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Closeness of the reduced density matrix of an interacting small system to the Gibbs state
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I study the statistical description of a small quantum system, which is coupled to a large quantum environment
in a generic form and with a generic interaction strength, when the total system lies in an equilibrium state
described by a microcanonical ensemble. The focus is on the difference between the reduced density matrix
(RDM) of the central system in this interacting case and the RDM obtained in the uncoupled case. In the
eigenbasis of the central system’s Hamiltonian, it is shown that the difference between diagonal elements is
mainly confined by the ratio of the maximum width of the eigenfunctions of the total system in the uncoupled
basis to the width of the microcanonical energy shell; meanwhile, the difference between off-diagonal elements
is given by the ratio of certain property of the interaction Hamiltonian to the related level spacing of the central
system. As an application, a sufficient condition is given, under which the RDM may have a canonical Gibbs
form under system-environment interactions that are not necessarily weak; this Gibbs state usually includes
certain averaged effect of the interaction. For central systems that interact locally with many-body quantum
chaotic systems, it is shown that the RDM usually has a Gibbs form. I also study the RDM which is computed
from a typical state of the total system within an energy shell.
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I. INTRODUCTION

A. Motivations

In quantum statistical mechanics, one important topic
is about the relationship between microcanonical (MC)-
ensemble description and canonical-ensemble description. In
particular, for a generic, isolated, and large quantum system
that is described by an MC ensemble, the condition, under
which the reduced density matrix (RDM) of an interacting
small subsystem may have a canonical Gibbs form, is still
a problem not completely solved. Unlike the corresponding
problem in the classical statistical mechanics, which can be
solved relatively easily (see, e.g., Ref. [1]), this problem is
highly nontrivial, due to the mathematical difficulty met when
dealing with the total energy eigenstates under nonnegligible
subsystem-environment interactions.

A related important topic is justification of the usage of
a MC-ensemble description for the total system, in view
of the fact that quantum mechanics in principle allows a
pure-state description for the total system. This topic is also
of relevance, in the effort of generalizing equilibrium-state
statistical-mechanics principles to nonequilibrium processes.
Modern studies show that a mathematical concept related
to high-dimensional linear space, namely, typicality, plays
an important role [2–5], an idea that can be traced back to
von Neumann’s original work [6]. Recently, by making use
of the so-called Levy’s lemma [7,8], a quantitative progress
was reported in Ref. [9] in 2006, wherein an upper bound is
derived for the distance between the RDM computed from a
MC-ensemble description of the total system and that from
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a typical-state description of the total system.1 The derived
upper bound shows that the MC and typical-state descriptions
for the total system are effectively identical in view of com-
puting the RDM of a small subsystem, when the dimension of
the effective environmental state space is sufficiently large.

In the same year of 2006, it was shown in Ref. [10]
that the RDM of a small subsystem, which is computed
from a typical state of the total system, is typically close to
the Gibbs state when the subsystem-environment interaction
is very weak, under the well-known assumption about the
exponential shape of the density of states of the environ-
ment. However, the strength of interaction required in the
treatment of Ref. [10] is usually too weak for a macroscopic
environment to satisfy, due to the exponential increase of its
density of states with the particle number [11]. To solve this
problem, weak (not necessarily extremely weak) interaction
was studied in Ref. [11] in 2012, wherein an upper bound was
given to the distance between two MC-ensemble-computed
RDMs, which are obtained in the two cases with and without
subsystem-environment interaction, respectively. The result
shows closeness of the two RDMs and, as a consequence, to
the Gibbs state, when the interaction is relatively weak.

Two problems remain open related to the approach of
Ref. [11]. (i) The obtained results are for a generic envi-
ronment, independent of whether it undergoes a complex
motion or not. One interesting question is whether the upper
bound given there may be significantly lowered for complex
environments such as quantum chaotic systems. And, (ii) it
is unclear how this approach may give a practically feasible
method of finding the Hamiltonian that should be used in the

1Below, we refer to these two types of RDM as MC-ensemble-
computed RDM and typical-state-computed RDM, respectively.
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Gibbs state, which may take into account some effects of the
subsystem-environment interaction.

To the same problem of relatively weak subsystem-
environment interaction, in the same year of 2012, a different
approach was reported in Ref. [12], in which elements of the
RDM in the eigenbasis of the central system’s Hamiltonian
are studied directly. In this approach, a more specific situation
is considered, in which the subsystem is locally coupled to
an environment as a many-body quantum chaotic system that
satisfies the so-called eigenstate thermalization hypothesis
(ETH) [13–17]. And, closeness is shown between the typical-
state-computed RDM and the Gibbs state. This approach gives
an explicit expression for the Hamiltonian that should be used
in the Gibbs state, which takes into account certain averaged
effect of the interaction.

Two problems remain open related to the approach of
Ref. [12]. (a) No upper bound was derived explicitly for the
difference between elements of the studied RDM and those
of the Gibbs state. For this reason, although this approach
and that of Ref. [11] reach the same qualitative conclusion of
closeness of the RDM to the Gibbs state under relatively weak
interactions, a quantitative comparison of their predictions
for the condition and extent of the closeness is unavailable.
And (b) an upper bound for the width of energy eigenfunc-
tions (EFs) of the total system in the uncoupled basis was
derived and made use of in Ref. [12], based on a first-order
perturbation-theory treatment to long tails of the EFs. Al-
though it was pointed out there that this perturbative treatment
may be justified by a generalized Brillouin-Wigner perturba-
tion theory [18,19], a detailed analysis was not given.2

More recently, a relationship was found among elements
of the long-time averaged RDM of a qubit, which is locally
coupled to a many-body quantum chaotic system that initially
lies in a typical state within an energy shell [21]. This rela-
tionship shows the existence of some nontrivial off-diagonal
elements of RDM. It is unclear whether the above-discussed
two approaches may accommodate this type of relationship
among elements of RDM.

B. Problems to be studied and organization of the paper

In this paper, we are to derive upper bounds related to
the first remaining problem of the second approach discussed
above, but, in a situation more generic than that discussed in
Ref. [12]. We first discuss MC-ensemble-computed RDMs,
then, discuss typical-state-computed RDMs.

Specifically, we are to consider a generic, isolated, and
large quantum system, which is described by a MC ensemble
(or by a typical state) within an energy shell. The isolated (to-
tal) system is divided into a generic, small, central subsystem
and a large environment, with a generic type of interaction.
We are to derive upper bounds for the difference between
elements of the RDM of the central subsystem and those
elements that are obtained under vanishing interaction. The
derived expressions are written with properties of the systems

2We are to give a further study for this problem in a different paper
[20].

involved, such as the width of the energy shell, level spacings
of the subsystem, the maximum width of total EFs, and so on.

The derived upper bounds are valid in a wide region of the
interaction strength, from very weak to strong. (i) For very
weak interactions, we are to check whether the generic results
to be derived are in consistency with the known fact that the
RDM is close to a Gibbs state [10–12]. (ii) For relatively
weak interactions, we are to compare the obtained results with
results given in Refs. [11,12], to see whether the latter are
complete. In fact, we are to show that the latter are incomplete.
(iii) For relatively weak and strong interactions, a sufficient
condition will be given, under which a considered RDM may
have a Gibbs form. As an application, we are to discuss
environments as many-body quantum chaotic systems.

The paper is organized as follows. In Sec. II, we describe
the basic framework for our study. In Sec. III, we derive upper
bounds for the difference between diagonal elements of two
MC-ensemble-computed RDMs, which are obtained with and
without the subsystem-environment interaction, respectively.
Then, we discuss some applications of the obtained results
and compare them with a prediction of Ref. [11].

In Sec.IV, we derive an expression for the difference be-
tween off-diagonal elements of the above-mentioned RDMs,
then, as an illustration, we discuss a simple example with
a two-level system as the central subsystem and a many-
body quantum chaotic system as the environment. After that,
we compare the obtained results with some predictions of
Refs. [11,12,21]. In Sec. V, as an application, we give a
sufficient condition under which the RDM of an interact-
ing subsystem may have a canonical Gibbs form, when the
interaction is not weak; here, particular attention is paid to
environments as many-body quantum chaotic systems. In
Sec. VI, we discuss differences between elements of typical-
state-computed and MC-ensemble-computed RDMs. Finally,
conclusions and discussions are given in Sec. VII.

II. THE SETUP

In this section, we give the basic framework, within which
we are to give our discussions. In Sec. II A, we discuss basic
properties of the systems to be studied, particularly their
Hamiltonians and eigenstates. In Sec. II B, we discuss basic
properties of the MC ensemble for the total system, as well as
those of the RDM of the central subsystem.

A. Hamiltonians and their eigenstates

We consider a generic, isolated, and large quantum system,
denoted by T , which is divided into a small subsystem de-
noted by S and a large environment denoted by E . The Hilbert
spaces of S and E are denoted by HS and HE , respectively,
with dimensions dS and dE . The total Hamiltonian is written
as

H = HS + HI + HE , (1)

where HS and HE are the self-Hamiltonians of S and E ,
respectively, and HI represents the interaction. Note that,
more precisely, say, HS on the right-hand side (rhs) of Eq. (1)
should be written as HS ⊗ IE , where IE represents the identity
operator acting on HE ; but, for brevity, we usually omit
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the identity operator. We use H0 to denote the uncoupled
Hamiltonian of the total system, i.e.,

H0 = HS + HE . (2)

It is sometimes convenient to introduce a parameter for char-
acterizing the strength of the interaction; in this case, we use
the Greek letter λ, with ‖HI‖ ∝ λ.

The interaction Hamiltonian HI is of a generic type for
the main results to be given in Secs. III and IV. In some
applications of these results, which will be given in Secs. IV B
and V, local interactions are considered as explicitly indicated
there. In the derivation of the main results, there is only one
requirement for the S-E interaction strength, which is that
ρH

dos � ρH0

dos, where ρH
dos and ρH0

dos represent the density of states
of the total system with Hamiltonians H and H0, respectively.
This requirement, which implies that the influence of the S-E
interaction in the density of states of the total system can
be neglected, is satisfied in almost all situations of practical
interest with large environments.

Normalized eigenstates of the total Hamiltonian H are
denoted by |n〉 with energies En in the increasing-energy
order,

H |n〉 = En|n〉. (3)

Normalized eigenstates of HS are denoted by |α〉, with ener-
gies eS

α , and those of HE by |i〉 with energies ei, both in the
increasing-energy order,

HS|α〉 = eS
α|α〉, (4)

HE |i〉 = ei|i〉, (5)

where for brevity we have omitted a superscript E for the
environmental energy ei.

The RDM to be studied is written on the eigenbasis of
HS . When the spectrum of HS has some degeneracy, an
ambiguity exists in writing the related eigenstates of HS; to
fix this ambiguity, some additional requirement is needed. To
avoid this complexity, we assume that the system S has a
nondegenerate spectrum.3

Eigenstates of H0 with eigenenergies Eαi are written as
|α〉|i〉, in short |αi〉, satisfying

H0|αi〉 = Eαi|αi〉, Eαi = eS
α + ei. (6)

In the energy order, the states |αi〉 are indicated by |Er〉 with
one integer label r, which has a one-to-one correspondence to
the pair (α, i), namely, r ↔ (α, i), such that Er = Eαi and

H0|Er〉 = Er |Er〉, Er � Er+1. (7)

Expansions of the states |n〉 in the bases |αi〉 and |Er〉, with
coefficients denoted by Cn

αi and Cn
r , respectively, are written

as

|n〉 =
∑
α,i

Cn
αi|αi〉 =

∑
r

Cn
r |Er〉. (8)

The coefficients Cn
αi and Cn

r give the EFs.

3In fact, discussions to be given in Sec. III for diagonal elements are
independent of whether the spectrum of S is degenerate or not, while
the main results of Sec. IV for off-diagonal elements are invalid for
HS with a degenerate spectrum [see, e.g., Eq. (50)].

Significant components Cn
r of a given state |n〉 usually

occupy a restricted region in the uncoupled spectrum, say, in
a region of Er with r between r (n)

1 and r (n)
2 . For brevity, we call

such a region a “main-body” region of |n〉. To characterize a
main-body region, one may employ a small positive parameter
ε, such that the population of |n〉 outside this region is smaller
than ε.4 We use �n, �n ≡ [r (n)

1 , r (n)
2 ], to indicate such a region,

for which ∑
r∈�n

|〈Er |n〉|2 .= 1 − ε, (9)

where “
.=” means that the left-hand side is either equal to the

rhs, or is just larger than the rhs, such that it become smaller
than the rhs when �n is shrunk by letting r (n)

1 → r (n)
1 + 1 or

r (n)
2 → r (n)

2 − 1. We use wE to denote the maximum width of
the energy region occupied by �n, i.e.,

wE = max
{(

Er(n)
2

− Er(n)
1

)}
(10)

for those states |n〉 that lie in the energy region of the total
system of relevance to our discussions to be given later.

The so-called local spectral density of states (LDOS), or
strength function in nuclear physics, will also be used in our
later discussions. They are the reverse of EFs, that is, the
LDOS of an uncoupled state |Er〉 is given by its expansion
in the basis of {|n〉}. We use �L

r to denote a main-body region
of |Er〉, which is written as �L

r ≡ [n(r)
1 , n(r)

2 ] for a region of the
label n between n(r)

1 and n(r)
2 ; it satisfies the following relation:∑

n∈�L
r

|〈Er |n〉|2 .= 1 − ε. (11)

The maximum value of the energy width of �L
r , namely, of

(En(r)
2

− En(r)
1

), for those states |Er〉 in the energy region of
relevance, is denoted by wL. We use wM to indicate the larger
one of wE and wL, namely,

wM = max{wE ,wL}. (12)

For a sufficiently small ε, the value of En lies within the
main-body energy region of the EF of |n〉, meanwhile, Er lies
within the main-body region of the LDOS of |Er〉.5 It is not
difficult to verify that these two properties imply the following
relations, respectively,

En − wM � Er(n)
2

< Er(n)
1

� En + wM, (13a)

Er − wM � En(r)
2

< En(r)
1
� Er + wM . (13b)

That is, the main body of the EF of |n〉 lies within the region of
Er ∈ [En − wM, En + wM], meanwhile, the main body of the
LDOS of |Er〉 lies within the region of En ∈ [Er − wM, Er +
wM].

4The exact value of ε is usually case-dependent. That is, it depends
on what is needed for the problem at hand; it may be, say, 10% or
1%. But, the name of “main body” implies that one should not take
ε = 0.

5We neglect the trivial case of [HS + HE , HI ] = 0, in which the
states |n〉 are equal to the uncoupled ones |Er〉.
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B. MC Energy shell and RDM

We consider a MC-ensemble description of the total system
within an energy shell denoted by �, which starts at an energy
denoted by Es and has a width �, i.e., � = [Es, Es + �],
with the subscript “s” standing for “starting of shell.” The
energy shell � is far from edges of the spectrum of the total
system. We use H� to denote the subspace spanned by those
eigenstates |n〉 with En ∈ �. The dimension of H� is denoted
by d� . In statistical physics, the energy shell �, though narrow,
is assumed to be wide enough to contain very many levels En.

The MC description of the total system within the energy
shell � is written as

ρT = 1

d�

∑
En∈�

|n〉〈n|. (14)

The RDM of the system S, denoted by ρS , is given by

ρS ≡ TrE (ρT ). (15)

Its elements are written as

ρS
αβ ≡ 〈α|ρS|β〉 = d−1

�

∑
En∈�

ρ
S(n)
αβ , (16)

where ρ
S(n)
αβ indicate elements computed from a single eigen-

state |n〉, i.e.,

ρ
S(n)
αβ ≡ 〈α|TrE (|n〉〈n|)|β〉 =

∑
i

Cn
αiC

n∗
βi . (17)

For the uncoupled system H0, one may consider a similar
energy shell denoted by �0, with �0 = [Es, Es + �]. We use
d�0 to denote the number of levels Er within �0. The MC
ensemble in the uncoupled case is described by

ρT 0 = 1

d�0

∑
Er∈�0

|Er〉〈Er |. (18)

This gives the RDM ρS0 ≡ TrE (ρT 0), with elements ρS0
αβ ≡

〈α|ρS0|β〉. For a given state |α〉 of the system S, we use �E
α to

denote the environmental energy shell, which contains those
environmental levels ei for which Eαi = Er ∈ �0, i.e.,

�E
α = [

Es − eS
α, Es − eS

α + �
]
. (19)

We use HE
�α to denote the subspace spanned by |i〉 ∈ �E

α and
use dE

�α to indicate its dimension.
It is straightforward to find that

ρS0
αα = 1

d�0
dE

�α, ∀α, (20a)

ρS0
αβ = 0, ∀α �= β. (20b)

Then, under the well-known assumption about an exponential
shape of the density of states, one gets that

ρS0
αα � (

ρS
G

)
αα

, ∀α, (21a)

ρS0
αβ = (

ρS
G

)
αβ

= 0, ∀α �= β, (21b)

where ρS
G indicates the Gibbs state,

ρS
G = e−βHS

/Tre−βHS
, (22)

with a parameter β determined by the density of states of
the environment. Hence, instead of studying the differences
|ρS

αβ − (ρS
G)αβ |, below we study |ρS

αβ − ρS0
αβ |.

III. DIFFERENCE BETWEEN DIAGONAL
ELEMENTS OF RDMs

In this section, we discuss diagonal elements of RDMs,
under generic S-E interactions with only one restriction, i.e.,
ρH

dos � ρH0

dos. In Sec. III A, we derive upper bounds for |ρS
αα −

ρS0
αα| in the case of � > 2wM . Since a MC energy shell �

should contain very many levels, it is this case of � > 2wM

that is often met in statistical physics.6 The opposite case of
� < 2wM is discussed in Sec. III B. Finally, in Sec. III C, we
discuss some applications of the results obtained.

A. Upper bounds of |ρS
αα − ρS0

αα| for � > 2wM

In this section, for � > 2wM , we derive the following ex-
pression for (ρS

αα − ρS0
αα ), in the case that linear approximation

is valid for the environmental density of states around the
energy shell �E

α . The expression is

ρS
αα − ρS0

αα � q1
wM

�

dE
�α

d�

+ q0ε, (23)

where q1 and q0 are two undetermined parameters satisfying
|q1| < 2 and |q0| < 1. (See Eq. (38) to be given below for
explicit expressions of q1 and q0.) The opposite case with
invalidity of the linear approximation, which is not often met
for narrow energy shells, is briefly addressed at the end of this
section.

Making use of Eq. (23) and noting that dE
�α < d� , one gets

the following upper bound for the diagonal difference,∣∣ρS
αα − ρS0

αα

∣∣ � 2

�
wM + ε. (24)

When the level spacings of the system S are small, the
differences among dE

�α of different α may be small compared
with the values of dE

�α; in this case, one has d� � dSdE
�α and

an estimate better than Eq. (24) can be obtained, i.e.,∣∣ρS
αα − ρS0

αα

∣∣ � 2

dS�
wM + ε. (25)

Below, we give the derivation for Eq. (23), which is valid in
the case of the above-mentioned linear approximation. To this
end, we divide the environmental spectrum {ei} into several
regions separated by the following parameters,

ε1 = Es − eS
α − wM, (26a)

ε2 = ε1 + 2wM, (26b)

ε3 = ε1 + �, (26c)

ε4 = ε2 + �. (26d)

6Besides properties of the eigenstates of the systems involved, the
width wM is also determined by the parameter ε. Practically, ε does
not need to take a very small value.
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We use REα
κ with κ = 0, 1, 2, 3 to denote the following four

regions of the spectrum separated by the above parameters,
i.e.,

REα
0 := [estart, ε1) ∪ (ε4, eend], (27a)

REα
1 := [ε1, ε2), (27b)

REα
2 := [ε2, ε3), (27c)

REα
3 := [ε3, ε4], (27d)

where estart and eend indicate the starting and ending levels
of the environmental spectrum, respectively. It is seen that
the region REα

2 lies inside the energy shell �E
α , with a width

(� − 2wM ); the two regions of REα
1 and REα

3 lie at the two
borders of the shell, respectively, each with a width 2wM ; and
the region REα

0 lies completely outside the shell.
With the above-discussed division of the environmental

spectrum, making use of Eqs. (16) and (17), the diagonal
element ρS

αα is written as

ρS
αα = d−1

�

3∑
κ=0

Fακ , (28)

where

Fακ =
∑

ei∈REα
κ

∑
En∈�

∣∣Cn
αi

∣∣2
. (29)

We use NEα
κ to denote the number of those levels ei that lie

within a region REα
κ .

We discuss contributions from the four regions REα
κ sepa-

rately. First, we discuss the central region REα
2 , which usually

gives the main contribution to ρS
αα . We write Fα2 in the

following form:

Fα2 = NEα
2 +

∑
ei∈�E

α2

(Iαi − 1), (30)

where

Iαi =
∑
En∈�

∣∣Cn
αi

∣∣2
. (31)

For a level ei ∈ REα
2 , according to Eqs. (26b), (26c), and

(27c), the value of Er = Eαi lies between (Es + wM ) and
(Es + � − wM ). Due to Eq. (13b), this implies that the main-
body region of the LDOS of |αi〉 should lie within the energy
shell �. Hence, (1 − Iαi ) � ε [see Eq. (11)]. As a result, Fα2

in Eq. (30) can be written as

Fα2 = NEα
2 − a2εNEα

2 , (32)

where a2 is some undetermined real parameter satisfying 0 <

a2 < 1.
Next, we discuss the two regions REα

κ of κ = 1 and 3,
each with a width 2wM . For some of the levels ei lying within
these two regions, the values of Iαi are close to 1, meanwhile,
for some other levels Iαi are much smaller than 1. Since
the environmental density of states around the energy shell
�E

α is approximately a linear function, its average value is
approximately given by (dE

�α/�). Then, Fακ of κ = 1, 3 can
be written in the following form:

Fακ = 2aκwMdE
�α/�, κ = 1, 3, (33)

where a1 and a3 are some undetermined parameters satisfying
0 < a1(3) < 1. In most cases, the values of a1 and a3 are
around 0.5 or smaller.

Finally, we discuss the region REα
0 . For an energy level ei

lying in this region, the value of Er = ei + eS
α is either smaller

than (Es − wM ), or larger than (Es + � + wM ). This implies
that Er lies outside the main-body regions of all those states
|n〉 ∈ �. Hence, according to Eq. (9), one has∑

ei∈REα
0

∣∣Cn
αi

∣∣2
< ε. (34)

This gives the following expression:

Fα0 =
∑
En∈�

∑
ei∈REα

0

∣∣Cn
αi

∣∣2 = a0εd�, (35)

with some undetermined parameter a0 satisfying 0 < a0 < 1.
Substituting the above-obtained results for Fακ into

Eq. (28), one gets that

ρS
αα = NEα

2

d�

+ 2(a1 + a3)wM

�

dE
�α

d�

+
(

a0 − a2
NEα

2

d�

)
ε. (36)

To go further, we make use of the assumption of ρH
dos � ρH0

dos,
i.e., the difference between the density of states of H0 and that
of H can be neglected; this implies that d�0 � d� . Moreover,
we note that (dE

�α − NEα
2 ) is equal to the number of levels

that lie inside the overlap of the energy shell �E
α and the

two regions of REα
1 and REα

3 . Then, due to the validity of
linear approximation for the environmental density of states
within the energy shell �E

α , it is easy to see that dE
�α − NEα

2 �
2wM (dE

�α/�). Making use of these properties, from Eqs. (36)
and (20a), one finds that

ρS
αα − ρS0

αα � 2(a1 + a3)wM

�

dE
�α

d�

− 2wMdE
�α

d��

+
(

a0 − a2
NEα

2

d�

)
ε. (37)

This finishes the derivation of Eq. (23), with the following
relations:

q1 = 2(a1 + a3) − 2, q0 = a0 − a2
NEα

2

d�

. (38)

One remark: The upper bounds for |ρS
αα − ρS0

αα| given in
Eqs. (24) and (25) correspond to the maximum value of
|q1|. For a concrete system in which the value of q1 can be
evaluated, Eq. (23) may give a much lower upper bound. For
example, as mentioned above, a1 and a3 may be around 0.5
in some systems; in such a system, q1 is small and this may
considerably reduce |ρS

αα − ρS0
αα| according to Eq. (23).

Finally, we give a brief discussion for the case that linear
approximation is invalid for the environmental density of
states within the energy shells �E

α . In this case, Eqs. (32) and
(35) are still valid, while Eq. (33) is replaced by

Fακ = 2aκwMρE
dos,κ , κ = 1, 3, (39)

where ρE
dos,κ indicates the environmental density of states in

the region REα
κ . Then, after simple derivations, one gets the
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following estimate:∣∣ρS
αα − ρS0

αα

∣∣ � (
ρE

dos,1 + ρE
dos,3

)
d�

wM + ε. (40)

A final remark: The upper bounds given above in Eqs. (24),
(25), and (40) show the same dependence on ε and wM , with
differences only in the prefactors of wM .

B. Upper bounds of |ρS
αα − ρS0

αα| for � < 2wM

In this section, we discuss |ρS
αα − ρS0

αα| for � < 2wM . In the
case that linear approximation is valid for the environmental
density of states around the energy shell �E

α , we are to show
that ∣∣ρS

αα − ρS0
αα

∣∣ � 2wM

�

dE
�α

d�

+ ε. (41)

Then, it is easy to see that the upper bounds given in Eqs. (24)
and (25) for |ρS

αα − ρS0
αα| are, in fact, valid independent of

the relation between � and 2wM . The opposite case with
invalidity of the linear approximation is briefly discussed at
the end of this section.

To deal with the case with validity of the linear approxi-
mation, basically, one may follow a procedure similar to that
adopted in the previous section. Note that, with � < 2wM ,
the previously discussed subregion REα

2 should shrink to zero.
Hence, when dividing the environmental spectrum into subre-
gions REα

κ , we use the following values of the parameters εκ ,

ε1 = Es − eS
α − wM, (42a)

ε2 = ε3 = Es − eS
α + 1

2
�, (42b)

ε4 = Es − eS
α + � + wM . (42c)

It is seen that the positions of ε1 and ε4 are unchanged, and
ε2 = ε3 indicate the middle of the energy window �E

α ; as a
result, REα

0 remains unchanged and REα
2 is empty.

The elements ρS
αα are also written as in Eq. (28) and can

be studied by the same method as that used previously. It is
easy to see that Fα2 = 0 and Fα0 remains unchanged. For Fακ

of κ = 1, 3, when the linear approximation is valid for the
environmental density of states, similar to Eq. (33), we find
that

Fακ = aκ (wM + �/2)
dE

�α

�
, κ = 1, 3, (43)

where the parameters aκ have properties similar to those
discussed previously. Putting these Fακ together, one gets that

ρS
αα = (a1 + a3)

(
wM

�
+ 1

2

)
dE

�α

d�

+ a0ε. (44)

This gives that

ρS
αα − ρS0

αα �
(

(a1 + a3)wM

�
+ a1 + a3

2
− 1

)
dE

�α

d�

+ a0ε.

(45)

Due to the facts that � < 2wM and 0 < a1,3 < 1, an upper
bound for the absolute value of the term within the big paren-
theses on the rhs of Eq. (45) is obtained with a1 = a3 = 1.
This gives the estimate in Eq. (41).

Finally, we briefly discuss the case that linear approx-
imation is invalid for the environmental density of states
around the energy shell �E

α . In this case, Fα2 and Fα0 are
the same as those discussed above, while Fακ of κ = 1, 3
in Eq. (43) is replaced by Fακ = aκ (wM + �/2)ρE

dos,κ . It is
seen that ρS

αα and ρS0
αα share no common item, as a result, no

concise expression is found for upper bound of the difference
|ρS

αα − ρS0
αα|.

C. Some applications of Eq. (25)

In this section, we discuss some applications of Eq. (25).
We first discuss some main features of its predictions for three
regimes of the interaction strength, in comparison with results
of Refs. [10–12]. Then, we discuss a specific situation, in
which EFs have the so-called Breit-Wigner shape.

1. Three regimes of interaction strength

The estimate in Eq. (25) was derived under the following
conditions: (i) ρH

dos � ρH0

dos, (ii) validity of linear approxima-
tion to the environmental density of states around the energy
shell �E

α , and (iii) d� � dSdE
�α , independent of the relation

between � and 2wM . Hence, it holds in a wide regime of
the S-E interaction strength, from extremely weak to strong.
Below, we discuss the three regimes of very weak, relatively
weak, and strong separately.

(i) Under interactions that are very weak such that
(wM/dS�) is close to zero, Eq. (25) predicts that the differ-
ence between ρS

αα and ρS0
αα can be neglected. Then, for an

environment whose density of states has an exponential shape,
the diagonal elements of the RDM, namely, ρS

αα , are quite
close to those of the Gibbs state ρS

G in Eq. (22). This is in
agreement with the known fact discussed in Refs. [10–12].

(ii) Under relatively weak interactions, for which the ratio
(wM/dS�) is not close to zero, but still small, Eq. (25) can
be regarded as a quantitative expression for some qualitative
arguments used in Ref. [12] to derive main results given there.

In this relatively weak interaction regime, the following
upper bound is given in Ref. [11] for the trace distance
between the two RDMs ρS and ρS0, denoted by D(ρS, ρS0),
which appeared as Eq. (2) there,

D(ρS, ρS0) � 4

√
‖HI‖∞

�
, ((2) − [11])

where ‖HI‖∞ indicates the maximum singular eigenvalue of
HI [4]. The two upper bounds given in Eq. (25) and Eq. (2)-
[11], although not identical, are qualitatively consistent due
to the fact that both wM and ‖HI‖∞ are small for weak
interactions.

To compare the above-discussed two bounds in a quanti-
tative way, as an example, one may consider a special case
in which the width wM is proportional to the parameter λ for
the interaction strength. (Another example will be given in
the next subsection.) If the ε-dependence of wM is wM ∝ 1/ε

[cf. Eq. (48) to be given below], then wM ∝ (λ/ε). As a
result, the rhs of Eq. (25) has a minimum value proportional
to

√
λ/�, at an appropriate value of the parameter ε. Then,

since ‖HI‖∞ ∝ λ, these two upper bounds show the same
dependence of

√
λ/�.
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(iii) Under interactions that are strong enough for the ratio
(wM/dS�) to be not small, it is possible for ρS

αα to deviate
notably from ρS0

αα and, as a result, for ρS to deviate notably
from the Gibbs state ρS

G. Even in this case, it is possible
for diagonal elements of ρS to be close to those of some
renormalized Gibbs state, which will be discussed in detail
in Sec. V A.

2. EFs with a Breit-Wigner form

Clearly, the width wM plays an important role in appli-
cations of Eq. (25). Below, as an illustration, we discuss a
case that is often met in realistic models, in which the EFs
and LDOS have on average a Breit-Wigner form [22,23],
described by the following Lorentz function f (E ),

f (E ) = 1

2π

ωBW

E2 + (ωBW/2)2
, (46)

with a width ωBW given by

ωBW � 2π
∣∣HI

rr′
∣∣2

ρdos, (47)

where ρdos indicates the density of states. Under this Breit-
Wigner form, making use of Eq. (9), it is straightforward to
find the following expression of wE and wL,

wE ,L = 2ωBW

πε
. (48)

Clearly, Eq. (47) predicts that ωBW ∝ λ2.
At a first sight, it seems that the smallness of the parameter

ε may imply largeness of wE in Eq. (48). However, this
is not necessarily true, because for a large quantum chaotic
environment it is possible for the rhs of Eq. (47) to be quite
small, such that ωE gets a small value at a given value of ε

[12]. (See Sec.V B 1 for more discussions.)
As another example of comparing the two upper bounds

given in Eq. (25) and Eq. (2)-[11], one may consider a case, in
which the EFs of |n〉 in the uncoupled basis have on average
a Breit-Wigner form. Substituting Eq. (48) into the rhs of
Eq. (25) for wM , one gets the following expression for it:

4ωBW

πdS�

1

ε
+ ε, (49)

which has a minimum value given by 4
√

ωBW/(πdS�). This
minimum value has the same dependence on � as the rhs
of Eq. (2)-[11], but the λ-dependence is different due to that
wBW ∝ λ2. Since

√
λ decreases slower than λ with decreasing

λ, one notes that the upper bound given in Eq. (25) is smaller
than that of Eq. (2)-[11] for sufficiently weak interactions.

IV. OFF-DIAGONAL ELEMENTS OF ρS

In this section, we discuss off-diagonal elements of ρS . In
Sec. IV A, we derive a generic expression for ρS

αβ with α �=
β. Then, in Sec. IV B, as an illustration of the generic result,
we discuss a model, in which the central system S is a two-
level system and the environment E is a many-body quantum
chaotic system. Finally, in Sec. IV C, comparisons are given
between the obtained results and those of Refs. [11,12,21].

A. A generic expression of ρS
αβ with α �= β

In this section, for a system S with a nondegenerate spec-
trum, we derive a generic expression for the off-diagonal
elements ρS

αβ , without any restriction to properties of the S-E
interaction. The expression is

ρS
αβ = 1

�S
βα

Qβα (α �= β ), (50)

where �S
βα := eS

β − eS
α . (See Eq. (58) given below for the

definition of Qβα .) Since ρS0
αβ = 0, this gives that

∣∣ρS
αβ − ρS0

αβ

∣∣ =
∣∣∣∣∣ Qβα

�S
βα

∣∣∣∣∣. (51)

To derive Eq. (50), one may start from the following
relation implied by the Schrödinger Eq. (3),

〈αi|HI |n〉 = (
En − eS

α − ei
)
Cn

αi. (52)

Multiplying both sides of Eq. (52) by Cn∗
βi and noting that the

equality obtained also holds under the exchange of α ↔ β,
one finds that

Cn∗
βi 〈αi|HI |n〉 = Cn∗

βi

(
En − eS

α − ei
)
Cn

αi, (53a)

Cn
αi〈n|HI |βi〉 = Cn

αi

(
En − eS

β − ei
)
Cn∗

βi . (53b)

This gives that

Cn∗
βi C

n
αi = 1

�S
βα

(
Cn∗

βi 〈αi|HI |n〉 − Cn
αi〈n|HI |βi〉). (54)

Substituting Eq. (54) into Eq. (17) and writing Cn∗
βi and Cn

αi as
〈n|βi〉 and 〈αi|n〉, respectively, one finds that

ρ
S(n)
αβ = 1

�S
βα

Qn
βα (β �= α), (55)

where

Qn
βα := 〈n|[Aβα, HI ]|n〉. (56)

Here, Aβα is an operator defined by

Aβα :=
∑

i

|βi〉〈αi| = |β〉〈α| ⊗ IE . (57)

From Eqs. (55) and (16), it is ready to get Eq. (50), with Qβα

defined as follows:

Qβα := d−1
�

∑
En∈�

Qn
βα. (58)

To see more clearly physical meaning of the commutator
[Aβα, HI ], let us consider a special case in which HI has a
direct-product form, namely,

HI = HIS ⊗ HIE , (59)

where HIS and HIE are operators acting on the two spaces HS

and HE , respectively. Elements of HIS and HIE in the bases
of |α〉 and of |i〉 are written as

HIS
αβ ≡ 〈α|HIS|β〉, (60a)

HIE
i j ≡ 〈i|HIE | j〉. (60b)
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Writing

HIS =
∑
α′β ′

HIS
α′β ′ |α′〉〈β ′|, (61)

one finds that

|β〉〈α|HI =
∑
β ′

HIS
αβ ′ |β〉〈β ′| ⊗ HIE , (62a)

HI |β〉〈α| =
∑
α′

HIS
α′β |α′〉〈α| ⊗ HIE . (62b)

This gives that

[Aβα, HI ] =
∑
α′

(
HIS

αα′ |β〉〈α′| − HIS
α′β |α′〉〈α|) ⊗ HIE , (63)

or explicitly,

[Aβα, HI ] = (
HIS

αα − HIS
ββ

)|β〉〈α| ⊗ HIE

+ HIS
αβ (|β〉〈β| − |α〉〈α|) ⊗ HIE

+
∑

α′( �=α,β )

(
HIS

αα′ |β〉〈α′| − HIS
α′β |α′〉〈α|) ⊗ HIE .

(64)

The above expression shows that [Aβα, HI ] can be regarded
as certain (non-Hermitian) “interaction Hamiltonian” with the
system part “rearranged.”

B. A model with a two-level central system and a quantum
chaotic environment

In this section, as an illustration of Eq. (50), we discuss
a model, in which the subsystem S is a two-level system (a
qubit) and the environment is a many-body quantum chaotic
system to which the ETH ansatz [15,16] is applicable. For
the simplicity in discussion, we assume that the interaction
Hamiltonian HI has the following properties:

(i) HI has a direct-product form, as given in Eq. (59), with
HIE being a local operator and HIS

αα = 0 for both values of α.
(ii) Within the considered energy region, the function h(e),

which appears in the ETH ansatz Eq. (67) given below, is a
constant denote by h0.

Under the conditions stated above, Eq. (64) gives that

[Aβα, HI ] = HIS
αβ (|β〉〈β| − |α〉〈α|) ⊗ HIE , (65)

with β �= α. Substituting this result into Eq. (56) and making
use of the expansion of |n〉 = ∑

αi Cn
αi|αi〉, one gets that

Qn
αβ = HIS

αβ

∑
i, j

(
Cn∗

βi C
n
β j − Cn∗

αi Cn
α j

)
HIE

i j . (66)

For a local operator HIE , the ETH ansatz predicts that

HIE
i j = h(ei )δi j + e−S(ei )/2g(ei, e j )Ri j, (67)

where h(e) is a slowly varying function of e, S(e) is pro-
portional to the particle number N of E and is related to the
microcanonical entropy in a semiclassical treatment, g(ei, e j )
is some smooth function of its variables (|g| being not large),
and the quantity Ri j has certain random feature with a normal
distribution (zero mean and unit variance).

Let us compare contributions from the two terms on the rhs
of Eq. (67) to Qn

αβ in Eq. (66). The contribution from the first
term is written as

HIS
αβ

∑
i

(∣∣Cn
βi

∣∣2 − ∣∣Cn
αi

∣∣2)
h(ei );

meanwhile, that from the second term is

HIS
αβ

∑
i, j

(
Cn∗

βi C
n
β j − Cn∗

αi Cn
α j

)
e−S(ei )/2g(ei, e j )Ri j .

When the value of [h(e0)
∑

i(|Cn
βi|2 − |Cn

αi|2)] is not very
small, due to the random feature of Ri j and the smallness of
the term e−S(E )/2 at large N , it is seen that the contribution
from the second term is much smaller than that of the first
term for a sufficiently large environment and, hence, can be
neglected.

Then, making use of Eqs. (16) and (17), one gets the
following expression of Qn

αβ :

Qn
βα � h0HIS

αβ

(
ρ

S(n)
ββ − ρS(n)

αα

)
. (68)

Substituting Eq. (68) into Eq. (55), one gets the following
simple relation among the elements of the RDM of a single
state |n〉,

ρ
S(n)
αβ � HIS

αβh0

�S
βα

(
ρ

S(n)
ββ − ρS(n)

αα

)
for α �= β. (69)

This implies the following relation for elements of ρS ,

ρS
αβ � HIS

αβh0

�S
βα

(
ρS

ββ − ρS
αα

)
(α �= β ). (70)

C. Comparison with results of Refs. [11,12,21]

In this section, we compare results given in the previous
two sections with those given in Refs. [11,12,21] for off-
diagonal elements ρS

αβ with α �= β.
We first discuss Ref. [12]. There, only a specific situation

was studied for off-diagonal elements ρS
αβ (Appendix C in

Ref. [12]), in which quantities like [HIS
αβh(e)/�S

βα] have very
small values. It is shown there that the off-diagonal elements
ρS

αβ have small values, when the dimension of the effective
environmental state space is large. This prediction is clearly
in agreement with Eq. (70) for a two-level central system. For
a multilevel system S, agreement can also be found by making
use of Eq. (84) to be derived later.

Next, we compare with Ref. [11]. It is easy to see that pre-
dictions of Eq. (51) and of Eq. (2)-[11] (as Eq. (2) of Ref. [11])
cannot always be consistent, because the latter contains a term
�−1/2, while, the former shows no explicit dependence on
�. The difference between the two predictions is seen more
clearly from Eq. (70) for a two-level system, which shows that
the value of |ρS

αβ − ρS0
αβ | does not necessarily decrease with

increasing �.
To be precise, let us consider a solvable example, in which

the interaction Hamiltonian has the simple form of HI =
HIS ⊗ IE with [HIS, HS] �= 0. Clearly, one may equivalently
take H̃S = HS + HIS as the self-Hamiltonian of S, with a
vanishing interaction Hamiltonian; in other words, the total
Hamiltonian H can be reformulated as H = H̃S + HE . Under
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this formulation of H , following arguments similar to those
leading to Eq. (20), one finds that the RDM ρS has the
following elements in the eigenbasis of H̃S , denoted by |̃α〉,

ρS
α̃α̃ = 1

d�0
dE

�α̃, ρS
α̃β̃

= 0 (̃α �= β̃ ), (71)

where dE
�α̃ is similar to dE

�α but related to the state |̃α〉.
Transforming from the basis {|̃α〉} to {|α〉}, since [HS, HIS] �=
0, ρS usually gets nonzero off-diagonal elements ρS

αβ (unless
the values of dE

�α̃ are independent of the label α̃), which do not
depend on the value of �.

It is not difficult to check that the above-discussed nonzero
ρS

αβ obtained from Eq. (71) are consistent with Eq. (70)
related to the formulation of H = HS + HI + HE . (See also
discussions to be given later in the second part of Sec.V B 3.)
In contrast, the obtained nonzero ρS

αβ conflict with the pre-
diction of Eq. (2)-[11] that they should decrease as

√
1/� or

faster with increasing �. This confliction suggests that Eq.
(2)-[11] may work under a condition stricter than that given in
Ref. [11].7

Finally, a formula given in Ref. [21] for a long-time aver-
aged RDM has a form similar to Eq. (70). In fact, that formula
of Ref. [21] can be derived from Eq. (70) [24].

V. GIBBS STATES WITH IMPACT OF INTERACTION

In this section, we discuss applications of the generic
results given in Eqs. (25) and (51). For brevity, those re-
quirements that have been used in the derivation of these two
equations are not to be mentioned below, though they need to
be satisfied.

Specifically, we discuss situations in which the RDM ρS

may have a Gibbs form, besides the well-known case with
very weak S-E interactions.8 In fact, when the interaction
is not very weak, the values of (wM/dS�) and |Qβα/�S

βα|
may be nonnegligible and, as a result, ρS may show notable
deviation from the Gibbs state ρS

G in Eq. (22); this possibility
has already been observed in many numerical simulations
(see, e.g., Refs. [25,26]). To study this case analytically, a
widely adopted idea is that, instead of HS used in ρS

G, one
may consider a renormalized self-Hamiltonian of the system,
which takes into account some impact of the interaction (see,
e.g., Ref. [27]).

Below, we show that Eqs. (25) and (51) supply a generic
and reliable framework for realizing the idea mentioned
above. Specifically, in Sec. V A, we give further discussions
for renormalized self-Hamiltonian and its usage in Gibbs
state. Then, in Sec.V B, we show that it is possible for ρS to
be close to a renormalized Gibbs state for a big class of (total)
systems of physical interest.

7Since the proof of Eq. (2)-[11] given in Ref. [11] is sketchy, it is
difficult to give a more detailed comparison.

8When the interaction is sufficiently weak such that wM/dS� � 1
(with ε � 1) and |Qβα/�

S
βα| � 1, closeness of ρS to ρS

G is a direct
prediction of Eqs. (25) and (51). This is independent of the type of
the environment (e.g., integrable or chaotic).

A. Renormalized Gibbs state

In this section, we discuss a formulation for Gibbs states
with renormalized self-Hamiltonians. Within this formulation,
a sufficient condition for the closeness of ρS to Gibbs state can
be easily expressed [see Eq. (77) to be given below].

The possibility of introducing a renormalized self-
Hamiltonian for the system S is rooted in the fact that the
total Hamiltonian in Eq. (1) can always be reformulated in
the following way:

H = H̃S + H̃ I + HE , (72)

where

H̃S = HS + OS, (73a)

H̃ I = HI − OS ⊗ IE , (73b)

with OS an operator that acts on the state space of the system
S. The operator H̃S can be regarded as a renormalized self-
Hamiltonian of the system S and H̃ I as the corresponding
renormalized interaction Hamiltonian. We assume that the
spectrum of H̃S is nondegenerate, too. It is not difficult to
check that all the generic relations derived in previous sec-
tions, particularly Eqs. (25) and (51), remain valid with this
reformulation of the total Hamiltonian.

Hereafter, we use tilde to indicate items that are obtained
under the above-discussed reformulation of the total Hamil-
tonian, if some change may be caused. For example, we use
|̃α〉 to indicate eigenstates of H̃S . While no tilde is used if
no change may be caused. For example, the RDM ρS is
independent of the reformulation and, hence, there is no need
to write a tilde above it; similarly, the states |n〉 and |i〉 are also
independent of the reformulation.

Some quantities and relations with tilde are listed below:

H̃S |̃α〉 = eS
α̃ |̃α〉, (74a)

�S
β̃α̃

= eS
β̃

− eS
α̃, (74b)

Aβ̃α̃ = |̃β〉〈̃α| ⊗ IE , (74c)

Q̃n
β̃α̃

= 〈n|[Aβ̃α̃, H̃ I ]|n〉. (74d)

We use w̃M to indicate a width similar to wM but related to
uncoupled states given by |Ẽr〉 ≡ |̃αi〉. It is not difficult to
verify that ρ̃S0, the RDM obtained in the case of H̃ I = 0,
satisfies relations similar to those given in Eq. (21), that is

ρ̃S0 � ρ̃S
G, (75)

where

ρ̃S
G = e−βH̃S

/Tre−βH̃S
. (76)

For brevity, we call ρ̃S
G, a Gibbs state with a renormalized self-

Hamiltonian, a renormalized Gibbs state.
From the reformulated forms of Eqs. (25) and (51) with

tilde, it is easy to find a sufficient condition for ρS � ρ̃S
G, as

stated below.
(1) If an operator OS exists, for which the following

relations hold with ε � 1,

w̃M/dS� � 1, (77a)∣∣Q̃β̃α̃/�S
β̃α̃

∣∣ � 1, ∀β̃ �= α̃, (77b)

then ρS � ρ̃S
G.
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We use Ssw to indicate the set of operators OS for which
Eq. (77a) is satisfied, with “sw” standing for “small width”;
and use SsQ to indicate the set of operators OS for which
Eq. (77b) is satisfied, with “sQ” standing for “small Q.”

For an operator OS ∈ Ssw, one has |ρS
α̃α̃ − ρ̃S0

α̃α̃| � 1 ac-
cording to Eq. (25) with tilde; this tells that ρ̃S

G supplies an
appropriate description for diagonal elements of the RDM ρS

in the renormalized basis {|̃α〉}. In other words, an operator
OS ∈ Ssw gives a useful description for the influence of the
S-E interaction in these diagonal elements of ρS . Meanwhile,
for an operator OS ∈ SsQ, one has |ρS

α̃β̃
| � 1 with α̃ �= β̃

according to Eq. (51) with tilde; this means that the RDM ρS

is approximately decohered in the eigenbasis of H̃S . Thus, the
eigenbasis of H̃S given by OS ∈ SsQ may supply a statistically
preferred basis.9

The above-discussed sufficient condition for the closeness
of ρS to ρ̃S

G can be rewritten as

Ssw

⋂
SsQ �= ∅, (78)

where ∅ indicates the empty set. When the overlap of Ssw and
SsQ is empty, the RDM ρS does not necessarily have a Gibbs
form. In fact, for a generic total system, since the restriction to
the operator OS given in Eq. (77a) is quite different from that
given in Eq. (77b), there is no reason to expect that the two
sets Ssw and SsQ must have a nonempty overlap.

One remark: In some special cases of the total system, the
value of q1 in Eq. (38) may be evaluated. In such a case, one
may directly use Eq. (23) with tilde, instead of Eq. (25) with
tilde, in the above discussions. Then, one gets a sufficient and
necessary condition for ρS � ρ̃S

G, which is obtained by simply
multiplying the left-hand side of the inequality in Eq. (77a) by
|q1|.

B. Gibbs form of ρS for a big class of systems

As discussed above, for a generic total system with a
nonweak S-E interaction, it is unnecessary for ρS to possess
a Gibbs form. Physically, of more interest is to study systems
with physical restrictions, to see whether ρS may possess a
Gibbs form.

In this section, we show that it is possible for ρS to be close
to ρ̃S

G for a big class of systems of physical relevance, when
the interaction described by HI is not very weak. We first
specify the class of systems in Sec.V B 1, next, show validity
of Eq. (77) for a direct-product form of HI in Sec. V B 2,
then, discuss a generic form of the interaction Hamiltonian in
Sec. V B 3, and finally, give a simple solvable example and
some final remarks in Sec. V B 4.

1. A big class of systems

The class of systems to be studied includes S + E-type
systems that satisfy the following three requirements.

(i) The interaction Hamiltonian HI is local in its environ-
mental part.

9For a further discussion about preferred basis, see the last para-
graph of Sec. VII.

(ii) The environment is a many-body quantum chaotic
system, to which the ETH ansatz is applicable.

(iii) There exists an operator OS , denoted by OS
sw, for

which the EFs of |n〉 on the basis {|Ẽr〉} are narrow, in
particular, w̃M � � and w̃M � min{|�S

αβ | with α �= β}.
One notes that narrowness of EFs usually implies narrow-

ness of LDOS.
In most physical models, interactions are local. Moreover,

although the exact condition under which the ETH ansatz is
applicable is still unclear, it is expected valid at least for local
operators in many-body quantum chaotic systems [16,17].
Hence, there are many physical models that satisfy the first
two requirements listed above.

To have a further understanding about the third require-
ment, we recall a mechanism discussed in Ref. [12], by which
widths of the total EFs may be considerably reduced, when
the environment E is a many-body quantum chaotic system.
There, it is shown that, taking OS as a partial trace of HI over
certain effective environmental state space, an upper bound of
the width w̃E is proportional to 1/�E , where �E represents
the total energy scale of the environment. As a result, with
other parameters unchanged, by increasing the size of the
environment one may get small w̃E . In other words, large size
of the chaotic environment may considerably suppress widths
of the total EFs in the uncoupled basis.

Based on the above discussions, we conclude that there
is a big class of systems that fulfills the above-listed three
requirements.

2. A direct-product form of local interaction

In this subsection, we study the class of systems specified
above, when the interaction Hamiltonian HI has the direct-
product form in Eq. (59) with a local operator HIE . We are
to show that Eq. (77b) is usually valid. Together with the
property of w̃M � � which guarantees Eq. (77a), this result
implies that ρS � ρ̃S

G, with H̃S = HS + OS
sw.

To show validity of Eq. (77b), the key point lies in proper-
ties of the quantity Q̃n

β̃α̃
defined in Eq. (74d). Before dealing

with this quantity, it proves convenient to first study a related
quantity Qn

β̃α̃
, defined by

Qn
β̃α̃

:= 〈n|[Aβ̃α̃, HI ]|n〉. (79)

Clearly, the commutator [Aβ̃α̃, HI ] has an expression similar
to Eq. (64). Substituting this expression into Eq. (79) and
inserting

∑
i |i〉〈i|, one finds that

Qn
β̃α̃

=
∑

i j

{(
HIS

α̃α̃ − HIS
β̃β̃

)〈n|̃βi〉〈̃α j|n〉HIE
i j

+ HIS
α̃β̃

(〈n|̃βi〉〈β̃ j|n〉 − 〈n|̃αi〉〈̃α j|n〉)HIE
i j

+
∑

α̃′( �=α̃,̃β )

(
HIS

α̃α̃′ 〈n|̃βi〉〈̃α′ j|n〉

− HIS
α̃′β̃〈n|̃α′i〉〈̃α j|n〉)HIE

i j

}
. (80)

The rhs of Eq. (80) can be simplified. To this end, we note
that the main-body region of the EF of |n〉 in the basis {|Ẽr〉},
which contains all its significant components, lies within the
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energy region of [En − w̃M, En + w̃M] [cf. Eq. (13a)]. In the
equivalent |̃αi〉 form of the basis, this implies the following
approximate expression of |n〉,

|n〉 �
∑

α̃

∑
ei∈ϒn

α̃

Cn
α̃i |̃αi〉, (81)

where ϒn
α̃ indicates the environmental energy region of [En −

eS
α̃ − w̃M, En − eS

α̃ + w̃M]. The smallness of w̃M implies nar-
rowness of each region ϒn

α̃ . As a result, for ei ∈ ϒn
α̃ , one

has ei � En − eS
α̃; and, since w̃M � min{|�S

αβ |}, there is no
overlap between ϒn

α̃ of different α̃.
To see influences of the above-discussed properties of the

EFs in the quantity Qn
β̃α̃

, as an example, let us consider the first

part of the rhs of Eq. (80), namely,
∑

i j HIS
α̃α̃〈n|̃βi〉〈̃α j|n〉HIE

i j ,
which we denote by W1. Substituting Eq. (81) into W1, one
finds that

W1 � HIS
α̃α̃

∑
ei∈ϒn

β̃

∑
e j∈ϒn

α̃

Cn∗
β̃i

Cn
α̃ jH

IE
i j , α̃ �= β̃. (82)

Note that the term HIE
i j is already given in Eq. (67) by the

ETH ansatz. Since ϒn
α̃ and ϒn

β̃
have no overlap, the first part

on the rhs of Eq. (67) gives negligible contribution to W1.
Furthermore, we note that∣∣∣∣∣∣

∑
ei∈ϒn

β̃

∑
e j∈ϒn

α̃

Cn∗
β̃i

Cn
α̃ jRi j

∣∣∣∣∣∣ < 1; (83)

hence, due to the term e−S/2, the second part on the rhs of
Eq. (67) also gives negligible contribution to W1.

Other parts of the rhs of Eq. (80) can be discussed in a
similar way. It turns out that nonnegligible contributions to
Qn

β̃α̃
come from the middle line of Eq. (80), with HIE

i j given
by the first part on the rhs of Eq. (67). The result is

Qn
β̃α̃

�
∑

i

HIS
α̃β̃

(|〈n|̃βi〉|2 − |〈n|̃αi〉|2)h(ei )

� HIS
α̃β̃

[
h
(
En − eS

β̃

)
ρ

S(n)
β̃β̃

− h
(
En − eS

α̃

)
ρ

S(n)
α̃α̃

]
, (84)

where ρ
S(n)
α̃α̃ is defined in Eq. (17) and slow variation of the

function h(e) has been used in the derivation of the second
equality.

Now, we discuss the quantity Q̃n
β̃α̃

. Let us consider the

difference �Qn
β̃α̃

:= Q̃n
β̃α̃

− Qn
β̃α̃

. Clearly, it has the following
expression:

�Qn
β̃α̃

= −〈n|[Aβ̃α̃, OS
sw ⊗ IE

]|n〉, (85)

which has a form similar to Qn
β̃α̃

in Eq. (79). Hence, this

difference can be written in a form like Eq. (80), but with HIS

replaced by (−OS
sw) and HIE by IE . Then, making use of the

fact that IEi j ≡ 〈i|IE | j〉 = δi j , similar to Eq. (84), one gets that

�Qn
β̃α̃

� (
OS

sw

)
α̃β̃

(
ρ

S(n)
α̃α̃ − ρ

S(n)
β̃β̃

)
, (86)

where (OS
sw)α̃β̃ = 〈̃α|OS

sw |̃β〉. This gives that

Q̃n
β̃α̃

� [
HIS

α̃β̃
h
(
En − eS

β̃

) − (
OS

sw

)
α̃β̃

]
ρ

S(n)
β̃β̃

− [
HIS

α̃β̃
h
(
En − eS

α̃

) − (
OS

sw

)
α̃β̃

]
ρ

S(n)
α̃α̃ . (87)

To go further, we note that the assumed smallness of w̃M

should require some restriction to properties of the interaction.
To see this point clearly, let us consider an arbitrary pair of ba-
sis states, say, |̃αi〉 and |̃βi〉, with the same label i and α̃ �= β̃.
The level spacing of these two states is given by �S

β̃α̃
. Making

use of the ETH ansatz, one finds that the coupling between
these two states, i.e., the off-diagonal element 〈̃αi|H̃ I |̃βi〉, is
written as

〈̃αi|H̃ I |̃βi〉 � HIS
α̃β̃

h(ei ) − (
OS

sw

)
α̃β̃

. (88)

According to the perturbation theory, the assumed narrowness
of the EF of |n〉 usually requires that |〈̃αi|H̃ I |̃βi〉/�S

β̃α̃
| � 1,

at least for those levels ei that are not far from the values
of (En − eS

α̃(β̃ )
). Then, making use of Eq. (87), one finds that

|Q̃n
β̃α̃

/�S
β̃α̃

| � 1. Therefore, Eq. (77b) usually holds.

3. A generic form of local interaction

In this subsection, for the class of systems discussed above,
we show that Eq. (77b) also holds under a generic local
interaction Hamiltonian, implying that ρS � ρ̃S

G.
A generic HI can always be written as a sum of direct-

product terms, i.e.,

HI =
∑

ν

HI,ν , (89)

where

HI,ν =
∑

ν

HIS,ν ⊗ HIE,ν . (90)

Locality of the interaction implies that all the operators HIE,ν

are local operators. The ETH ansatz is applicable to each of
them. We assume that the number of the terms HI,ν , namely,∑

ν 1, is not large.
To study this generic case, we write Qn

β̃α̃
as Qn

β̃α̃
=∑

ν Qn,ν

β̃α̃
, where

Qn,ν

β̃α̃
= 〈n|[Aβ̃α̃, HI,ν]|n〉. (91)

It is easy to see that the quantity Qn,ν

β̃α̃
can be treated in exactly

the same way as done in the previous subsection for Qn
β̃α̃

and,
as a result, similar to Eq. (84), it is written as

Qn,ν

β̃α̃
� HIS,ν

α̃β̃

(
hν

(
En − eS

β̃

)
ρ

S(n)
β̃β̃

− hν
(
En − eS

α̃

)
ρ

S(n)
α̃α̃

)
, (92)

where hν (e) indicates a function that appears when the ETH
ansatz is applied to the operator HIE,ν [cf. Eq. (67)]. Then,
noting that Eq. (86) is still valid, one finds that

Q̃n
β̃α̃

�
[(

OS
sw

)
α̃β̃

−
∑

ν

HIS,ν

α̃β̃
hν

(
En − eS

α̃

)]
ρ

S(n)
α̃α̃ ,

−
[(

OS
sw

)
α̃β̃

−
∑

ν

HIS,ν

α̃β̃
hν

(
En − eS

β̃

)]
ρ

S(n)
β̃β̃

. (93)
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For the same reason as that discussed in the previous
subsection, the assumed narrowness of the EF of |n〉 usually
requires that |〈̃αi|H̃ I |̃βi〉/�S

β̃α̃
| � 1. It is easy to check that

the elements 〈̃αi|H̃ I |̃βi〉 are now written as

〈̃αi|H̃ I |̃βi〉 � −(
OS

sw

)
α̃β̃

+
∑

ν

HIS,ν

α̃β̃
hν (ei ). (94)

Then, it is ready to see that |Q̃n
β̃α̃

/�S
β̃α̃

| � 1. Therefore, usu-
ally Eq. (77b) holds, too.

4. One example and some concluding remarks

In this subsection, as an example, we consider the model
discussed in Sec. IV B and explicitly show closeness of ρS to
ρ̃S

G under nonweak interactions. We also give some concluding
remarks.

In the model discussed in Sec. IV B, making use of
Eq. (70), it is straightforward to verify that ρS has the fol-
lowing matrix form in the eigenbasis of HS ,

[ρS] � ρS
ββ − ρS

αα

�S
βα

(
0 HIS

αβh0

HIS
βαh0 �S

βα

)
+ ρS

αα

(
1 0
0 1

)
. (95)

The main result of Ref. [12] is applicable to this model, which
shows that w̃E is small for a sufficiently large environment,
with a renormalized self-Hamiltonian H̃S = HS + h0HIS; this
implies that OS

sw = h0HIS . Hence, this model belongs to the
big class of systems discussed above.

In the basis of |α〉, H̃S has the following matrix form:

[H̃S] =
(

eS
α HIS

αβh0

HIS
βαh0 eS

β

)
. (96)

From the above expressions, it is seen that [ρS] and [H̃S]
are diagonalized by almost a same transformation. Then, it
is straightforward to check that Eq. (77) is satisfied and ρS �
ρ̃S

G.
Finally, we give some remarks on properties of a many-

body quantum chaotic system with local interactions, which
is described by a MC ensemble. Let us consider a division of
this system into a small part S and a large part E . This S + E
configuration of the system belongs to the class of systems
discussed previously, if E is a sufficiently large quantum
chaotic system and if the mechanism discussed in Ref. [12]
for narrowness of EFs works. Then, according to discussions
given previously, even with nonweak interactions, all such
small parts S are described by (renormalized) Gibbs states
with a same temperature, which is determined by the density
of states of the total system.

VI. RDM COMPUTED FROM TYPICAL STATES

In this section, we discuss the RDM of S, which is com-
puted from a typical state of the total system in the energy
shell �. We denote it by ρS

ty. In particular, we derive estimates
to the elements (ρS

ty )αβ ≡ 〈α|ρS
ty|β〉, which may enable one to

get details of the difference between ρS
ty and the previously

discussed RDM ρS . For brevity, we use O(x) to indicate an
undetermined quantity, whose order of magnitude is the same
as that of a quantity x.

A. Basic properties of ρS
ty

We use |��
ty〉 to denote a normalized typical vector in the

subspace H� , written as∣∣��
ty

〉 = N −1
�

∑
En∈�

Dn|n〉, (97)

where the real and imaginary parts of Dn are independent
Gaussian random variables, with mean zero and variance 1/2,
and N� is the normalization coefficient. The RDM ρS

ty is given
by

ρS
ty = TrE

(∣∣��
ty

〉〈
��

ty

∣∣). (98)

As shown in Ref. [9], the averaged trace distance between ρS

and ρS
ty satisfies

〈
D

(
ρS, ρS

ty

)〉
� 1

2

√
d2

S

d�

. (99)

To study ρS
ty, we expand the typical state |��

ty〉 according to
the system S’s states |α〉, i.e.,∣∣��

ty

〉 = N −1
�

∑
α

|α〉∣∣�E
α

〉
, (100)

where ∣∣�E
α

〉 =
∑

i

(∑
En∈�

DnC
n
αi

)
|i〉. (101)

It is easy to verify that(
ρS

ty

)
αβ

= N −2
�

〈
�E

β

∣∣�E
α

〉
, (102)〈

�E
β

∣∣�E
α

〉 =
∑

i

∑
En∈�

∑
En′ ∈�

D∗
nDn′Cn∗

βi C
n′
αi. (103)

From Eq. (97) and the randomness of the coefficients Dn, one
finds that

N 2
� =

∑
En∈�

|Dn|2 = d� + O(
√

d� ), (104)

and, as a result,(
ρS

ty

)
αβ

= 1

d�

[
1 + O

(
1√
d�

)]〈
�E

β

∣∣�E
α

〉
. (105)

In the two sections following this one, we discuss proper-
ties of the diagonal part 〈�E

α |�E
α 〉 and of the off-diagonal part

〈�E
β |�E

α 〉 with α �= β, separately. There, it proves convenient
to divide the overlap 〈�E

β |�E
α 〉 into two parts,〈

�E
β

∣∣�E
α

〉 = K (1)
βα + K (2)

βα , (106)

where K (1)
βα represents the diagonal contribution of the rhs

of Eq. (103) with n = n′ and K (2)
βα is for the off-diagonal

contribution with n �= n′.

B. Diagonal overlap—〈�E
α |�E

α 〉
In this section, we derive estimates to the two quantities

K (1)
αα and K (2)

αα , from which an estimate to 〈�E
α |�E

α 〉 can be
gotten from Eq. (106).
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1. An estimate to K (1)
αα

By definition, the quantity K (1)
αα is written as

K (1)
αα =

∑
En∈�

|Dn|2Bαn, (107)

where

Bαn =
∑

i

∣∣Cn
αi

∣∣2
. (108)

We use Bα to indicate the average value of Bαn within the
energy shell �, i.e.,

Bα := 1

d�

∑
En∈�

Bαn. (109)

It is straightforward to verify that the RDM element ρS
αα [see

Eq. (16)] is equal to Bα , i.e.,

ρS
αα = Bα. (110)

Since the average of |Dn|2 is equal to 1, the sum of∑
En∈� (|Dn|2 − 1)Bαn has an absolute value that has the same

order of magnitude as ρS
αα

√
d� . Then, from Eq. (107) one gets

that

K (1)
αα = d�ρS

αα + ρS
ααeiϕ1 O(

√
d� ), (111)

where ϕ1 is equal to either 0 or π in a random way. Note that
ρS

αα are elements of ρS discussed in previous sections.

2. An estimate to K (2)
αα

The quantity K (2)
αα is defined by

K (2)
αα =

∑
i

Jαi, (112)

where

Jαi =
∑
En∈�

∑
En′ ( �=En )∈�

D∗
nDn′Cn∗

αi Cn′
αi. (113)

Below, we show that

K (2)
αα =

√
NEα

2 eiθ2 O(1) + (σ1eiθ1 + σ3eiθ3 )

√
2wLdE

�α

�
O(1)

− a2ε

√
NEα

2 eiθ2 O(1) + b0ε
√

d�eiθ0 O(1), (114)

where θ0,1,2,3 = 0 or π in a random way, and σ1,3 and b0 are
undetermined parameters satisfying 0 < σ1,3, b0 < 1. Equa-
tion (114) shows that, for a large d� , usually K (2)

αα gives a small
contribution to (ρS

ty )αα in Eq. (105).
To derive Eq. (114), we divide K (2)

αα into subparts according
to the regions REα

κ , like what was done in Sec. III A, that is

K (2)
αα =

3∑
κ=0

K (2)
αα,κ , (115)

where

K (2)
αα,κ =

∑
ei∈REα

κ

Jαi. (116)

It proves convenient to introduce the following quantity:

Iαi =
∑
En∈�

|Dn|2
∣∣Cn

αi

∣∣2
. (117)

We note that, due to the randomness of the components Dn,
usually, Jαi and Iαi have the following relation:

Jαi = Iαie
iϑi O(1), (118)

with ϑi = 0 or π in a random way.
First, we discuss the term K (2)

αα,2, the contribution coming
from the central region REα

2 . For ei lying in this region, like Iαi

in Eq. (31), Iαi also fluctuate around (1 − a2ε). Then, making
use of Eq. (118), one finds that

K (2)
αα,2 =

√
NEα

2 (1 − a2ε)eiθ2 O(1), (119)

with θ2 = 0 or π in a random way.
Second, we discuss K (2)

αα,1, coming from the region REα
1 .

We use i0 and i f to indicate the starting and ending labels of
REα

1 . In this region, Iαi is close 1 for ei close to the region
REα

2 , while, it is small for ei close to the region REα
0 . Loosely

speaking, with the label i increasing from i0 to i f , Iαi increases
on average from some value close to 0 to some value close to
1. It is this difference in the values of Iαi that makes it uneasy
to get an estimate to K (2)

αα,1.
To circumvent the above-mentioned difficulty, we con-

struct new variables from Jαi. At the first step, we construct
a series of variables, denoted by X (1)

s with s = 0, 1 . . . , s f ,
where s f is given by the integer part of (i f − i0)/2. Specifi-
cally,

X (1)
s = Jα(i0+s) + Jα(i f −s) for s = 0, 1 . . . , s f − 1; (120)

X (1)
s f

is given by Eq. (120) if (i f − i0) is odd, otherwise, X (1)
s f

=
Jα(i0+s f ). Clearly, the variance of X (1)

s is equal to the sum of the
variances of Jα(i0+s) and Jα(i f −s) for s � s f − 1. We proceed
following the above procedure, until an Lth step is reached, at
which most X (L)

t have similar variances. It is easy to see that

K (2)
αα,1 =

∑
t

X (L)
t . (121)

We assume that NEα
1 is sufficiently large, such that NEα

1 � 2L.
Note that the number of the variables X (L)

t at the Lth step is
about NEα

1 /2L.
According to the construction of X (L)

t , the sum of the
variances of X (L)

t over t is equal to that of Jαi over i with
ei ∈ K (2)

αα,1. This implies that the averaged variance of X (L)
t is

around (σ 2
1 2L ), where σ 2

1 is the averaged variance of these Jαi.
Then, one finds that

K (2)
αα,1 = σ1eiθ1

√
NEα

1 O(1), (122)

with θ1 = 0 or π in a random way. The above arguments
are also applicable to K (2)

αα,3. Thus, when the environmental
density of states does not change much around the energy
shell �0, we find that

K (2)
αα,κ = σκeiθκ

√
2wLdE

�α

�
O(1) for κ = 1, 3. (123)

It is easy to check that 0 < σ1,3 < 1.

012127-13



WEN-GE WANG PHYSICAL REVIEW E 102, 012127 (2020)

Third, we discuss K (2)
αα,0, coming from ei lying in the region

REα
0 . Making use of Eq. (118), we write it in the following

form:

K (2)
αα,0 =

∑
En∈�

|Dn|2
⎛⎝ ∑

ei∈REα
0

∣∣Cn
αi

∣∣2
xi

⎞⎠, (124)

where xi represents a random variable, whose variance is of
the order of magnitude of 1. Noting Eq. (34), one sees that∣∣∣∣∣∣

∑
ei∈REα

0

∣∣Cn
αi

∣∣2
xi

∣∣∣∣∣∣ = b0ε, (125)

where b0 is some undetermined parameter satisfying 0 <

b0 < 1 (usually b0 � 1). Then, one gets that

K (2)
αα,0 = b0ε

√
d�eiθ0 O(1), (126)

with θ0 = 0 or π in a random way. Summarizing the above
results, one finally gets Eq. (114).

C. Off-diagonal terms

For an off-diagonal term 〈�E
β |�E

α 〉 with α �= β, its two
parts are written in the following forms:

K (1)
βα =

∑
En∈�

∑
i

|Dn|2Cn∗
βi C

n
αi, (127)

K (2)
βα =

∑
En∈�

∑
En′ ( �=En )∈�

∑
i

D∗
nDn′Cn∗

βi C
n′
αi. (128)

The two quantities K (1)
βα and K (2)

βα can be studied by a method
similar to that used in the previous section for diagonal terms,
and qualitatively similar results can be obtained.

For example, to study K (1)
βα , we write it as

K (1)
βα =

∑
En∈�

|Dn|2ρn
αβ. (129)

Similar to K (1)
αα discussed previously, one finds that

K (1)
βα = d�ρS

βα +
√

d�eiθβα O(σβα ), (130)

where θβα is some undetermined phase and σ 2
βα represents the

variance of ρn
βα .

Finally, substituting results thus obtained for the off-
diagonal contributions 〈�E

β |�E
α 〉 and the previously obtained

results for diagonal elements in Eqs. (111) and (114) into
Eq. (105), it is straightforward to get an estimate to [ρS

αβ −
(ρS

ty )αβ].

VII. CONCLUSIONS AND DISCUSSIONS

Main results of this paper consist of two parts. The first part
supplies a generic framework for the study of closeness of the
RDM ρS of a generic interacting small system to the Gibbs
state. The second part contains a sufficient condition for the
above-mentioned closeness and, as an application, a study of
a big class of systems of physical relevance.

In the first part, we consider a generic, isolated, and large
quantum system, which is described by a MC ensemble; it
is divided into a generic small subsystem S, with a RDM
ρS , and an environment E . There are two restrictions to the
systems: (i) The system S has a nondegenerate spectrum; and
(ii) the S-E interaction is not very strong, such that it has
negligible influence in the density of states of the total system.
We have studied the difference between the elements of ρS

in the eigenbasis of the subsystem’s self-Hamiltonian and the
corresponding elements of ρS0, the latter of which is the DRM
obtained in the case of none S-E interaction.

Specifically, upper bounds have been derived for the differ-
ence between diagonal elements, which are mainly confined
by the ratio of the maximum width of the total EFs in the
uncoupled basis to the width of the MC energy shell. Mean-
while, the difference between off-diagonal elements has been
found given by the ratio of certain property of the interaction
Hamiltonian to the related level spacing of the system S. These
results show that, although ρS and the Gibbs state are close
under sufficiently weak S-E interactions, notable deviation
may appear under interactions not very weak. Besides, the
difference has also been studied between ρS and the RDM
that is computed from a typical state of the total system.

The second part contains applications of generic results
of the first part, for S-E interactions that are not necessarily
weak. A sufficient condition is given, under which ρS is close
to a Gibbs state that contains a renormalized self-Hamiltonian
of S; the renormalization is due to impact of the interaction.
For a big class of total systems of physical relevance, ρS are
shown to be usually close to (renormalized) Gibbs states. In
this class, a total system contains a subsystem S that is locally
coupled to an environment as a many-body quantum chaotic
system, to which the ETH ansatz is applicable.

The above-discussed results may be useful in the study of
several important topics of current interest, such as thermal-
ization, quantum thermodynamics, and decoherence. As an
example, the possibility of closeness of ρS to a (renormalized)
Gibbs state under nonweak S-E interactions should be useful
in the study of some thermalization processes. Particularly,
this is because, if such a Gibbs state may exist and be found,
it may represent a steady state of some thermalization process.
Moreover, this closeness and the expression of the renormal-
ized self-Hamiltonian of S (if found) may supply important
clues, when deriving a master equation for a related process,

As another example, the results may also find applications
in the study of an important concept in the field of decoher-
ence, i.e., the so-called preferred (pointer) basis [28–35]. For
example, suppose that a renormalized Gibbs state supplies an
appropriate description for a steady state of a thermalization
process with decoherence. Then, the eigenbasis of the related
renormalized self-Hamiltonian may give a (statistically) pre-
ferred basis [36].
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