
PHYSICAL REVIEW E 102, 012131 (2020)

Percolation of Fortuin-Kasteleyn clusters for the random-bond Ising model
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We apply generalizations of the Swendson-Wang and Wolff cluster algorithms, which are based on the
construction of Fortuin-Kasteleyn clusters, to the three-dimensional ±1 random-bond Ising model. The behavior
of the model is determined by the temperature T and the concentration p of negative (antiferromagnetic) bonds.
The ground state is ferromagnetic for 0 � p < pc, and a spin glass for pc < p � 0.5 where pc � 0.222. We
investigate the percolation transition of the Fortuin-Kasteleyn clusters as a function of temperature for large
system sizes up to N = 2003 spins. Except for p = 0 the Fortuin-Kasteleyn percolation transition occurs at a
higher temperature than the magnetic ordering temperature. This was known before for p = 1

2 but here we pro-
vide evidence for a difference in transition temperatures even for p arbitrarily small. Furthermore, for all values
of p > 0, our data suggest that the percolation transition is universal, irrespective of whether the ground state
exhibits ferromagnetic or spin-glass order, and is in the universality class of standard percolation. This shows
that correlations in the bond occupancy of the Fortuin-Kasteleyn clusters are irrelevant, except for p = 0 where
the clusters are strictly tied to Ising correlations so the percolation transition is in the Ising universality class.
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I. INTRODUCTION

Magnetic systems with quenched disorder, such as spin
glasses (SGs) [1–4] and random-field systems, exhibit
phase transitions between low-temperature-ordered and high-
temperature-disordered (paramagnetic) phases in high enough
dimensions. This is similar to the case of pure systems like
ferromagnets [5] but spin glasses in particular exhibit a much
richer behavior and many aspects of the low-temperature
phase are still not well understood. Since most disordered
models cannot be solved analytically, one has to resort to com-
puter simulations [6]. For the special case of zero temperature,
there are often efficient algorithms [7]. However, for systems
coupled to a heat bath at finite temperature, Monte Carlo
simulations [8,9] are generally used. For the pure Ising model,
efficient cluster Monte Carlo (MC) approaches exist [10,11],
which are based on the construction of Fortuin-Kasteleyn
(FK) [12] clusters of spins. This gives fast equilibration even
close to the phase transition point. The reason is that the FK
clusters percolate [13] precisely at the phase transition [14].

It is also possible to implement cluster MC algorithms
like the Wolff algorithm for spin glasses, but unfortunately
these are not efficient because, in the vicinity of the spin-glass
phase transition, each update flips almost all the spins [15].
The reason is that percolation of the FK clusters happens at
a much higher temperature than the magnetic-ordering phase
transition temperature [16]. Other approaches for cluster algo-
rithms for spin glasses have been tried [17–21]. Nevertheless,
the largest system treated in the most recent application [21]
exhibits just N = 123 spins. Hence, so far, no algorithm turned
out to be efficient enough to equilibrate three-dimensional
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standard spin glasses and related models of considerable
size. Nevertheless, single-spin-flip algorithms are still used
for studying spin glasses numerically. Some improvement is
obtained by using parallel tempering [22,23], and by running
parallel tempering on a special-purpose high-performance
computer “JANUS” [24]. By this combination it has been
possible to simulate an N = 483 spin–glass model near the
transition temperature.

When just concentrating on the percolation properties, spin
glasses have been investigated also with respect to other types
of clusters, such as the two-replica FK (TRFK) approach
[25] and Chayes-Machta-Redner (CMR) clusters [26,27]. For
these two types of clusters, percolation transitions have been
found [28] by simulating and analyzing three-dimensional
spin glasses in equilibrium up to size N = 123. For the CMR
clusters, the transition seems to be very close to that of the
standard FK clusters. For the TFRK clusters, the transition
appears at much lower temperatures, but still well above Tc.

In order to obtain a better understanding of the nature of
standard FK clusters and their percolation transitions, as well
as algorithmic efficiency, we study here the ±1 random-bond
Ising model [29], which is a particular case of the standard
spin glass. It consists of N Ising spins σi = ±1 placed on a
d-dimensional hypercubic lattice of linear size L, i.e., N = Ld .
The Hamiltonian is given by

H = −
∑

〈i, j〉
Ji jσiσ j . (1)

Each spin i interacts with its nearest neighbors j via an
interaction which is a quenched random variable Ji j . Here, we
use a bimodal distribution so each bond is anti-ferromagnetic
(Ji j = −1) with probability p and ferromagnetic (Ji j = +1)
with probability 1 − p. As usual for quenched disorder, the
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FIG. 1. Phase diagram showing the line of percolation transitions
of the FK clusters, and the lines of phase transitions between fer-
romagnetic (FM), paramagnetic (PM), and spin-glass (SG) phases.
Lines are guides for the eyes only. The data for the ferromag-
netic transition temperature Tc(p), shown as filled circles, are from
Ref. [31], the data for the spin-glass transition temperature TSG,
shown as filled triangles, are from Ref. [30], and the value pc(T =
0) where the spin glass and ferromagnetic phases meet at T = 0,
shown as open diamond symbol, is from Ref. [32]. The data for the
percolation transition temperature TFK(p), shown as plus symbols,
are from this work.

result of any measurement will depend on the realization of
the disorder, so one has to perform an average over many real-
izations of disorder in addition to doing the thermal average.

We consider here the case of a simple cubic lattice for
which the low-temperature phase is ferromagnetic for a small
concentration (p) of antiferromagnetic bonds and a spin glass
for a larger concentration. We denote the paramagnet to fer-
romagnet transition temperature by Tc(p) and the paramagnet
to spin-glass transition by TSG(p). The phase diagram in the
p-T plane has been determined by Monte Carlo simulations
[30,31] (see Fig. 1). For T = 0 the transition point between
the ferromagnetic and spin-glass phases was found [32] to be
approximately pc = 0.222(5).

In this study, we investigate the behavior of FK clusters
and, related to this, the performance of the Wolff algorithm,
in the p-T plane. We are interested only in the vicinity of
the percolation transition of FK clusters, where the Wolff
algorithm is efficient and so we can equilibrate large system
sizes up to N = 2003 spins. We know that for the pure (p = 0)
ferromagnet, the FK percolation transition coincides with the
ferromagnet-paramagnet transition, and here we investigate
whether this is true for any other values of p. Results of some
test simulations performed previously [31] suggest this is not
the case, at least for some values of p in the ferromagnetic
regime. One still needs to investigate whether the Wolff
algorithm performs much better than parallel tempering in the
region of the spin-glass phase close to the ferromagnetic phase
because the fraction 1 − cp = 1 − 4[p3(1 − p) + p(1 − p)3]
of nonfrustrated plaques [33] is smaller than 1

2 , which might
allow for the existence of large connected clusters of nonfrus-
trated plaquettes, where the Wolff algorithm could operate

successfully. In addition to the performance of the Wolff
algorithm, our main interest in this work is to investigate how
the FK percolation transition changes as a function of p.

We present an extensive study of the FK percolation tran-
sition in the full range of interest 0 � p � 1

2 , finding that
this transition happens above the phase transition line for all
p > 0. Only for the pure ferromagnet, p = 0, does it coincide
with the FM-PM transition. In addition, the critical exponents
seem to be those of the (uncorrelated) percolation problem
everywhere along the FK transition percolation transition line,
including both the ferromagnetic and spin-glass regions (see
Fig. 1). The only exception is for p precisely equal to 0, the
pure ferromagnet, for which the critical exponents are those of
the Ising model. Finally, our result indicates that in the spin-
glass region close to pc the Wolff algorithm does not perform
notably better than for the standard (p = 1

2 ) spin-glass case.
Our paper is organized as follows. In Sec. II, we review the

algorithms we used. Next, in Sec. III, we present our results,
and finally in Sec. IV we give a summary and discussion.

II. METHODS

To study the FK percolation transition and to investigate
the efficiency of the Wolff algorithm we construct FK clusters
at each step as follows:

(i) Bonds where Ji, jσiσ j > 0 are said to be satisfied, and
we activate them with probability pact = 1 − e−2β|Ji j |. Unsat-
isfied bonds are never activated.

(ii) We determine all clusters of spins connected by acti-
vated bonds, as in bond percolation.

A cluster is said to be wrapping or percolating if it spans
the lattice between the periodic boundaries and so is con-
nected back to itself. For each step, we record whether a clus-
ter is wrapping (this is typically the largest one), and we also
monitor the sizes of all clusters to investigate the distribution
of cluster sizes. Finally, we generate the next configuration
according the Wolff algorithm by selecting a spin at random
and flipping the spins (with “acceptance probability” one) in
the cluster which contains it.

Averages are done both over the spin configurations for a
given realization and a disorder average over a large number
of different realizations; we typically considered 1000 realiza-
tions. The quantities that we measure are as follows:

(1) The average wrapping probability pwrap.
(2) The fraction of sites in the largest cluster P.
(3) The number ns of clusters of size s.
(4) The average size S of the clusters excluding the largest

one (this would be the percolating cluster in the percolating
phase). The average is done with respect to all sites, i.e., S =∑

s s2ns/
∑

s sns.
(5) The average size of the flipped clusters nWolff .
(6) The average size 〈s〉 of a cluster with a radius R.
For high temperatures the activation probability pact is

small, leading to many small clusters which do not wrap.
On the other hand, for low temperatures, pact will be large
leading to few clusters and typically one big wrapping cluster.
Thus, in-between, there exists a percolation transition of the
FK clusters at some temperature TFK, such that, in the ther-
modynamic limit, N → ∞, one finds pwrap → 0 for T > TFK

and pwrap → 1 for T < TFK.
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We analyze our data using finite-size scaling (FSS), as is
standard in percolation transitions [13]. According to FSS, at
a second-order percolation transition near the critical point,
the wrapping probability should exhibit a scaling behavior

pwrap(L, T ) = fwrap((T − TFK )L1/ν ), (2)

where ν is the critical exponent which describes the diver-
gence of the correlation length of the FK clusters. Thus, the
parameters TFK and ν can be determined by varying them until
the data for different system sizes collapse on to the same
universal curve fwrap(x̃).

Furthermore, in the percolating phase, the fraction of sites
in the largest (i.e., percolating) cluster in an infinite system
goes to zero like P ∼ (TFK − T )β as T approaches TFK from
below. For a finite system, this becomes, according to FSS,

P(L, T ) = L−β/ν fP((T − TFK )L1/ν ), (3)

allowing us to obtain the critical exponent β. The average
cluster size behaves in a similar way, as described by the
finite-size scaling relation

S(L, T ) = Lγ /ν fS ((T − TFK )L1/ν ), (4)

where γ is the exponent describing the divergence of the
average cluster size of an infinite system S ∼ (T − TFK )−γ .
Note that in computing S we neglect the largest cluster, so
S has a maximum near the percolation transition because in
the nonpercolating phase there are only many small clusters,
while in the percolating phase most sites belong to the perco-
lating cluster which is neglected. Thus, the scaling function
fS exhibits a peak at some value xpeak, corresponding to a
temperature Tpeak = TFK + xpeakL−1/ν , which means that the
height of S� at the peak scales with a power law

S� ∼ Lγ /ν, (5)

allowing us to obtain the critical exponent γ .
Also, the distribution ns of cluster sizes has similar behav-

ior when considering how it changes near the critical point.
The only difference is that it is not the system size, but rather
the cluster size, which enters explicitly:

ns(s, T ) = s−τ fn((T − TFK )sσ ), (6)

defining the critical exponents τ and σ . That means that the
distribution ns of cluster sizes at the critical point TFK, for an
infinite system but approximately also for a finite system, is
expected to follow a power law

ns(TFK ) ∼ s−τ . (7)

Finally, all nonpercolating clusters have a fractal structure:
the cluster size s scales with the cluster radius R with

s ∼ Rd f , (8)

where d f is the fractal dimension, and the cluster radius R is
defined as

R2
s =

s∑

i=1

|�ri − �rc|2
s

. (9)

Here, �rc is the center of mass of the cluster that is calculated,
to cope with the periodic boundary conditions, by mapping

every coordinate onto a circle [34], calculating the center of
mass of this circle, and mapping the result back.

The critical exponents are not independent of each other.
Instead, they are connected through scaling relations, such
that there are only two independent exponents. The scaling
relations for the standard percolation problem are often ex-
pressed [13] as

τ = d

d f
+ 1, γ = 3 − τ

σ
, β = ν(d − d f ). (10)

We will verify that our computed values for ν, τ, γ , d f , σ ,
and β obey these relations.

III. RESULTS

We performed simulations for various values of p ∈
[0, 0.5]. For each value of p we treated different system
sizes L ∈ [10, 100], and for a few values of p we also did
simulations for L = 200 (see below). All results are disorder
averages over typically 1000 realizations, with the exception
of some cases where a few runs were not completed on our
cluster due to technical reasons (there were always more than
960 realizations).

For each realization we performed Monte Carlo simula-
tions using the Wolff algorithm for 72 temperatures equally
spaced in [3.615,4.68], i.e., with spacing �T = 0.015. For
the selected cases of p = 0.1, 0.3, and 0.5 (and also for p = 0
as a comparison with other work and a check on our code),
we studied 20 additional temperatures spaced by �T = 0.003
very close to TFK, in order to determine the critical properties
precisely.

To check for equilibration we averaged over intervals
[t/2, t] for a logarithmically increasing set of times t , and
required that there is no systematic trend for the last several
values of t . Typically, near the FK percolation transition which
is the region we are interested in, equilibration is achieved
within a few Wolff cluster steps. Note that near the percolation
transition typically large clusters are flipped, thus, one or
few Wolff cluster steps correspond roughly to one sweep
of a traditional single-spin-flip algorithm. For small systems
L � 30, we perform 2 × 105 Wolff steps per realization, while
for the larger systems, which run slower but still need only a
few steps to equilibrate, we do 5 × 103 steps.

To determine the position of the FK percolation transitions,
we monitor the wrapping probability of the FK clusters. An
example is shown for p = 0.1 in the inset of Fig. 2. A clear
decrease of the wrapping probability beyond T ≈ 4 is visible.
We performed a data collapse according to Eq. (2) near the
phase transition point, as shown in the main plot of Fig. 2, to
determine TFK and the critical exponent ν of the correlation
length, resulting in TFK = 4.060(3) and ν = 0.9(1). The best-
fit parameters were determined from the method discussed in
the Appendix of Ref. [35] and in Ref. [36]. Note that to avoid
a strong influence of finize-size corrections we did not use all
available data for the collapse, but restricted ourself to system
sizes L > 20 and the vicinity (T − TFK )L1/ν ) ∈ [−2.125, 0.5]
of the phase transition. This small fitting range was necessary
to reproduce very accurately the literature value for the p = 0
pure ferromagnetic case, even though the data collapse is
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FIG. 2. Wrapping probability as function of temperature T for
p = 0.1, for various system sizes L. The inset shows the raw data,
while in the main plot a data collapse to determine TFK and ν gives
1/ν = 1.1(1) and TFK = 4.060(3).

visually very good for a much larger range. See also the
discussion of systematic errors below.

In a similar way, we analyzed the data for other values
of p. The resulting values of TFK as a function of p are
shown in the phase diagram in Fig. 1, along with the values
for the FM-PM and SG-PM phase transitions obtained from
the literature [30,31], and the critical concentration pc for
the zero-temperature FM-SG transition [32]. Interestingly, the
FK percolation transition seems to coincide with magnetic-
ordering transition only for the pure ferromagnetic system
(p = 0). For all other values of p, Tc < TFK even close to the
pure ferromagnet. Hence, even if the ground state is ferromag-
netic, i.e., for 0 < p < pc, the FM-PM phase transition cannot
be understood as a percolation transition of the FK clusters.

The resulting values of ν as a function of p are shown
in Fig. 3. For p = 0, we recover the literature value for the
pure Ising ferromagnet [37], but with larger error bars (which
is natural, because our main numerical effort goes into the
necessary disorder average and considering several values of
p). For all other values of p, including both ferromagnetic
and spin-glass regions, we find that ν is compatible with
the previously found [16] value of ν = 0.88(5). Note that a
majority of values we found are systematically a bit larger
than the literature value. By extending the collapse interval
(on the T axis) beyond the range [−2.125, 0.5], we observe
for almost all values of p a systematic upshift by about 0.02,
i.e., an even stronger deviation. Thus, by going to larger
sizes or including corrections to scaling into the data-collapse
approach, we would arrive at more precise results. Never-
theless, since the focus of our work is the general study of
the model along the p axis, not the determination of precise
exponent values (which would require much more than the
already large computational effort), we do not go into details
here. Anyway, our results are also compatible with the value
[38] for the standard percolation problem, in which there are
no correlations between the occupancies of the bonds. By
contrast, in FK clusters there are correlations for all p but
interestingly they do not seem to affect the critical behavior,
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FIG. 3. The critical exponent ν as a function of p. The value of
ν for p = 0 is from Ref. [37] and the value for p = 0.5 indicated by
a triangle is from Ref. [16]. Note that for the case p = 0.02 the error
bar is very small. The reason is that within the fitting window (see
text) there are very few data points for this value of p, which leads to
close to overfitting. We could use smaller sizes here, which increases
the error bar, but we prefer to use the same fitting conditions for all
values of p.

except for p = 0 where the bond occupancies are rigorously
constrained to follow Ising correlations.

To investigate universality more carefully we have eval-
uated the other critical exponents with additional data near
TFK for the values p = 0 (for a consistency check), p = 0.1 (a
ferromagnetic case), p = 0.3, and p = 0.5 (SG cases; for the
latter value the critical behavior of the FK percolation clusters
is already partially known [16]).
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FIG. 4. The fraction of sites in the infinite cluster P as a function
of the temperature T in the vicinity of TFK, for p = 0.3 and various
system sizes L. The inset shows the raw data, while the main plot
shows the data rescaled according to Eq. (3), with best-fitting values
β = 0.413(9), ν = 0.87(2), and TFK = 3.938 58(7). Note that these
values are not the same as those in Table I because the values
shown here are specific-case results, while the table shows final
estimates arising from summarizing different approaches, including
an estimate of systematic errors.
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TABLE I. Best estimates for the critical temperatures TFK and critical exponents ν, τ , γ , and β. The numbers in parentheses denote the
error bars in the last digit. Also shown are the values for τ , γ , and β obtained by inserting the values for ν, df , τ , and σ into the scaling
relations in Eq. (10).

p TFK ν τ γ β σ df τ = d
d f

+ 1 γ = 3−τ

σ
β = ν(d − df )

0.0 4.5112(5) 0.65(2) 2.20(4) 1.2(1) 0.313(5) 0.69(1) 2.49(6) 2.20(3) 1.16(8) 0.33(5)
0.1 4.0584(3) 0.871(6) 2.189(5) 1.75(5) 0.417(1) 0.41(1) 2.52(4) 2.19(2) 1.98(6) 0.42(4)
0.3 3.9386(5) 0.87(2) 2.199(5) 1.7(1) 0.413(9) 0.44(2) 2.52(4) 2.19(2) 1.82(9) 0.42(5)
0.5 3.934(3) 0.87(3) 2.20(2) 1.7(1) 0.41(1) 0.43(1) 2.53(3) 2.19(1) 1.87(9) 0.41(4)

For the fraction of sites in the infinite cluster (the order
parameter), we show data for p = 0.3 in Fig. 4. From a finite-
size scaling collapse of the data we obtain the best-fitting pa-
rameters β = 0.413(9), ν = 0.87(2), and TFK = 3.938 58(7).
The errors were determined such that they take the correla-
tions between the different estimates into account. Following
Refs. [39,40], we determined the covariance matrix between
the estimates of β, ν, and TFK by bootstrapping. This means
we generate bootstrap samples of the original data and (auto-
matically) perform the data collapse on each bootstrap sample.
Typically, we generate 100 bootstrap samples and so get 100
different estimates, from which the covariance matrix can be
determined. The resulting covariance matrices, for four values
of p, are shown in Table II in the Appendix. After inversion
of the covariance matrix, the error can be obtained from its
entries and suitable normalization [39].

The bootstrap approach only gives the statistical errors.
In order to estimate the systematic errors, we reduced the
interval (on the T axis) where the data collapse is performed
by a factor of 0.5 and obtain another set of estimates for the
critical exponents. The difference between the estimates for
the original collapse interval and the reduced one gives us
a hint on the magntitude of systematic error contributions,
which turned out to be significantly larger than the statistical
error bars. The combination of systematic and statistic errors
leads to σ (β ) = 9 × 10−3, σ (ν) = 2 × 10−2, and σ (TFK ) =
5 × 10−4 (p = 0.3) The result for this and the other inten-
sively studied cases are shown in Table I. Note that for
TFK and ν, we have two independent estimates available,
the other estimate coming from the percolation probability
(see, e.g., Fig. 2). They are here assumed to be uncorrelated
since they were obtained using independent simulations for
different realizations of the disorder. For these two quantities
we obtain the final estimates by using a weighted average
(x = ∑

i aixi/
∑

j a j ; x = TFK and x = ν) with ai = 1
σ (xi )2 as

weights. The error of the combined value is then calculated
using σ 2(x) = (

∑
i

1
σ 2(x̂i )

)
−1

.
In addition to the order parameter, we have also analyzed

the data for the average cluster size S. As example, we
show the result for p = 0.1 and size L = 50 as a function of
temperature T in Fig. 5. The data exhibit a peak at some point
(T �, S�). One can read off the critical exponent γ from the
Lγ /ν scaling [see Eq. (5)] of the peak height as a function of L.
The data are shown in the inset of Fig. 5, the fit to the power-
law results in γ /ν = 2.005(4). We estimated the systematic
contributions to the error bar by varying the fitting range a
bit (excluding the smallest and the largest sizes, respectively),
resulting in a larger error bar of 0.04. The final results for γ ,

also for other values of p which have been studied in detail,
are shown in Table I. Again, we observe that for p > 0 the
results agree with each other.

To obtain the critical exponent τ , we analyze the distribu-
tion of cluster sizes, excluding the largest cluster, at the critical
point for a rather large system size L = 200. As an example,
we present our results for p = 0.3 in Fig. 6. The data exhibit
a high quality which allows us to observe a power law over
about 10 decades in probability. A power-law fit according
to Eq. (7) gives τ = 2.199(5). This value, and the results for
the three other selected cases, are also shown in Table I. The
results we have found for all values of p > 0 are compatible
with the values for standard percolation in three dimensions.

To further verify the critical exponent σ , we also deter-
mined the distribution of cluster sizes away from the critical
temperature, and the data for p = 0.3 is shown in Fig. 7 for
L = 150. Since the automatic fitting program did not converge
well, we did the data-collapse analysis visually, obtaining
σ = 0.44(2). For τ and TFK, we used the values found in the
earlier analysis which are given in Table I.

Another critical exponent that we obtained is the fractal
dimension d f . Here, we looked at the average cluster size 〈s〉
as a function of the radius R of the cluster. Figure 8 shows an
example of such a dependency for p = 0.1. It is clear that data
grow like a power law, except for big values of R where the
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size of the system limits the size of the clusters. From fitting
to the power law (8) we obtained an exponent d f = 2.52(4),
where the error bar includes also an estimate of the systematic
error, obtained by varying the fitting range.

The exponents should obey the scaling relations in
Eq. (10). The values obtained when inserting the measured
values for ν, d f , σ , and τ from Table I to estimate τ , γ ,
and β from the scaling relations are shown in the last three
columns in Table I. Almost all these values are compatible
with the directly measured values within error bars. Only for
the case p = 0.1, does our estimate for γ differ from that
obtained from scaling relation by more than two σ . Since this
will happen in about 5% of all cases in Gaussian statistics, we
consider this one small outlier as being reasonable. Apart from
one case where they are almost equal, the error bars from the
scaling relations are larger than the error bars of the directly
measured exponents due to error propagation.
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FIG. 7. Cluster size distribution at p = 0.3 with a system size of
N = 1503 at different temperatures. Except for the last temperature,
which is above but close to TFK, all the temperature values are smaller
than TFK. The inset shows the raw data, while the main plot shows
rescaling according to Eq. (6).
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FIG. 8. The average cluster sizes 〈s〉 as a function of the cluster
radius R for p = 0.1. The line shows a fit to Eq. (8), resulting in an
exponent df = 2.52(4), where the error bar includes also an estimate
of the systematic error, obtained by varying the fitting range.

Finally, we consider the question of whether the Wolff
algorithm might be more efficient in the spin-glass phase near
the FM-SG transition, i.e., for p just slightly greater than
pc, rather than for p = 1

2 . In Fig. 9 we show the average
“effective” size of the flipped cluster as a function of the
temperature T for p = 0.25 (>pc). By “effective” we mean
that if the cluster of flipped spins is larger than half of the
system size, then we take the number of spins which are not
flipped. We see that the clusters which are flipped near the SG
phase transition are very small. One could already expect this
from the phase diagram in Fig. 1, which shows that, for p =
0.25 the FK percolation transition is considerably above the
critical temperature TSG. Thus, applying the Wolff algorithm
in the spin-glass phase but near the spin-glass-ferromagnet
phase boundary will not lead to any improvement over the
approach of parallel tempering, just as for the standard spin-
glass model which has p = 0.5.
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FIG. 9. Average size of the clusters flipped (or not flipped if this
is smaller) by the Wolff algorithm as a function of temperature T for
L = 10 and p = 0.25.
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IV. SUMMARY

We have studied the percolation transitions of Fortuin-
Kasteleyn clusters for the three-dimensional random-bond
Ising model. Near the cluster percolation transition the Wolff
algorithm can be used to efficiently sample equilibrium con-
figurations. However, except for the pure Ising case (p = 0),
the temperature of the percolation transition is higher than that
of the ferromagnet-paramagnet and spin-glass-paramagnet
transitions, and for most values of p it is much higher (see
Fig. 1). This renders the Wolff algorithm inefficient for the
magnetic transitions except for p = 0. Indications of this
behavior were already found in some test simulations of a
previous study [31], where, for the FM-PM phase boundary
at one value of p > 0, cluster algorithms were tried but turned
out to be inefficient.

We have determined the critical exponents at the FK cluster
percolation transition. For p = 0, the pure Ising case, we
obtain the known values, which are those of the Ising model
since the FK clusters are controlled by Ising correlations in
this limit. For all other values 0 < p � 1

2 , our results are com-
patible with the universal behavior of standard percolation,
irrespective of whether the ground state exhibits ferromag-
netic or spin-glass order. Since standard percolation has no
correlations between the occupancy of the bonds, whereas
bonds in the FK clusters are correlated, this implies that
the correlations are irrelevant for universal properties, and so
presumably are of short range for p > 0.

For future studies, it would be interesting to investigate
other types of cluster algorithms [17,20,21] for the three-
dimensional random-bond Ising model. So far, from the lit-
erature studies known to us, none of them turned out to be
efficient enough to study the pure spin-glass case (p = 1

2 )
for large enough systems, but it could be that some will
work well close to the FM-SG phase boundary or at least for
ferromagnetic ordering of the random (p > 0) case.

Finally, we feel it would be worthwhile to study the per-
colation properties of clusters constructed in a different way,
for example, the two-replica cluster approach of by Machta,
Newman, and Stein [28]. For the two variants of their model
applied to the pure spin-glass case (p = 0.5), they found the
percolation transition to be slightly below, in the first case,
and significantly below, in the second case, the percolation
transition of the FK clusters, but still above Tc.

TABLE II. The covariance matrices for the data collapse for the
fraction of sites in the infinite cluster as function of temperature. The
matrices were obtained by bootstrapping (see the main text).

p = 0 Tc
1
ν

β

ν

Tc 2.92 × 108 3.62 × 106 1.92 × 106

1
ν

3.62 × 106 1.60 × 103 5.24 × 104

β

ν
1.92 × 106 5.24 × 104 1.97 × 104

p = 0.1 Tc
1
ν

β

ν

Tc 4.87 × 109 2.16 × 108 6.20 × 108

1
ν

2.16 × 108 7.93 × 107 4.06 × 107

β

ν
6.20 × 108 4.06 × 107 8.69 × 107

p = 0.3 Tc
1
ν

β

ν

Tc 1.66 × 109 −3.71 × 109 1.42 × 108

1
ν

−3.71 × 109 2.48 × 106 2.65 × 107

β

ν
1.42 × 108 2.65 × 107 1.73 × 107

p = 0.5 Tc
1
ν

β

ν

Tc 9.25 × 108 4.59 × 106 1.19 × 106

1
ν

4.59 × 106 2.70 × 104 6.48 × 105

β

ν
1.19 × 106 6.48 × 105 1.60 × 105
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APPENDIX: COVARIANCE MATRIX

The covariance matrix between the estimates of Tc, 1/ν,
and β/ν, obtained by performing the data collapse for around
100 bootstrap samples, is shown in Table II, for p = 0, 0.1,
0.3, and 0.5.
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