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Discrete Manhattan and Chebyshev pair correlation functions in k dimensions
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Pair correlation functions provide a summary statistic which quantifies the amount of spatial correlation
between objects in a spatial domain. While pair correlation functions are commonly used to quantify continuous-
space point processes, the on-lattice discrete case is less studied. Recent work has brought attention to the discrete
case, wherein on-lattice pair correlation functions are formed by normalizing empirical pair distances against the
probability distribution of random pair distances in a lattice with Manhattan and Chebyshev metrics. These
distance distributions are typically derived on an ad hoc basis as required for specific applications. Here we
present a generalized approach to deriving the probability distributions of pair distances in a lattice with discrete
Manhattan and Chebyshev metrics, extending the Manhattan and Chebyshev pair correlation functions to lattices
in k dimensions. We also quantify the variability of the Manhattan and Chebyshev pair correlation functions,
which is important to understanding the reliability and confidence of the statistic.
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I. INTRODUCTION

Many biological and physical processes exhibit spatial
patterning through the aggregation and segregation of objects
or agents in a spatial domain. For example, considering cells
as agents, spatial patterning via cell clustering can commonly
be found in cell biology, where cultures of cells are grown in
vitro for cancer research, developmental biology, and tissue
engineering [1–7]. More generally, spatial patterning natu-
rally manifests in pigmentation of animal skins [8], resource
competition in ecology [9–14], and in particle physics and
fluid mixing [15–20]. Quantifying spatial patterning can help
with distinguishing different mechanisms and processes in
physical systems. Therefore, the development and study of
spatial statistics are of great relevance and importance to
our understanding of mechanisms and processes in physical
systems.

Many spatial statistics have been developed to quantify
spatial correlations [9,21–24]. In this work, we restrict our
attention to pair correlation functions [11,25–45]. A pair
correlation function is a summary statistic which measures the
amount of clustering in a spatial domain. More precisely, for a
fixed distance in a spatial domain, a pair correlation function
returns unity if the proportion of distances over all pairs of
agents in a sample is equal to the proportion of distances
which would occur in a system of agents spatially distributed
uniformly at random. Values greater than unity indicate aggre-
gation of agents and values less than unity indicate segregation
of agents. One may think of a pair correlation function simply
as a ratio between an empirical count of a fixed distance
between all pairs of agents in a sample to the expected value of
that distance count if all agents were distributed uniformly at
random. We refer to this expected value as the normalization
factor of the pair correlation function.

*benjamin.binder@adelaide.edu.au

While pair correlation functions are studied extensively
in their applications to spatially continuous point processes
[34,38–40,43–45], their application to spatially discrete ex-
clusion processes is relatively new [27–31]. Discrete pair
correlation functions can be constructed by dividing the em-
pirical count of distances between all pairs of agents in some
on-lattice domain by an appropriate probability distribution
of frequencies of pair distances in a lattice. Such a probability
distribution arises from a choice of metric on the lattice. In
the continuous setting, the most natural metric is the standard
Euclidean metric induced by the �2 norm. However, carrying
this over to the discrete setting presents some difficulties.
As Markham et al. [26] and Gavagnin et al. [30] both point
out, the distances between lattice sites increase irregularly
when using the standard Euclidean metric. Markham et al.
[26] overcome this issue by considering a partial differential
equation representation of a system of ordinary differential
equations governing nearest neighbor correlations, extending
previous work by Baker and Simpson [25]. Gavagnin et al.
[30] shift their focus away from the standard Euclidean metric
since the irregular distance spacing causes the normalization
factors in their approach to be inaccurate, making results hard
to interpret. Gavagnin et al. [30] instead introduce new metrics
whose distances on a lattice are always given in terms of
integers, alleviating the issues of irregular distance spacing.
The two main metrics introduced are the Manhattan (square
taxicab) metric and the Chebyshev (square uniform) metric,
induced by the �1 norm and �∞ norm, respectively. Our work
focuses primarily on these two metrics, which we illustrate
schematically in Fig. 1.

Binder and Simpson [27] first studied the case of one-
dimensional pair correlation functions on a square lattice, and
its application to several different types (e.g., scratch assay,
multicellular aggregation, and evenly distributed single cells)
of processed experimental images. Further developments of
the approach by Binder and Simpson [27] included extension
to periodic boundary conditions [28], as well as using a dis-
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FIG. 1. Schematic of the Manhattan and Chebyshev distance
metric in two dimensions: (a) Manhattan; (b) Chebyshev.

crete spectral analysis of the one-dimensional pair correlation
function to objectively determine the size of the bin width, or
bandwidth, in the analysis of experimental images of highly
proliferative 231 breast cancer cells and highly motile murine
3T3 fibroblast cells [29].

Gavagnin et al. [30] further extended Binder and Simpson’s
[27] one-dimensional discrete pair correlation functions to
Manhattan and Chebyshev distances in two and three dimen-
sions by determining the frequencies of pair distances in a
lattice. They compared the Manhattan and Chebyshev pair
correlation functions with the one-dimensional pair correla-
tion function for three highly regular spatial patterns (diagonal
stripes, checkerboard, and concentric ring patterns). Their
analysis showed that the one-dimensional pair correlation
function was unable to detect the spatial correlation in the
patterns, whereas both the Manhattan and Chebyshev pair
correlation functions successfully detected the nonuniform
spatial correlations. However, while the derivation of their
method is elegant, it does not cover the full range of distances
possible under these metrics. In particular, their analytic for-
mulas for a X × Y square lattice are valid only for distances
s � min{X,Y } under nonperiodic boundary conditions and
s � min{�X/2�, �Y/2�} under periodic boundary conditions.
In the best case scenario where X = Y , this is only half
the domain of valid distances under the Manhattan metric.
Therefore, while the work of Gavagnin et al. [30] can analyze
distances at short to moderate length scales, it cannot be ap-
plied to long length scales. Recently, the remaining part of the
two-dimensional nonperiodic Manhattan distance distribution
has been obtained by Johnston and Crampin [31]. However,
the remaining part of the periodic cases for both Manhattan
and Chebyshev distances, as well as the nonperiodic Cheby-
shev case, have not yet been derived.

We extend the work of Gavagnin et al. [30] and Johnston
and Crampin [31] by presenting an alternative method of
obtaining the discrete Manhattan and Chebyshev distance
distributions. In particular, we provide analytic formulas for
the remaining portions of the two-dimensional distance distri-
bution for the periodic Manhattan distribution, and both pe-
riodic and nonperiodic Chebyshev distributions. Moreover, in
this work we derive explicit formulas for computing discrete
Manhattan and Chebyshev distance distributions (periodic and
nonperiodic), valid over the whole domain of any square lat-
tice and also generalizable to k-dimensional lattices. We also

examine the variability of the pair correlation functions over
their domain of distances, which is important to establishing
the reliability and confidence of the statistic. Hence variability
analysis, which has thus far been neglected, is critical when
using pair correlation functions in physical applications.

II. PAIR CORRELATION FUNCTIONS

In this section we consider an approach to obtaining the
normalization factors used in the Manhattan and Chebyshev
pair correlation functions, obtaining explicit formulas in two
dimensions. For the case of the two-dimensional square lat-
tice, Gavagnin et al. [30] and Johnston and Crampin [31]
both used geometric approaches to determine the total number
of pair distances between unoccupied sites in the lattice,
providing the normalization factor for the pair correlation
function. We will instead use a probabilistic approach which
can be used for straightforward numerical calculations of the
Manhattan and Chebyshev normalization factors in k dimen-
sions, or as a means for deriving explicit closed-form formulas
of those normalization factors if desired.

We first define the k-dimensional discrete pair correla-
tion function, which generalizes the two-dimensional pair
correlation function used in the previous works of Binder
and Simpson [27], Gavagnin et al. [30], and Johnston and
Crampin [31]. Consider a system of agents in a k-dimensional
v1 × · · · × vk integer lattice of points x = (x1, . . . , xk ) with
unit spacing and 1 � xi � vi. We refer to such a lattice as a vk

lattice, denoted Lvk , where vk = (v1, . . . , vk ) is the vector of
lattice dimensions. The lattice is equipped with the exclusion
property such that a site may be occupied by at most one agent
at any given time. Locations of agents in the system can be
denoted by the k-dimensional occupancy array λ = (λx)x∈Lvk

with entries

λx =
{

1, if x is occupied,
0, if x is vacant.

The number of agents in the system is

N =
vk∑

xk=1

· · ·
v1∑

x1=1

λx �
k∏

i=1

vi.

Our main interest is the frequency of pair distances between
distinct points a = (a1, . . . , ak ) and b = (b1, . . . , bk ) in the vk

lattice Lvk . For some given distance function D(a, b), we can
consider the set

Fλ(s) = {(a, b) ∈ Lvk × Lvk | D(a, b) = s,

λa = λb = 1, a �= b}
of pairs of distinct points which are separated by distance s
in the vk lattice Lvk . The frequency of pair distances s is then
given by the cardinality

fλ(s) = |Fλ(s)|. (1)

To construct a pair correlation function, we require the func-
tion d (s) which gives the count of pair distances in a com-
pletely filled lattice. More precisely, if λ ≡ 1, by which we
mean λx = 1 for all x ∈ Lvk , then we define

d (s) = fλ≡1(s). (2)
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Alternatively, one may regard d (s) as the number of sites in
the lattice Lvk separated by distance s, without consideration
of whether the sites are occupied or unoccupied. In a com-
pletely filled lattice, we have fλ(s)/d (s) = 1. For a vk lattice
that is not fully occupied, we will not have fλ(s)/d (s) = 1,
even when agents are uniformly distributed in the lattice.
To adjust for this, if the lattice contains agents distributed
uniformly at random, then the expected number of agents in
the lattice separated by distance s should be the number of
sites d (s) separated by distance s scaled by the probability
that any choice of two such sites are actually occupied. Hence
we scale d (s) by

ρ2 = N∏k
i=1 vk

N − 1( ∏k
i=1 vk

) − 1
, (3)

the probability of selecting two agents at random from the
lattice without replacement [27]. We then define the pair
correlation function by

P(s) = fλ(s)

ρ2d (s)
. (4)

In practice, the value fλ(s) is obtained from the data and ρ2 is
dependent on the lattice. The only unknown quantity in (4)
is d (s). In the proceeding subsections, we derive formulas
for d (s) for the discrete Manhattan and Chebyshev distance
metrics in k dimensions, considering both nonperiodic and
periodic boundary conditions.

A. Nonperiodic k-dimensional Manhattan and Chebyshev
distance distributions

We begin by considering the nonperiodic case. In the
one-dimensional setting, i.e., k = 1, both Manhattan and
Chebyshev nonperiodic distance distributions coincide with
what has thus far been referred to as the rectilinear distance
distribution in the literature [30,31]. In our formulation, it
makes sense to call this one-dimensional distribution a (one-
dimensional) component distribution, since it turns out that
the k-dimensional Manhattan and Chebyshev distributions are
built from these one-dimensional components.

To illustrate this idea, let a = (a1, . . . , ak ) and b =
(b1, . . . , bk ) be two points in a k-dimensional lattice with
dimension vector vk = (v1, . . . , vk ). For each i = 1, . . . , k,
we define the component distance function

Cvi (ai, bi ) = |ai − bi|. (5)

The nonperiodic Manhattan distance function DM
vk

and the
nonperiodic Chebyshev distance function DC

vk
can then be

written

DM
vk

(a, b) = Cv1 (a1, b1) + · · · + Cvk (ak, bk ), (6)

DC
vk

(a, b) = max{Cv1 (a1, b1), . . . , Cvk (ak, bk )}. (7)

We now wish to find the distance between two ran-
dom points in a k-dimensional lattice. Since the Manhat-
tan and Chebyshev distances are constructed from the one-
dimensional component distances, we first consider k = 1. Let
Xi1, Xi2 ∼ U (1, vi ) be independent discrete uniform random
variables. Define the random variable Ci = |Xi1 − Xi2|; this
will be our nonperiodic vi component. Since we are dealing

with a finite lattice, all the probabilities that appear throughout
the paper are of the form d (s)/

∏k
i=1 v2

i . The denominator of
this fraction is just a normalizing factor to ensure the distance
counts d (s) normalize to unity when summed over all valid
s. In particular, for the one-dimensional vi lattice, we have
d (s) = v2

i P (Ci = s). Our primary goal is to obtain a calcu-
lable expression for d (s), so we will work with v2

i P (Ci = s)
rather than just P (Ci = s), and similarly in the k-dimensional
setting. With this in mind, it can be shown via a geometric
argument or direct computation that

v2
i P (Ci = s) =

{
vi if s = 0
2(vi − s) if 1 � s � vi − 1.

(8)

The cumulative distribution function, which will be required
for the Chebyshev distribution, is therefore

v2
i P (Ci � s) = vi + 2

s∑
j=1

(vi − j) if 0 � s � vi − 1. (9)

We now turn our attention to the general setting of k
dimensions. If vk = (v1, . . . , vk ) is a vector containing the
dimensions of a k-dimensional square lattice, then, in terms
of the independent components Ci, the random Manhattan
distance, denoted DM , and the random Chebyshev distance,
denoted DC , between two random points X1 = (X11, . . . , Xk1)
and X2 = (X12, . . . , Xk2) within the k-dimensional lattice is

DM = C1 + · · · + Ck,

DC = max{C1, . . . ,Ck}.
The distribution of DM is given by the convolution of the com-
ponents C1, . . . ,Ck . Convolving discrete random variables is
the same as multiplying their probability generating functions,
and the same holds for unnormalized distance counts d (s). So

if GM
vk

(z) = ∑(
∑k

i=1 vi )−k
s=0 dM

vk
(s)zs is the generating function for

the number of sites dM
vk

(s) separated by Manhattan distance s

in a vk lattice, and Gvi (z) = ∑vi−1
s=0 dvi (s)zs is the generating

function for the number of sites dvi (s) separated by distance
s in a one-dimensional lattice of length vi, then we can
recover the probability distribution of DM from the generating
function equation

GM
vk

(z) =
k∏

i=1

Gvi (z). (10)

Our goal is obtaining the coefficients of the generating func-
tion GM

vk
(z); the coefficients for each generating function

Gvi (z) are each given by the very simple formula described
in (8). Writing (10) explicitly in terms of polynomials in the
variable z gives

(
∑k

i=1 vi )−k∑
s=0

(
k∏

i=1

v2
i

)
P (DM = s)zs =

k∏
i=1

vi−1∑
s=0

v2
i P (Ci = s)zs.

(11)

By equating coefficients, we can determine dM
vk

(s) =
(
∏k

i=1 v2
i )P (DM = s) from the component distances dvi (s) =

v2
i P (Ci = s). Hence the unnormalized distance counts

dM
vk

(s) = (
∏k

i=1 v2
i )P (DM = s) in (11) can be calculated nu-

merically by iterative usage of the conv function on each
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nonperiodic component distance in MATLAB with no compu-
tational issues.

For the Chebyshev distribution, we first calculate the
Chebyshev cumulative distribution function from the compo-
nent cumulative distribution function (9). Recalling that we
multiply each probability mass P (DC = s) by the normalizing
factor

∏k
i=1 v2

i to obtain the unnormalized distance count, we
have(

k∏
i=1

v2
i

)
P (DC � s) =

(
k∏

i=1

v2
i

)
P (max{C1, . . . ,Ck} � s)

=
(

k∏
i=1

v2
i

)
P (C1 � s, . . . ,Ck � s).

By independence of each Ci, the joint cumulative probability
is the product of the cumulative probabilities. Hence(

k∏
i=1

v2
i

)
P (DC � s) =

k∏
i=1

v2
i P (Ci � s).

Consider the case when s � 0; i.e., when P (DC �
s) is nonnzero. From (9), we have P (Ci � s) = 1 if
s > vi − 1. Therefore, consider the subset Is ⊆ {1, . . . , k} of
natural numbers satisfying s � vi − 1. Our expression simpli-
fies to(

k∏
i=1

v2
i

)
P (DC � s) =

⎛
⎝ ∏

i∈{1,...,k}\Is

v2
i

⎞
⎠ ∏

i∈Is

× [(2s + 1)vi − s(s + 1)].

This last expression is easily codable in MATLAB. Moreover,
one recovers the Chebyshev distance counts via(

k∏
i=1

v2
i

)
P (DC = s) =

(
k∏

i=1

v2
i

)
P (DC � s)

−
(

k∏
i=1

v2
i

)
P (DC � s − 1). (12)

Hence, in (11) and (12), respectively, we have obtained the
nonperiodic Manhattan and Chebyshev distance counts in the
k-dimensional setting.

B. The periodic case

The periodic case is entirely analogous to the nonperiodic
case. We begin by defining the periodic component distance.
Let a = (a1, . . . , ak ) and b = (b1, . . . , bk ) be two points in
a k-dimensional lattice with dimension vector vk . Define the
component periodic distance

CP
vi

(ai, bi ) :=
{|ai − bi| if |ai − bi| � �vi/2�,
vi − |ai − bi| otherwise. (13)

Here P indicates that we are operating with periodic boundary
conditions. We then define the periodic Manhattan distance
function DM,P

vk
and periodic Chebyshev distance function

DC,P
vk

by

DM,P
vk

(a, b) := CP
v1

(a1, b1) + · · · + CP
vk

(ak, bk ), (14)

DC,P
vk

(a, b) := max
{
CP

v1
(a1, b1), . . . , CP

vk
(ak, bk )

}
. (15)

Let vk = (v1, . . . , vk ) be the lattice dimension vector. De-
noting the random periodic component distance by CP

i ,
the random periodic Manhattan distance by DM,P , and
the random periodic Chebyshev distance by DC,P , we
have

DM,P = CP
1 + · · · + CP

k ,

DC,P = max
{
CP

1 , . . . ,CP
k

}
.

So we need only calculate the periodic component distance
distributions. Then we may argue analogously to the non-
periodic case to transition from the periodic component dis-
tances to the periodic Manhattan and Chebyshev distances.
Proceeding with this calculation, the unnormalized periodic
distance counts for the periodic component distances are given
by

v2
i P

(
CP

i = s
) =

⎧⎪⎨
⎪⎩

vi if s = 0,

2vi if 1 � s � �vi/2� − 1,

2vi if s = �vi/2� and vi odd,

vi if s = �vi/2� and vi even.

This gives the periodic cumulative distribution function

v2
i P

(
CP

i � s
) =

⎧⎨
⎩

0 if s < 0,

(2s + 1)vi if 0 � s � �vi/2� − 1,

v2
i if s � �vi/2�.

(16)

The periodic Manhattan distance is found similarly by convo-
lution [see (10) and (11)]. So we have a generating function
equation GM,P

vk
(z) = ∏k

i=1 GP
vi

(z), which gives rise to

∑k
i=1�vi/2�∑

s=0

(
k∏

i=1

v2
i

)
P (DM,P = s)zs

=
k∏

i=1

�vi/2�∑
s=0

v2
i P

(
CP

i = s
)
zs. (17)

For s � 0, the periodic Chebyshev cumulative distribution
function is

(
k∏

i=1

v2
i

)
P (DC,P � s) =

⎛
⎝ ∏

i∈{1,...,k}\Is

v2
i

⎞
⎠ ∏

i∈Is

(2s + 1)vi

= (2s + 1)|Is|
k∏

i=1

vi

∏
i∈{1,...,k}\Is

vi,

where Is ⊆ {1, . . . , k} is the set of natural numbers i such that
s � �vi/2� − 1. Then the unnormalized distance counts can
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be obtained by(
k∏

i=1

v2
i

)
P (DC,P = s) =

(
k∏

i=1

v2
i

)
P (DC,P � s)

−
(

k∏
i=1

v2
i

)
P (DC,P � s − 1).

(18)

We have now derived the formulas for the k-dimensional
Manhattan and Chebyshev distributions: the nonperiodic
Manhattan and Chebyshev distributions are given in (11) and
(12), while the periodic Manhattan and Chebyshev distri-
butions are given in (16) and (17). These formulas allow
us to compute the normalizing factors in both Manhattan
and Chebyshev distance metrics for periodic and nonperiodic
distances in k dimensions.

The formulas also allow us to derive closed-form formu-
las. We consider the two-dimensional setting, which is often
applicable to biological and ecological systems [27–31].

C. Closed-form formulas in two dimensions

We now show that the probabilistic formulation can also
be used to derived closed-form formulas. To demonstrate the
approach, we carefully derive the closed-form formula for
the two-dimensional nonperiodic Manhattan distance distri-
bution. We omit the details for the derivation of the periodic
Manhattan, nonperiodic Chebyshev, and periodic Chebyshev.

Consider a v2 = (v1, v2) lattice. Denote the number of
sites separated by nonperiodic Manhattan distance s by dM

v2
(s).

Recall that the random Manhattan distance DM = C1 + C2 can
be given by the convolution of the two components C1 and C2.
The convolution formula can be written as

dM
v2

(s) = v2
1v

2
2P (C1 + C2 = s)

=
min{s,v1−1}∑

n=max{0,s−v2+1}
v2

1P (C1 = n)v2
2P (C2 = s − n).

There are four situations that require consideration:

Situation Lower index Upper index Condition
1 0 s s � v1 − 1, s � v2 − 1,

2 0 v1 − 1 v1 − 1 � s � v2 − 1,

3 s − v2 + 1 s v2 − 1 � s � v1 − 1,

4 s − v2 + 1 v1 − 1 s � v1 − 1, s � v2 − 1.

Notice that Situation 2 and Situation 3 cannot be simultaneously true. By imposing the condition that v1 � v2, we make Situation
3 impossible. We may impose this condition without loss of generality since any lattice with v1 > v2 can be rotated a quarter
turn to make v1 � v2, and the pair distances remain unchanged under this rotation. The distance counts dM

v2
(s) are then obtained

by restriction to the natural numbers of the function

dM
v2

(s) =

⎧⎪⎪⎨
⎪⎪⎩

v1v2 if s = 0,

2s[2v1v2 − (v1 + v2)s] + 2
3 s(s2 − 1) if 0 < s � v1,

2v2
1 (v2 − s) + 2

3v1
(
v2

1 − 1
)

if v1 � s � v2,
2
3 (v1 + v2 − s − 1)(v1 + v2 − s)(v1 + v2 − s + 1) if v2 � s � v1 + v2 − 2,

(19)

which is actually continuous as a real-valued function, except
at s = 0. This formula is consistent with the formulas pre-
sented in Gavagnin et al. [30] and Johnston and Crampin [31],
up to an extra factor of 2 which arises due to our formulation
considering symmetric distances as distinct.

We also find that the distance counts for the Chebyshev
nonperiodic dC

v2
, Manhattan periodic dM,P

v2
, and Chebyshev

periodic dC,P
v2

are given by the formulas

dC
v2

(s) =
⎧⎨
⎩

v1v2, s = 0,

2s[4v1v2 − 3(v1 + v2)s + 2s2], 0 < s � v1,

2(v2 − s)v2
1, v1 � s < v2,

(20)

dM,P
v2

(s)

=

⎧⎪⎪⎨
⎪⎪⎩

v1v2, s = 0,

4v1v2s, 0 < s < �v1/2�,
2v2

1v2, �v1/2� < s < �v2/2�,
4v1v2

(
v1+v2

2 − s
)
, �v2/2� < s < �v1/2� + �v2/2�,

(21)

dC,P
v2

(s) =
⎧⎨
⎩

v1v2, s = 0,

8v1v2s, 0 < s < �v1/2�,
2v2

1v2, �v1/2� < s < �v2/2�.
(22)

The periodic formulas have degeneracies at boundary points
depending on whether v1 or v2 are even or odd. We have
thus ignored these points in our closed-form formulas. There
are no issues regarding these points when calculating the
distributions using the numerical approach.

III. RESULTS

In this section, we illustrate three points of consideration in
the study of discrete pair correlation functions. We extend the
pair correlation function to k dimensions, explicitly consider-
ing the two- and three-dimensional case in our examples. We
consider variability of the statistic by examining the behavior
of the region between the 2.5th and 97.5th percentiles as we
vary the pair distance s. Finally we examine and discuss the
applicability of the periodic pair correlation functions.
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We first verify that the normalization factors derived in
Sec. II are correct by applying the pair correlation function to
spatial domains with no correlation. For the two-dimensional
case displayed in Fig. 2, we consider the count of pair dis-
tances over 1000 realizations of a 60 × 30 matrix populated
with agents spatially distributed uniformly at random, with
density ρ = 0.5. We extract the average frequency along
with the 2.5th and 97.5th percentile for every pair distance
possible under each of the four combinations of nonperiodic
or periodic, and Manhattan or Chebyshev metrics. We then
plot the raw average frequencies alongside the normalized pair
correlation function. The three-dimensional case displayed in
Fig. 3 follows the same methodology, except using a 60 ×
30 × 40 array with density ρ = 0.01. The reduced density
in the three-dimensional case is for computational purposes;
the amount of agents per realization is similar to the two-
dimensional case.

In all simulations (Figs. 2 and 3), the average frequencies
of pair distances generally converge to their expected values:
the unnormalized case shows that these distances converge to
the shape of the relevant distance distribution (left column,
Figs. 2 and 3), and the normalized case shows convergence to
unity (right column, Figs. 2 and 3). There is much to be gained
by examining the percentiles of each pair correlation function.
For example, in the two-dimensional case, the confidence
interval in the nonperiodic cases (right column, top row and
bottom-middle row in Fig. 2) is considerably larger than
that of the periodic counterparts. In particular, we see that
the nonperiodic pair correlation functions are not as reliable
as the periodic pair correlation functions at long distances
due to the division of small numbers in the statistic; i.e., at
distances where d (s), the count of all pair distances s in a
completely filled lattice, is small. Moreover, the variability
in the three-dimensional case (Fig. 3) is greater than the
two-dimensional case (Fig. 2) at each pair distance s among
all distance metrics. Notably, the variability increases at small
s (right column, Fig. 3); this was not exhibited in the two-
dimensional case (right column, Fig. 2). This shows that the
three-dimensional pair correlation function is best behaved
at medium length scales. It is particularly important that we
consider the variability in the statistic when applying and
interpreting the signal in practical situations.

There is a striking difference in the behavior of the un-
normalized pair distances under the Manhattan and Cheby-
shev metrics in Fig. 2. This is interesting to note because
the Manhattan and Chebyshev distances behave similarly in
two dimensions. For example, in the continuous setting, a
circle with radius r in the Manhattan metric is a square with
side length

√
2r, rotated π/4 compared to the coordinate

axes, while a circle with radius r in the Chebyshev metric
is a square with side length 2r, parallel to the coordinate
axes. Rotation should not affect random correlation, which
means that only the difference in side length should affect
the pair distance frequencies. Despite this, the unnormalized
pair distances in Fig. 2 are quite different. The main reason
for this is the rectangular 60 × 30 spatial domain we have
chosen; showcasing this was one of our motivations in choos-
ing an irregular domain. We first notice that the Manhattan
and Chebyshev distances are quite similarly behaved at short
distances. There is some observable difference attributable to

the differences in circle side length as previously discussed.
The more noticeable differences occur past distance 30 in
the nonperiodic case, and past distance 15 in the periodic
case. Notice that 30 is the length of the shorter dimension
of the 60 × 30 spatial domain. Since the Chebyshev distance
is given by the maximum of the component distances, we
know that any pair distance greater than the size of the shorter
dimension must have arisen due to the remaining longer
dimension. For example, for pair distances exceeding 30 in
Fig. 2, we effectively have only one dimension affecting the
pair distance frequency, whereas for distances shorter than 30,
both dimensions affect the pair distance frequency.

We now examine the applicability of the simultaneous
evaluation of the periodic and nonperiodic Manhattan and
Chebyshev pair correlation functions. This notion has been
previously exploited with a one-dimensional pair correlation
function in identifying the necrotic zone boundary in exper-
imental images of tumor spheroids [44]. To focus on the
distinction between nonperiodic and periodic pair correlation
functions in the present work, we will restrict attention to the
Manhattan distance metric. Similar results were found in the
case of the Chebyshev metric (not shown).

We examine a pattern consisting of diagonal bars, similar
to the approach of Gavagnin et al. [30], except we now
modify the pattern by thickening one of the diagonal bars (top
row, Fig. 4). The choice of a stripy pattern is also partially
motivated by its ubiquity in biological settings, for example,
in two-dimensional images of the skin of a zebrafish [45].
Evaluating the nonperiodic pair correlation function for the
two patterns with a different location of the thicker bar gives
two distinct signals (middle row, Fig. 4), indicating that the
spatial patterning is different in each example. However, in
the periodic case we see that the signals are almost identical
(bottom row, Fig. 4). To put it simply, the periodic evaluations
cannot distinguish the patterns with a different location of the
thicker bar.

On one hand, this can be advantageous in practical settings
where a small window is sampled from a larger spatial domain
(e.g., a Petri dish in a biological experiment). In this situation,
periodic boundary conditions are often assumed [28,45,46],
and with this assumption it is desirable that both sample
patterns have a similar pair correlation function evaluation.
On the other hand, if the samples are representative of the
entire spatial domain, such as in the analysis of scratch
wound assays [27] or in situations where the domain contains
obstructions [31], the nonperiodic evaluations show that these
two patterns are distinct. Our results therefore provide the
means to examine patterns simultaneously with both periodic
and nonperiodic Manhattan and Chebyshev pair correlation
functions, and this was not considered in the previous works
Gavagnin et al. [30] and Johnston and Crampin [31].

IV. DISCUSSION

The study and development of discrete pair correlation
functions that quantify spatial patterning within discrete
square lattices are applicable to furthering our physical un-
derstanding of biological processes, since these functions can
be applied directly to images of cell biology experiments
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FIG. 2. Frequency and pair correlation function versus pair distance, s, for a two-dimensional 60 × 30 spatial domain. The gray shading
indicates the region between the 2.5th and 97.5th percentiles. Realizations R = 1000, density ρ = 0.5 (≈900 points). (a), (c), (e), (g) Left
column: Pair distance frequency. Sample mean (solid curves) and distance distribution scaled by ρ2 (dots). (b), (d), (f), (h) Right column:
Pair correlation function. (a), (b) Top row: Nonperiodic Manhattan. (c), (d) Top-middle row: Periodic Manhattan. (e), (f) Bottom-middle row:
Nonperiodic Chebyshev. (g), (h) Bottom row: Periodic Chebyshev.
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FIG. 3. Frequency and pair correlation function versus pair distance, s, for a three-dimensional 60 × 30 × 40 spatial domain. The gray
shading indicates the region between the 2.5th and 97.5th percentiles. Realizations R = 1000, density ρ = 0.01 (≈720 points). (a), (c), (e), (g)
Left column: Pair distance frequency. Sample mean (solid curves) and distance distribution scaled by ρ2 (dots). (b), (d), (f), (h) Right column:
Pair correlation function. (a), (b) Top row: Nonperiodic Manhattan. (c), (d) Top-middle row: Periodic Manhattan. (e), (f) Bottom-middle row:
Nonperiodic Chebyshev. (g), (h) Bottom row: Periodic Chebyshev.
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FIG. 4. Analysis of two-dimensional 50 × 50 diagonal bar patterns with Manhattan pair correlation function (solid curves). The gray
shading indicates the region between the 2.5th and 97.5th percentiles of the domains populated uniformly at random with the same density
as in the diagonal patterns, realizations R = 1000. (a), (c), (e) Left column: Thickened central bar pattern analysis. (b), (d), (f) Right column:
Thickened off-center bar pattern analysis. (a), (b) Top row: Diagonal bar patterns. (c), (d) Middle row: Nonperiodic Manhattan pair correlation
function. (e), (f) Bottom row: Periodic Manhattan pair correlation function.

and cellular automata simulations. Discrete pair correlation
functions on square lattices have recently received attention
through the works of Binder and Simpson [27], Gavagnin
et al. [30], and Johnston and Crampin [31]. The purpose of
this study is to build upon these works to provide a unified
probabilistic framework to derive discrete pair correlation
functions on a square lattice. We also examine the variabil-
ity of pair correlation functions while using both nonperi-
odic and periodic metrics simultaneously to assess spatial
patterning.

Our main contribution is the extension of the Manhattan
and Chebyshev discrete pair correlation functions to k di-
mensions, via derivation of the corresponding k-dimensional
distance distributions which serve as the normalizing factors
of the pair correlation functions. Binder and Simpson [27],
Gavagnin et al. [30], and Johnston and Crampin [31] each

used a geometric combinatorial approach to determine the
necessary normalization factors in one, two, and three dimen-
sions. Specifically, their approach consisted of counting the
total number of possible pair distances between agents in a
completely filled lattice, which was effective when dealing
with just one, two or three dimensions. The probabilistic for-
mulation we have used, which instead consists of deriving the
distance distribution of two random points in a k-dimensional
lattice, provides a general framework for all discrete pair
correlation functions.

In the case of two or three dimensions, normalization fac-
tors were derived partially for short to medium length scales
for each of the Manhattan and Chebyshev distance metrics
under both periodic and nonperiodic boundary conditions by
Gavagnin et al. [30], while the two-dimensional nonperiodic
Manhattan was derived completely by Johnston and Crampin
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[31]. Therefore, our work, while generalizing to higher dimen-
sions, also provides the derivation for the normalization term
(at all distances) for periodic Manhattan and Chebyshev, and
nonperiodic Chebyshev metrics.

In the work of Gavagnin et al. [30], the periodic distance
metrics were used as a means to derive the nonperiodic
distance count formulas. However, in their work they did not
use the periodic distance metric to formulate or analyze the
corresponding periodic pair correlation function. The periodic
pair correlation functions were not applicable in the recent
work of Johnston and Crampin [31] who considered the
problem of modeling obstructions within the spatial domain.
Therefore, the analysis of periodic Manhattan and Chebyshev
pair correlation functions has not been considered.

The development of the higher dimensional periodic pair
correlation functions in this study has immediate applications
in extending the previous work of Agnew et al. [28] and
Dini et al. [45]. Both works utilized periodic pair correlation
functions in their analyses, but were limited to analyzing
vertical and horizontal component distances independently
using the one-dimensional rectilinear pair correlation func-
tions since the higher dimensional pair correlation functions
were not available. In a similar vein, Zhang et al. [46] recently
applied the two-dimensional periodic Manhattan formulas of
Gavagnin et al. [30] to an Lx × Ly lattice on the restricted
domain min{�Lx/2�, �Ly/2�} since formulas for the periodic
Manhattan pair correlation function were not available on the
full domain {�Lx/2� + �Ly/2�} prior to this work. We expect
that our extension of the periodic pair correlation functions to
higher dimensions, in particular dimension two, can allow for
more thorough analysis in these biological applications.

We anticipate that the discrete k-dimensional pair corre-
lation functions derived in this work will find application
in the statistical analysis and classification of data in high-

dimensional databases. For example, nonbinary image pro-
cessing results in high-dimensional data to represent space,
time, date, colors, intensity, contrast and so on. In particular,
the Manhattan metric is commonly used as a measure of
distance in high-dimensional nearest neighbor search prob-
lems of geometric and multimedia databases [47] and in data
mining problems such as fraud detection and information
retrieval [47,48]. Studies have also utilized both Manhattan
and Chebyshev metrics in the formulation of the objective
function in clustering algorithms [48,49].

Furthermore, it is interesting to note that in the continuous
setting, the k-dimensional Manhattan distance distribution has
been derived to assess the distribution of data relative to
a random distribution (e.g., the uniform distribution with a
continuous interval of unit support) [50]. However, to the best
of our knowledge, there is currently no such measure for the
discrete counterpart as is considered in this work. Therefore,
the discrete distribution, which we have studied in this work,
could potentially be used to obtain an approximation to the
continuous distribution by considering the limiting process
of the lattice spacing vanishing. This notion suggests that
the k-dimensional discrete distribution can be used as an
approximation to the k-dimensional continuous distribution,
and this is the subject of our ongoing research.

Finally, we mention that a limitation of our method is
that it relies on the regularity of the lattice spacing between
agents because the distances can be realized as relatively well-
understood random variables. Even in other low-dimensional
generalizations where the connectivity is not constant (e.g.,
general tessellations [30] and punctured domains [31]), calcu-
lating the pair distances is difficult because it requires some
fairly specific path-finding algorithms. While the problem is
both interesting and challenging, it is beyond the scope of the
present work, and this too is left to future research.
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