at 1/9, 1/3, and 5/9 of the saturation
magnetization, it should be pointed out that the mechanism
for the formation of the intermediate 1/3 plateau is notably
different from the previous case as it conforms with the uud
trimerized phase |IV〉 instead of the classical ferrimagnetic
phase |I〉 as the single-site magnetizations of the Ising as
well as the Heisenberg spins are consistent with the uud
spin arrangement [see Figs. 6(c) and 6(d)]. It also follows
from Fig. 6 that the magnetization curves are substantially
wiped out upon increasing of temperature, whereas the most
narrow intermediate plateaus cannot be generally discerned
in isothermal magnetization curves already at relatively low
temperatures. As a matter of fact, any evident traces of the
most tiny intermediate 1/9 plateau are already absent in the
isothermal magnetization curves plotted in Figs. 6(b)–6(d) for
a relatively low temperature kBT/JI = 0.05.

B. Ferromagnetic Ising coupling JI > 0

Next, we will examine in detail the ground state and
magnetization process of the IHM-THL with the ramification
number q = 2 and the ferromagnetic Ising coupling JI > 0.
The assumption of the ferromagnetic Ising coupling JI > 0
substantially simplifies the ground-state analysis because the
relevant ground state of the IHM-THL is either the classical
ferromagnetic phase |II〉 for h/JI > −1 − 3JH/(2JI ) or the
uuu dimerized phase |V〉 for h/JI < −1 − 3JH/(2JI ). From
this perspective, the classical ferromagnetic phase |II〉 given
by the eigenvector (22) is the ground state regardless of a
relative size of the magnetic field h/JI whenever the cou-
pling ratio is greater than the threshold value JH/JI > −2/3.
The only peculiar low-temperature magnetization process

FIG. 7. Isothermal magnetization curves of the IHM-THL with
the ferromagnetic Ising coupling JI > 0 at two different temperatures
kBT/JI = 0.01 (solid lines) and 0.05 (dotted lines) when assuming
the interaction ratio JH/JI = −2.0. The single-site magnetization of
the Ising (mI) and Heisenberg (mH) spins are plotted in addition to
the total magnetization (mT).

including the fractional intermediate plateau can be, thus,
found just when a geometric spin frustration triggered by a
sufficiently strong antiferromagnetic Heisenberg interaction
JH/JI < −2/3 causes existence of the uuu dimerized phase
|V〉 at low enough magnetic fields. To illustrate the case,
we have depicted in Fig. 7 the isothermal magnetization
curve of the IHM-THL by considering specific value of the
interaction ratio JH/|JI| = −2.0. It actually turns out that the
low-temperature magnetization curve displays, at sufficiently
low magnetic fields, the intermediate 5/9 plateau attributable
to the uuu dimerized phase |V〉, which is characterized by a
perfect alignment of the Ising spins into the magnetic field
and a double degeneracy of a singlet pairing within each
Heisenberg trimer of the uuu dimerized phase |V〉 as specified
by the eigenvector (25).

IV. CONCLUSION

In the present paper, we have exactly solved the IHM-THL
in a magnetic field by combining the generalized star-triangle
mapping transformation with the method of exact recursion
relations. It has been shown that the generalized star-triangle
transformation establishes a rigorous mapping correspon-
dence between the investigated model system and the spin-1/2
Ising model on a triangular Husimi lattice with the effective
(temperature-dependent) field, pair, and triplet interactions.
This latter effective model has been, subsequently, solved by
the method of exact recursion relation in order to complete the
relevant exact calculation for the IHM-THL.

Our particular attention has been, subsequently, focused
on a detailed examination of the ground-state and low-
temperature magnetization curves of the IHM-THL with the
specific value of the ramification number q = 2, which is
highly reminiscent of a triangulated kagome lattice exper-
imentally detected in a series of the polymeric coordina-
tion compounds Cu9X2(cpa)6 · nH2O [37–39]. Exact results
obtained for the low-temperature magnetization curves of
the IHM-THL indicate five different magnetization scenarios
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depending on the character and relative size of both consid-
ered coupling constants.

It has been found that the low-temperature magnetization
curves of the IHM-THL with the ferromagnetic Ising interac-
tion JI > 0 do not exhibit any intermediate plateau for JH/JI >

−2/3 or they display just a single intermediate plateau at
5/9 of the saturation magnetization for JH/JI < −2/3. The
situation is much more intricate for the IHM-THL with the
antiferromagnetic Ising interaction JI < 0, which shows a
single intermediate plateau at 1/3 of the saturation magnetiza-
tion for JH/JI > −2/3 or three different intermediate plateaus
at 1/9, 1/3, and 5/9 of the saturation magnetization for
JH/JI < −2/3. However, the mechanism for formation of the
intermediate 1/3 plateau can still be quite different in the latter
case: One either encounters, in a magnetization process, the
classical ferrimagnetic phase |I〉 for JH/JI > −4/5 or the more
peculiar uud trimerized phase |IV〉 for JH/JI < −4/5. It has
been also argued that the intermediate 1/9 and 5/9 plateaus
are macroscopic manifestations of the uuu dimerized phases
|III〉 and |V〉, which involve according to the eigenvectors
(23) and (25) within each Heisenberg trimer two linearly
independent ways of a singlet pairing.

Last, but not least, it should be also mentioned that the
intermediate plateaus should be clearly discernible also in
high-field magnetization curves of triangulated kagome com-
pounds Cu9X2(cpa)6 · nH2O [37–39] recorded at sufficiently
low temperatures, which makes out of this prominent class
of highly frustrated magnetic materials attractive playground
for a future experimental testing of unusual dimerized and
trimerized quantum states of matter.
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APPENDIX A: THE EQUATIONS FOR ALL AVAILABLE
ISING SPIN CONFIGURATIONS

The first two equations are obtained for two uniform con-
figurations with three equally aligned Ising spins pointing up
↑↑↑,

V1 = 2 exp

(
3

4
βJH

)
cosh

[
3

2
β(JI + hH)

]

+ 2 exp

(
3

4
βJH

)
cosh

[
β

2
(JI + hH)

]

+ 4 exp

(
−3

4
βJH

)
cosh

[
β

2
(JI + hH)

]

= A exp

(
3

4
βR2 + 1

8
βR3 + 3βR1

2q

)
, (A1)

or down ↓↓↓,

V2 = 2 exp

(
3

4
βJH

)
cosh

[
3

2
β(JI − hH)

]

+ 2 exp

(
3

4
βJH

)
cosh

[
β

2
(JI − hH)

]

+ 4 exp

(
−3

4
βJH

)
cosh

[
β

2
(JI − hH)

]

= A exp

(
3

4
βR2 − 1

8
βR3 − 3βR1

2q

)
, (A2)

whereas another two equations are obtained for six nonuni-
form configurations with one Ising spin pointing in opposite
with respect to the other, i.e., for three Ising spin configura-
tions of type ↑↑↓,

V3 = 2 exp

(
3

4
βJH

)
cosh

[
β

2
(JI + 3hH)

]

+ 2 exp

(
−3

4
βJH

)
cosh

[
β

2
(JI + hH)

]

+ 2 exp

(
βhH

2

)
cosh

(
1

2
βQ+

)

+ 2 exp

(
−βhH

2

)
cosh

(
1

2
βQ−

)

= A exp

(
−βR2

4
− 1

8
βR3 + βR1

2q

)
, (A3)

and three Ising spin configurations of type ↑↓↓,

V4 = 2 exp

(
3

4
βJH

)
cosh

[
β

2
(JI − 3hH)

]

+ 2 exp

(
−3

4
βJH

)
cosh

[
β

2
(JI − hH)

]

+ 2 exp

(
βhH

2

)
cosh

(
1

2
βQ−

)

+ 2 exp

(
−βhH

2

)
cosh

(
1

2
βQ+

)

= A exp

(
−βR2

4
+ 1

8
βR3 − βR1

2q

)
. (A4)

The Boltzmann weights (A3) and (A4) are expressed in terms
of the parameters Q± defined as follows:

Q± =
√(

JH

2
± JI

)2

+ 2J2
H. (A5)
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APPENDIX B: THE FUNCTIONS FOR CALCULATION
OF HEISENBERG MAGNETIZATION

The functions W1, W2, W3, and W4 entering into Eq. (17) are calculated as follows:

W1 = 3 exp

(
3

4
βJH

)
sinh

[
3

2
β(JI + hH)

]
+ exp

(
3

4
βJH

)
sinh

[
β

2
(JI + hH)

]
+ 2 exp

(
−3

4
βJH

)
sinh

[
β

2
(JI + hH)

]
,

(B1)

W2 = −3 exp

(
3

4
βJH

)
sinh

[
3

2
β(JI − hH)

]
− exp

(
3

4
βJH

)
sinh

[
β

2
(JI − hH)

]
− 2 exp

(
−3

4
βJH

)
sinh

[
β

2
(JI − hH)

]
,

(B2)

W3 = 3 exp

(
3

4
βJH

)
sinh

[
β

2
(JI + 3hH)

]
+ exp

(
−3

4
βJH

)
sinh

[
β

2
(JI + hH)

]
+ exp

(
βhH

2

)
cosh

(
1

2
βQ+

)

− exp

(
−βhH

2

)
cosh

(
1

2
βQ−

)
, (B3)

W4 = −3 exp

(
3

4
βJH

)
sinh

[
β

2
(JI − 3hH)

]
− exp

(
−3

4
βJH

)
sinh

[
β

2
(JI − hH)

]
+ exp

(
βhH

2

)
cosh

(
1

2
βQ−

)

− exp

(
−βhH

2

)
cosh

(
1

2
βQ+

)
. (B4)

The parameters ω, v, y, and z are given as follows:

ω = exp
(
2βR1 + βR2 + βR3

4

) − exp
(

βR3

4

)
x2q−2

exp
(
2βR1 + βR2 + βR3

4

) + 2 exp(βR1)xq−1 + exp
(

βR3

4

)
x2q−2

, (B5)

v = exp(2βR1) − exp(βR2)x2q−2

exp
(
2βR1 + βR2 + βR3

4

) + 2 exp(βR1)xq−1 + exp
(

βR3

4

)
x2q−2

, (B6)

y = exp
(
2βR1 + βR2 + βR3

4

) − 2 exp(βR1)xq−1 + exp
(

βR3

4

)
x2q−2

exp
(
2βR1 + βR2 + βR3

4

) + 2 exp(βR1)xq−1 + exp
(

βR3

4

)
x2q−2

, (B7)

z = exp(2βR1) − 2 exp
(
βR1 + βR3

4

)
xq−1 + exp(βR2)x2q−2

exp
(
2βR1 + βR2 + βR3

4

) + 2 exp(βR1)xq−1 + exp
(

βR3

4

)
x2q−2

. (B8)
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[26] E. Jurčišinová and M. Jurčišin, J. Stat. Phys. 147, 1077 (2012).
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[50] J. Čisárová and J. Strečka, Phys. Rev. B 87, 024421 (2013).
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87, 054419 (2013).
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