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Transient dynamics in a nonequilibrium superdiffusive reaction-diffusion process:
Nonequilibrium random search as a case study
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Transient regimes, often difficult to characterize, can be fundamental in establishing final steady states features
of reaction-diffusion phenomena. This is particularly true in ecological problems. Here, through both numerical
simulations and an analytic approximation, we analyze the transient of a nonequilibrium superdiffusive random
search when the targets are created at a certain rate and annihilated upon encounters (a key dynamics, e.g., in
biological foraging). The steady state is achieved when the number of targets stabilizes to a constant value.
Our results unveil how key features of the steady state are closely associated to the particularities of the initial
evolution. The searching efficiency variation in time is also obtained. It presents a rather surprising universal
behavior at the asymptotic limit. These analyses shed some light into the general relevance of transients in
reaction-diffusion systems.
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I. INTRODUCTION

The usual approach in the study of natural processes fo-
cuses on their stationary behavior (or at steady states [1]),
with much less attention being paid to the initial evolution.
But transients can strongly influence a system’s relaxation
[2–6], determining many of its final properties [3,7,8]. As
discussed in Ref. [3], aspects such as (a) the transient duration
[6], (b) the nature of its dynamics [4,9], (c) the interconnection
between the transient and the steady states characteristics [7],
and (d) the state variables final values dependence on the tran-
sient [5,7] can be essential to fathom statistical equilibrium.

To comprehend the long-term effects of the transient is
not only a basic question. It bears many applications, such
as controlling engineering systems [10] (as diverse as those
based on thermal convection [11] or nuclear reactors [12]),
weather prediction [7,13], and understanding activation and
pattern formation in biological cells [14,15]. As a concrete
example, the above issues are relevant in ecology since
the involved timescales are frequently still away from their
asymptotic limits [16]. So, abrupt or strong behavioral shifts
may have causation not due to environmental or the species’
interactions, but due to not-yet-stabilized dynamics [17].

Reaction-diffusion processes are an important class of
stochastic phenomena in which the evolution at short times
can be determinant for their long run behavior [9,14,16,18].
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This may even be enhanced if the diffusive component is
anomalous, described by superdiffusive Lévy flights or walks
[4,8,19–24]. For superdiffusive reaction-diffusion systems
(SRDSs)—recurrent in movement ecology [25]—universal
answers to the fundamental points (a)–(d) might not be possi-
ble. However, some works have pinpoint global trends in the
transients of certain groups of SRDSs [21,24,26,27].

In fact, to unveil global relations between transients and
steady states in a particular class of SRDS, as that associated
to the foraging dynamics [23], one should seek a prototypical
simple model, yet encompassing the main physical ingredi-
ents of the problems belonging to such SRDS class. A generic
minimal model for the actual situation we have interest here is
shown in Fig. 1. In the space S , the number of “states” at time
t is N (t ). They are added at a given rate and can be removed
through a reaction-diffusion superdiffusive mechanism. The
potential different features of the individual states are not
relevant since they are irreversibly annihilated whenever a
reaction event takes place (but see the discussion in Sec. IV).
We also note that distinct systems with absorbing states might
present rather common behavior [28]. Initially, the system
is out-of-equilibrium and N (t ) increases. But as N (t ) grows
the annihilation probability also grows. Eventually, the steady
state emerges when N (t > Tstat ) ≈ const. Amazingly, certain
physical aspects of biological foraging [23] can be pictured
exactly as in Fig. 1.

In this contribution we elucidate the importance of the
transient in establishing the steady state of a random search
for targets, the “states,” which are uniformly created in the

2470-0045/2020/102(1)/012126(8) 012126-1 ©2020 American Physical Society

https://orcid.org/0000-0001-7860-5454
https://orcid.org/0000-0003-3865-2621
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.012126&domain=pdf&date_stamp=2020-07-13
https://doi.org/10.1103/PhysRevE.102.012126


F. RUSCH et al. PHYSICAL REVIEW E 102, 012126 (2020)

ξ (t)

Creation

Annihilation
process

process

State space of
area A

diffusion
process

N(t) = number of
states at time t

FIG. 1. Schematics of the state space S (of area A) in which
(pertinent for the problem) “states” are randomly created at a certain
rate. States annihilation is due to a stochastic reaction-diffusion
process. Relevant here is the (average) number of effective states
in S at t , N (t ). A typical distance in S can be defined by ξ (t ) =√

A/N (t ). The transient can be characterized by a temporal variation
of N (t ) until reaching a steady state at t = Tstat, so that N (t > Tstat ) ≈
constant.

environment and are eliminated once found by a superdiffu-
sive random walker (the searcher). The equilibrium condition
arises when the targets addition and removal rates become
equal.

The work is organized as the following. In Sec. II we
develop our concrete model. Through numerical simulations
and analytic approximations we address the previously men-
tioned queries (a)–(d) in Sec. III. We moreover compute
the efficiency of the search process, showing its asymptotic
independence on the walker diffusiveness degree. Finally, in
Sec. IV we draw our concluding remarks.

II. THE MODEL

The square searching arena S , Fig. 1, has area A and reflex-
ive borders (e.g., representing a limited territory). Targets are
created and annihilated in S through two distinct processes
elaborated below. A key quantity is N (t ), the net number of
(randomly distributed) targets in the environment at t . The
mean spatial distance between nearby targets ξ (t ) = √

A/N (t )
is a concrete realization for the “typical separation” between
states depicted in Fig. 1. At t = τ0 = 0, we have N0 uniformly
distributed targets.

At each t = τn (n = 1, 2, 3, . . .) there is an addition of
Nn targets at random positions: the creation process. Here it
suffices to set τn = n τ , Nn = 1 ∀n (other aggregation rules
are briefly discussed in Sec. IV). The targets are removed
upon encounters, consequence of a random search, a reaction-
diffusion dynamics [23]. If up to t , Na(t ) is the total number of
targets taken away from S , then the targets remaining in A is
N (t ) = Nc(t ) − Na(t ), with Nc(t ) the total number of targets
created until t .

The target-depleting mechanism consists of a random
walker which searches for and consumes targets as the follow-
ing. It (a) chooses a random direction 0 � θ < 2π as well as

a step length r0 < � �
√

A drawn from a probability density
distribution P(�). Then, (b) it starts to move with a constant
speed v in such direction. Along the way the walker is able to
detect targets within a radius of vision r0. If a target is spotted,
then the searcher goes straight to its position and the target is
removed. Otherwise, the walker finishes traveling the distance
�. In both cases the whole protocol resumes, from the last stop
location, with a new sorting step (a).

Different P(�)’s will lead to distinct behavior for N (t ).
However, a universal trend must be expected from these rules.
If initially the creation is higher than the annihilation rate,
then for short t’s N (t ) increases, also increasing the chances of
finding targets. Eventually these rates do equalize (at t = Tstat)
and from then on N (t > Tstat ) become constant. Rigorously,
Tstat should be infinite. But in practice we can take Tstat as
finite by establishing that under proper conditions N (t = Tstat )
is close enough to its asymptotic. Thus, how N varies with
time for t < Tstat does characterize the transient.

The above is our (exact) “discrete model” (DM) since
the processes occur at particular well-defined t instants. So,
we will assume proper P(�)’s and numerically simulate the
evolution. But next, we also establish continuous functions of
t describing the problem relevant quantities. This “continuous
model” (CM) can be viewed as the mean-field approximation
for the system.

Obviously, Nc(t = τn) = ∑m=n
m=0 Nm; thus, Nc(t ) = N0 +

t/τ . In the time interval (t − �t/2, t + �t/2) (with �t small)
we can define a mean characteristic time γ (t ) to annihilate a
target, surely dependent on ξ (t ) and on P(�). We further write
γ (ξ ) = d (ξ )/v. d represents the average distance traveled
between two successively found targets [23], being a function
of ξ . Then, for a short δt , the probability to find a target is
p(δt ) ∼ δt/γ (t ) and taking the limit δt → dt , a mean-field
approximation MFA (see next) for the DM reads

Na(t ) =
∫ t

0
dt ′/γ [ξ (t ′)]. (1)

From the expression for N (t ) and Eq. (1)

dN (t )/dt = 1/τ − 1/γ [ξ (t )], (2)

with

ξ (t ) =
√

A/[Nc(t ) − Na(t )] =
√

A/N (t ). (3)

Once one knows the functional form for γ , one can solve
Eq. (2) for N (t ), obtaining also Na(t ) and ξ (t ). The system
will reach a steady condition when the number of targets in
the system, Nstat (with a corresponding ξstat), is such that the
average time to eliminate a target equals to the time interval τ

to add a new target. This takes place when (assuming Tstat an
appropriate finite value)

γ (ξstat ) = τ = γ (
√

A/[Nc(Tstat ) − Na(Tstat )]). (4)

For t � Tstat, Eq. (2) yields N (t � Tstat ) = Nstat, so

Na(t � Tstat ) ≈ Na(Tstat ) + (t − Tstat )/τ, (5)

with

Na(Tstat ) = N0 + Tstat/τ − Nstat. (6)
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Equation (2)—with γ (t ) given next—is our “continuous”
model, constituting an approximation for the DM.

Our goal is to characterize the transient until reaching
stationarity for a stochastic process for which we can control
its degree of diffusiveness. This can be accomplished by as-
suming the truncated power-law distribution P(�) = Pμ(�) =
Cμ �−μ if r0 < � <

√
A and zero otherwise, with 1 < μ � 3

and Cμ the normalization constant. In the limit of
√

A going to
infinity, Pμ(�) represents the long-range asymptotic behavior
of the family of Lévy stable distributions [19]. In this limit, for
μ � 3 the searching should present normal (i.e., Brownian-
like) diffusion. A superdiffusive walker should correspond
to 1 < μ < 3, with μ → 1+ displaying ballistic dynamics
[23]. Also, for Lévy distributions the mean diverges if μ < 2,
being finite (only marginally divergent) if μ > 2 (μ = 2). In
our model, we are in fact assuming a finite A. However, as
shown in Ref. [29] the convergence of a truncated power-law
Lévy distribution to the Gaussian statistics is extremely slow.
Hence, if A is large enough, then for relatively long times
the general properties of the nontruncated Lévy statistics (in
special superdifusiveness) can be maintained [30–33] during
the whole transient evolution.

For these Pμ’s, from the results in Refs. [34–36] for a
time-independent scenario of a fixed density of targets, where
ξ = ξ f , the expression for γ f = γ (λ f ) = d f /v is (with λ f =
ξ 2

f /(2r0) a “mean free path” and μ �= 2)

γ (λ f ) = r0

(2 − μ) v

[(
λ f

r0

)
− (μ − 1)

(
λ f

r0

)(μ−1)
]
. (7)

If μ = 2, then γ f = λ f (1 + ln[λ f /r0])/v.
For our time-dependent case of γ [ξ (t )], following the MFA

for Eq. (2) we just use the above γ (λ f ) but with λ f → λ(t ) =
A/(2r0[Nc(t ) − Na(t )]) (an “instantaneous” mean free path
approximation). From Eq. (2) N (t ) is given by (α = 2r2

0/A,
β = τv/r0, μ �= 2)∫ αN (t )

αN0

dx

(
1 − β (μ − 2) x

[1 + (1 − μ) x2−μ] + β (μ − 2) x

)
= α

τ
t .

(8)
For μ = 2 the integrand should be 1 − β x/(−1 + β x +
ln[x]).

The integral in Eq. (8) can be solved for many different
rational values of 1 < μ � 3 (e.g., 3/2, 5/2, and 3). Thus, af-
ter integration in principle a closed expression for N (t ) could
be derived through a proper inversion of Eq. (8), allowing to
write N as a function of t . For instance, for μ → 1+, one finds

N (t ) = (αβ )−1 + (N0 − (αβ )−1) exp[−αβ t/τ ], (9)

which agrees with all our previous asymptotic predictions,
e.g., we can fairly take [30] Tstat ≈ 5Nstatτ with Nstat =
(αβ )−1. Note that if the integration or the subsequent inver-
sion is not analytically possible, N (t ) in Eq. (8) can be easily
numerically computed.

The CM is a MFA for the DM since Eq. (1) “updates”
the probability to find new targets only in time [through the
variation of γ as function of ξ (t )]. Spatial fluctuations of ξ are
not considered. Recall that due to the randomness of the target
creation positions, temporary spatial heterogeneities may take
place, particularly at low densities. However, if the walker is

effective in exploring S , then the searching dynamics itself
would mitigate the effects of such inhomogeneities. So, we
expect the DM and CM to better agree for smaller μ’s, when
the searcher has a stronger superdiffusive character.

Besides an approximation for the DM, the CM is also
useful for another reason. Distinct phenomena [37–42] are as-
sociated to finding moving targets. It has been shown [22,38]
that certain dynamical aspects for fixed targets are similar
to those for moving targets if one compares the former case
(for a searcher of smaller μ) with the latter (for a searcher of
larger μ) [22]. Moreover, for moving targets a MFA tends to
work in a broader range of μ’s [22]. Thus, the CM might also
be viewed as a simplified description of targets which, once
randomly created, go through a rapid spatial homogenization
or “thermalization,” e.g., by diffusion.

III. RESULTS

We now present some relevant quantities from simulations
for the DM and integration of Eq. (8) for the CM. We set r0 =
v = 1 = N0 = 1, A = 104 × 104 and take for τ the values:
τ0 = 2.5 × 103, 2τ0, 4τ0, and 8τ0. We observe that since v =
1, the numerical value of τ equals to the distance traveled by
the walker during the time between two successively added
targets to the environment.

Figure 2 shows N (t ) for the DM, CM and distinct τ ’s. In
Figs. 2(a)–2(d) μ = 1.01, 1.15, 1.3, 1.5, values correspond-
ing to a highly diffusive walker. For μ = 1.1, 1.5 and τ = τ0,
Fig. 2(e) illustrates the small fluctuations of N (t ) for the DM
after reaching stationarity—an absent behavior in the CM.
For μ = 2, 2.5, 3 and τ = τ0 (for other τ ’s the results are
qualitatively similar) we have the DM in Fig. 2(f) and the CM
in Fig. 2(g).

From Fig. 2 we can identify few clear trends. Perhaps
surprisingly, the qualitative transient dynamics for N (t ) is the
same regardless the parameter values or model. However, Nstat

and Tstat depend on the system details (we take Tstat from
dN (t )/dt |Tstat ≈ 10−5). The Tstat’s are indicated by arrows in
Fig. 2 for the representative cases of μ = 1.01 (near-ballistic)
and any τ ; and 1.15 � μ � 1.5 and the lowest values of τ ,
namely, τ0 and 2τ0. In general we observe that Nstat and Tstat:
(i) decrease with τ ; (ii) increase with μ (mildly for DM if
μ < 2.0); and (iii) for identical parameters, tend to be greater
for CM than for DM. Last, (iv) the DM and CM have a
better agreement for smaller μ’s and longer τ ’s [Figs. 2(a) and
2(b)].

Feature (i) takes place because for longer τ ’s the walker has
more time to find/annihilate the successively added targets,
more rapidly achieving the steady condition with a lower
accumulation of targets at t = Tstat. As for (ii), in the present
context—targets are eliminated once found—more diffusive
walkers (lower μ’s) are known to be more efficient searchers
[23], decreasing Tstat. This increases Na(t ), hence it decreases
N (t ) = Nc(t ) − Na(t ) and so Nstat (recall that Nc(t ) is a pre-
determined function, i.e., given by the medium). The property
(iii) implies that Na(t ) is greater for the DM than for the CM
(see the explanation below). Finally, the behavior associated
to (iv) corresponds to parameters for which the searcher
better explores the environment. As previously mentioned [the
discussion in the paragraph after Eq. (9)], a more efficient
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FIG. 2. The number of targets in the environment versus time, N (t ). The continuous (dashed) curves represent the DM (CM). For four
values of τ , the cases of (a) μ = 1.01, (b) μ = 1.15, (c) μ = 1.3, (d) μ = 1.5. For distinct μ’s, a same τ = τ0 in panels (e)–(g). The inset in
(e) illustrates the typical fluctuations in the steady state for the DM. Panels (f) and (g) contrast the magnitudes of Nstat for the DM and CM. The
small arrows in some plots indicate the corresponding Tstat.

space exploration makes the mean field a more accurate
approximation.

Initially, N (t ) is very small and many more targets are
created than annihilated. But as N (t ) grows, so does the rate
of annihilation. This then determines the transient behavior
towards the steady state, represented by Na(t > Tstat ) ∼ t .
Figure 3 shows examples of Na(t ) for τ = τ0. For other τ ’s,
the results are qualitatively akin, just with DM and CM tend-
ing to be closer together. When t < Tstat, Figs. 3(a)–3(c) shows
that as μ increases Na|DM becomes systematically larger than
Na|CM. To understand this, we recall that the CM assumes
λ an instantaneous mean value (over the total area A), with
the average distance traveled between two targets d being
also an instantaneous function d = d (λ(t )). This is a less
significant approximation for smaller μ’s. In the DM—due to
the searching rule (b)—the walker is able to perceive local
spatial fluctuations of λ and d will adjust according to the
local density of targets. Thence, as one can see in Fig. 3, the
search efficiency of the DM is greater than that of the CM
for higher μ’s. For the DM in Fig. 3(d), Na(t ) is depicted for
some values of 1.01 � μ � 3 in a large range for t . Note that
Na(t ) increases from 0 to its maximum of 1/τ (when t � Tstat),
characterizing the steady state.

Figures of merit η are commonly used to classify search
strategies [23]. They are ordinarily considered in stationary
conditions, thus being functions solely of the system param-
eters. But here one should expect a time-dependent η(t ),

converging to some constant value only asymptotically (say,
for t > T (η)

stat > Tstat). Among different η’s [35,36], an often
considered search efficiency [34] is the ratio between the total
number of targets found and the total distance traveled L up
to a time t . Since in our idealized model it takes no time
for destroying a found target and then to resume the search
immediately, one gets

η(t ) = Na(t )/L(t ) = Na(t )/(v t ). (10)

In both models one can anticipate that for t � Tstat, η(t ) ∼
[Na(Tstat ) + (t − Tstat )/τ ]/[L(Tstat ) + v(t − Tstat )], thus

η(t → ∞) = 1/(v τ ), (11)

contrasting with many random search instances where
η = η(μ) [23]. Moreover, we have that T (η)

stat 
 Tstat and
η(t )/(v τ )−1 ≈ p implies t ≈ τNstat/(1 − p). For example,
for η(t ) to be 99% of its maximum, t ∼ 100 × Tstat. However,
a better way to infer (say, from empirical data [41]) the
efficiency asymptotic value is by calculating the rate between
the found targets and the distance traveled by the searcher in
a given time interval, or

dNa(t )/dL = v−1dNa(t )/dt . (12)

From such computation we obtain dNa(t )/dL ≈ (v τ )−1 al-
ready for t � Tstat (with Tstat the N (t ) stationary time of the
corresponding model).
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FIG. 3. The total number of found targets versus time, Na(t ), for distinct μ’s and τ = τ0 = 2.5 × 103. (a–c) The continuous (dashed) lines
represent the DM (CM) prior to reach the steady state. (d) For the DM, the Na(t ) behavior for different μ’s. The inset shows times close to Tstat

(after which Na(t ) must be a straight line of angular coefficient tan[1/τ ]).

For longer τ ’s, the DM and CM give closer results, Fig. 2.
Also, the overall shape of N (t ) does not change with τ . So,
in Fig. 4 we display η(t ) only for τ = τ0. For small μ’s the
DM and CM are similar, leading to a reasonable agreement
between the respective η(t )’s as seen in Figs. 4(a) and 4(b).
For μ � 2.0 in Figs. 4(c)–4(e), the increasing of η with t is
faster for the DM than for the CM. For the CM, Figs. 4(a)–4(e)
shows that dNa(t )/dL tends more rapidly to the asymptotics
(vτ )−1 than the usual efficiency function η(t ). Finally, for the
DM and distinct μ’s, Fig. 4(f) illustrates that it takes a very
long time T (η)

stat for η(t ) to achieve its asymptotic value.

IV. FINAL REMARKS AND CONCLUSION

As previously mentioned in the Introduction, transient
dynamics may be fundamental in tailoring the characteristics
of the steady state [4–6], thus determining the system asymp-
totic features [10,21,43]. But in many instances, especially
in ecology [44–46], to properly establish these links is not a
simple task [47,48]. Random search in general and biologi-
cal foraging in particular, important examples of SRDS, are
not exceptions to this difficulty [23,25]. For example, it is
well known that animals behavior can mold their landscape
through feedback processes [49]. But unfortunately, to predict
the environmental potential changes from these mutual inter-
actions is still far from being a settled problem [50,51].

In this work we have investigated a simple, nonetheless
illustrative, example of a superdiffusive random search in a

nonequilibrium “medium.” We have shown that the properties
at the steady state are clearly associated to the transient
period. Indeed, many quantities characterizing the system
after reaching the stationarity for N (t ) are clearly functions
of the early stages of the evolution. More concretely, we have
addressed [3]: (a) the transient duration, (b) its dynamical
characteristics, (c) the relation between the transient and the
final steady states, and (d) the state variables ultimate values
dependence on the transient. For so we have performed exact
simulations (of course, up to the computational numerical
precision but absolutely not an issue for our model straight-
forward rules) and a mean-field analytic approximation. By
comparing their predictions, we could determine for which
range of parameters mean-field methods are or are not reliable
in describing this type of problem. Also, there are very few
analytical approaches for random search models [22] and this
can be considered an extra contribution to the area.

A result obtained here, contrasting with most of the random
search models [23,25], is that the efficiency η(t ), although
having a μ-dependent slop (see Fig. 4), converges to an
asymptotic value which is independent on μ. This is due to
a sort of interactive correlation between the searcher and the
landscape. Commonly (but see Refs. [22,38,40]), unless for
very local fluctuations [35,36] the environment is assumed
static and the searching efficiency is basically determined by
the searcher features, e.g., its diffusiveness (specified by μ). In
the present case, μ is associated to the rate in which the targets
are found, explaining the η(t ) relation with μ. However, in
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the asymptotic limit the searcher will deplete the medium at
the same pace in which new targets are supplied to it (at the
frequency 1/τ , an exclusive environment property). Since the
efficiency is defined as the number of targets found by the
distance traveled, at the steady state this is equivalent to η =
1/d [23] [we recall that d is the distance traveled between two
found targets and asymptotically d = d (ξstat ) = constant]. At
the steady state d/v = τd = τ regardless of μ, elucidating our
findings.

Obviously, this is a first minimal model and many other
aspects could be added to the system description. Next we
shall comment on just two possibilities. We have considered
all targets being similar. But we could assume families, i =
1, 2, 3, . . ., of targets, each with its own creation time τi. It
has been shown that if the gain per encounter is different de-
pending on the type of target found, the efficiency becomes a
rather involving function, depending on distinct factors of the
search dynamics and landscape configuration [52]. Certainly,
this should strongly influence the transient as well as η(t ) and
its asymptotic limit value.

Second, for our single type of target we have assumed a
constant τ yielding a linear Nc(t ). However, one can imag-
ine diverse target creation mechanisms leading to various
Nc(t )’s. Of course, if at each time interval τ a constant
number of targets Nτ is added to the system, the general
phenomenology would be basically the same, just with the

steady state being achieved when τd = τ/Nτ (see above).
The situation is far more richer if Nτ is not constant. For
example, an ever increasing Nτ may represent an interesting
mathematical model, but probably unrealistic for describing a
typical searching problem. In this case N (t ) cannot become
stationary. However, a particularly interesting context is for
an oscillating Nτ , eventually representing seasonal variations
of an ecosystem [49]. This would result N (t ) also oscilla-
tory, potentially displaying out-of-phase and delay behav-
ior [43]. Such effects will be the subject of a forthcoming
contribution.

To conclude, concerning the important physical points (a),
(c), and (d) connecting the transient to the steady state, we
have found that certain global characteristics (e.g., diffusive-
ness and targets creation rate) determine features of the initial
evolution. In turn, the transient establishes the final stationary
environment configuration (e.g., the “population” Nstat), with
a μ-independent η(t → ∞). As for (b), irrespective of the
parameters or description details (DM or CM), the qualitative
transient dynamics (say, of N and Na) is universal. All these
results closely agree with the view of landscape ecology
as an emergent complex system [53] (common for SRDSs
[5,6]). The novelty is that in the present case it is driven by
transients. In fact, our study adds to the list of ecological
systems where transient regimes play a fundamental role
[16,17,48].
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