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Full nonuniversality of the symmetric 16-vertex model on the square lattice
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We consider the symmetric two-state 16-vertex model on the square lattice whose vertex weights are invariant
under any permutation of adjacent edge states. The vertex-weight parameters are restricted to a critical manifold
which is self-dual under the gauge transformation. The critical properties of the model are studied numerically
with the Corner Transfer Matrix Renormalization Group method. Accuracy of the method is tested on two exactly
solvable cases: the Ising model and a specific version of the Baxter eight-vertex model in a zero field that belong
to different universality classes. Numerical results show that the two exactly solvable cases are connected by a
line of critical points with the polarization as the order parameter. There are numerical indications that critical
exponents vary continuously along this line in such a way that the weak universality hypothesis is violated.
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I. INTRODUCTION

According to the universality hypothesis [1], critical ex-
ponents of a statistical system at the second-order phase
transition do not depend on details of the corresponding
Hamiltonian. Equivalently, the critical exponents depend only
on the system’s space dimensionality and the symmetry of
microscopic degrees of freedom (say, the spins). The first
violation of the universality hypothesis was observed in the
Baxter’s exact solution of the two-dimensional (2D) eight-
vertex model on the square lattice in a zero electric field [2–4]
whose critical exponents are functions of model’s parameters.
Suzuki [5] argued that the violation of universality in the
eight-vertex model is due to an ambiguous identification of
the deviation from the critical temperature. If taking, instead
of the usual temperature difference |Tc − T |, the inverse
correlation length ξ−1 ∝ |Tc − T |ν (the critical exponent ν

is assumed to be the same for both limits T → T −
c and

T → T +
c ) as the natural measure of the distance from the

critical temperature, the renormalized thermal exponents α/ν,
β/ν, and γ /ν become universal, i.e., independent of the
model’s parameters. The critical exponents defined just at the
critical temperature, such as δ = 1 + γ

β
and η = 4/(δ + 1),

stay constant when varying the eight-vertex model’s param-
eters. This phenomenon is known as weak universality. Weak
universality has been observed in many 2D systems, includ-
ing the Ashkin-Teller model [6–8], absorbing phase transi-
tions [9], the spin-1 Blume-Capel model [10], frustrated spin
models [11,12], percolation models [13], etc. There are few
exceptions from models with continuously varying critical
exponents which violate weak universality, such as micellar
solutions [14], Ising spin glasses [15], itinerant composite
magnetic materials [16,17], etc.

To set up terminology, the full violation of universality
means that the critical exponents vary continuously as func-
tions of some model’s parameter(s) in such a way that at least
one of the renormalized thermal exponents α/ν, β/ν, γ /ν, or
δ, η is nonconstant. We do not use the term nonuniversality
for models which have several regions in their parameter

space belonging to different universality classes because the
corresponding order parameters are defined differently.

The partition function of the “electric” eight-vertex model
on the square lattice can be mapped onto the partition function
of a “magnetic” Ising model on the dual (also square) lattice
with the nearest-neighbor two-spin and four-spin interactions
on a square plaquette [18,19]. Baxter’s exact solution of
the zero-field eight-vertex model [2,3] provides all magnetic
critical exponents (exhibiting weak universality) but only
one electric critical exponent (namely, βe, which describes
the temperature singularity of the spontaneous polarization).
Recently two of us [20] argued that the critical exponents
related to the divergence of the correlation length must co-
incide in both the magnetic and the electric models: νe = ν.
Having two critical exponents at one’s disposal, all remaining
electric exponents can be derived with scaling relations. The
obtained analytic formulas for the electric critical exponents
are in perfect agreement with numerical results obtained by
the Corner Transfer Matrix Renormalization Group method
[20]. It turns out that the model’s variation of the electric
critical exponents violates weak universality. Thus, despite
the partition functions of the electric and magnetic models
being equivalent, their critical properties are fundamentally
different: while the magnetic critical exponents obey weak
universality, the electric ones do not and therefore they are
fully nonuniversal.

The partition function of a vertex model is invariant under
gauge transformation of vertex weights [21,22], which is
a generalization of the weak-graph expansion [23] and the
duality transformation. If a point in the parameter space of
vertex weights is mappable onto itself by a nontrivial gauge
transformation, that point belongs to the self-dual manifold
where all critical points of second-order phase transitions lie.

The model under consideration in this paper is the sym-
metric two-state 16-vertex model on the square lattice whose
vertex weights are isotropic, i.e., invariant under any permu-
tation of the adjacent edge states. This model was introduced
in Ref. [24] in connection with the O(2) gauge transformation
which preserves the permutation symmetry of vertex weights,
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and its self-dual manifolds can be easily found. In a certain
subspace of the vertex weights, the model can be mapped
onto Ising spins in a field [25,26]. The critical properties of
the model were studied numerically by combining a series ex-
pansion on the lattice and the Coherent Anomaly method [27]
in Ref. [28]. In spite of modest computer facilities and a lack
of efficient numerical methods at that time (almost 30 years
ago), the numerical results indicate the full nonuniversality of
the model. (For a recent survey of the general 16-vertex model
with an enlargement of known mappings, see Ref. [29].)

The aim of this work is to revisit the study of the crit-
ical electric properties of the symmetric version of the 16-
vertex model on the square lattice with the Corner Transfer
Matrix Renormalization Group (CTMRG) method [30–34].
The method is based on the density matrix renormalization
[35–37] and the technique of the corner transfer matrices [3].
It has been applied to many 2D lattice models and provides
very accurate results for critical points and exponents. The
present work confirms with a high reliability that the symmet-
ric 16-vertex model on the square lattice is nonuniversal and
violates the weak universality hypothesis.

The paper is organized as follows. The definition of and
basic facts about the model, including the gauge transfor-
mation of vertex weights, are given in Sec. II. Two exactly
solvable cases are discussed: the Ising model and a specific
version of the Baxter eight-vertex model in zero field. The
CTMRG method is reviewed briefly in Sec. III. Numerical
results for the critical temperatures and exponents are pre-
sented in Sec. IV. Section V brings a short recapitulation and
concluding remarks.

II. MODEL AND ITS EXACTLY SOLVABLE CASES

A. Basic facts about the model

The general two-state vertex model on the square lattice
of N (N → ∞) sites is defined as follows. Each lattice edge
can be in one of two states. These states will be denoted
either by ± signs or by “dipole” arrows: the right- or up-
oriented arrow corresponds to the (+) state, and the left
down arrow to the (−) state. With each vertex we associate
the set of 24 possible Boltzmann weights w(s1, s2, s3, s4) =
exp [−ε(s1, s2, s3, s4)/T ]. In units of kB = 1, both the en-
ergy ε(s1, s2, s3, s4) and the temperature T are taken as di-
mensionless. For the symmetric version of the model, the
vertex weights are invariant with respect to any permuta-
tion of state variables (s1, s2, s3, s4). Let us denote by wi =
exp(−εi/T ) (i = 0, 1, . . . , 4) the vertex weight with i incident
edges in the (−) state and the remaining 4 − i incident edges
in the (+) state. Thus among the 16 possible configurations
of vertex states there is one configuration corresponding to
each of the vertex weights w0 and w4, four configurations
corresponding to each of w1 and w3, and six configurations
corresponding to w2; see Fig. 1.

Thermal equilibrium of the system is determined by the
(dimensionless) free energy per site

− f ({w})

T
= lim

N→∞
1

N
ln Z ({w}), (1)

FIG. 1. Vertex weights of the symmetric 16-vertex model on the
square lattice, invariant with respect to the flip of all adjacent edge
states + ↔ −.

where

Z ({w}) =
∑
{s}

∏
vertex

(weights) (2)

is the partition function with the summation going over all
possible edge configurations and the product being over all
vertex weights on the lattice. The mean concentration ci of
the vertices with weight wi is given by

ci = −wi
∂

∂wi

f ({w})

T
(i = 0, . . . , 4). (3)

The mean concentrations are constrained by the obvious
normalization condition

∑4
i=0 ci = 1. The mean value of the

edge-state variable

P = 1

4

4∑
i=0

(4 − 2i)ci (4)

defines the polarization. When one applies an isotropic elec-
tric field E (with the same strength along either of the two
axes), each arrow dipole s = ±1 acquires the energy −Es.
Since every dipole belongs to just two vertices, the vertex
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weights are modified to

wi(E ) = wi exp [E (2 − i)/T ]. (5)

One can trivially extend the definitions of the vertex concen-
trations (3) and the polarization (4) to E �= 0, with the cor-
responding notations ci(E ) and P(E ). Then the polarization
susceptibility reads as

χ = lim
E→0

∂P(E )

∂E
= 1

2

4∑
i, j=0

(2 − i)(2 − j)χi j, (6)

where the elements

χi j = − ∂

∂ε j
ci(E = 0) (7)

form the tensor of generalized susceptibilities.
The partition function of the general two-state vertex

model is invariant under the O(2) gauge transformation of
the vertex weights [21,22]. On the square lattice with the
coordination number 4, the gauge transformation reads as

w̃(s1, s2, s3, s4) =
∑

s′
1,s

′
2,s

′
3,s

′
4

Vs1s′
1
(y)Vs2s′

2
(y)Vs3s′

3
(y)

×Vs4s′
4
(y)w(s′

1, s′
2, s′

3, s′
4). (8)

Here Vss′ (y) are the elements of the matrix

V(y) = 1√
1 + y2

(
1 y
y −1

)
(9)

with rows (columns) indexed from up to down (left to right) as
+,− and a free (real) gauge parameter y. For the symmetric
version of the vertex model, the gauge transformation keeps
the permutation symmetry of the vertex weights [24], namely,

w̃i =
4∑

j=0

Wi j (y)w j (i = 0, 1, . . . , 4), (10)

Wi j (y) = 1

(1 + y2)2

min(i, j)∑
k=0

(
i

k

)(
4 − i

j − k

)
(−1)kyi+ j−2k .

(11)

The points in the vertex-weight parameter space, which
can be mapped onto themselves by gauge transformation
with a nontrivial (point-dependent) value of y �= 0, form the
so-called self-dual manifold. The self-dual manifold for the
symmetric 16-vertex model is given by [24]

w2
0w3 − w1w

2
4 − 3w2(w0 − w4)(w1 + w3)

+ (w1 − w3)[w0w4 + 2(w1 + w3)2] = 0. (12)

Its importance consists in the fact that all critical points of the
second-order phase transitions are confined to this subspace
of the vertex weights.

In this work, we restrict ourselves to the symmetric 16-
vertex model whose vertex weights are invariant with respect
to the flip of all adjacent edge states (+) ↔ (−). The vertex
weights are parametrized as follows:

w0 = w4 = 1, w1 = w3 = e−ε/T , w2 = e−1/T ; (13)

see also Fig. 1, where the real energy parameter ε � 0. It can
be checked that this choice of vertex weights automatically

satisfies the self-dual condition (12). Thus, for a fixed value
of the energy ε, there should exist a critical temperature Tc at
which the second-order phase transition takes place. The order
parameter is always the mean polarization P; see Eq. (4). In
the disordered phase, for T > Tc, the state-flip symmetry of
vertex weights implies the equality of mean vertex concen-
trations ci = c4−i (i = 0, 1) and P vanishes. In the ordered
phase, for T < Tc, the state-flip symmetry breaking causes
that ci �= c4−i and the spontaneous polarization P becomes
nonzero. At Tc, P is nonanalytic in Tc − T :

P ∝ (Tc − T )βe , T → T −
c (14)

with βe (the subscript e means “electric”) being the critical
exponent. If a small isotropic external electric field E is
applied to the vertex system just at the critical temperature,
the polarization behaves as

P(E ) ∝ E1/δe , T = Tc, (15)

where δe is another critical exponent. Close to the critical
point, the polarization susceptibility (6) exhibits a singularity
of type

χ ∝ 1

|Tc − T |γe
, (16)

where the critical exponent γe is assumed to be the same
for both limits T → T −

c and T → T +
c . The pair arrow-arrow

correlation function exhibits the large-distance behavior

Ge(r) ∝ 1

rηe
exp(−r/ξ ), r → ∞. (17)

Approaching the critical point, the correlation length ξ di-
verges as

ξ ∝ 1

|Tc − T |νe
. (18)

The divergence of ξ at T = Tc reflects the fact that the
short-range (exponential) decay changes into the long-range
(inverse power-law) decay at T = Tc, which is characterized
by the critical exponent ηe.

Having at one’s disposal the two critical exponents βe

and δe, the remaining ones (considered in this work) can be
calculated by the 2D scaling relations [3]:

γe = βe(δe − 1), (19a)

νe = 1

2
βe(δe + 1), (19b)

ηe = 4

δe + 1
. (19c)

B. Ising point

The symmetric 16-vertex model can be mapped onto the
Ising model on the square lattice under the vertex-weight
constraint [25,26]

w0w2w4 − w0w
2
3 − w2

1w4 + 2w1w2w3 − w3
2 = 0. (20)

For the state-flip symmetry of the vertex weights (13), this
equation takes the form

1 + e1/T = 2e2(1−ε)/T . (21)
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TABLE I. List of electric critical exponents for the symmetric
16-vertex model at the exactly solvable Ising and the Baxter eight-
vertex points.

Exponent βe δe γe νe ηe

ε(I) ≈ 0.6275 1/8 15 7/4 1 1/4
ε → ∞ 1/8 11 5/4 3/4 1/3

For the parameters of the Ising model for the state-flip sym-
metry, the external magnetic field acting on spins H = 0 and
the (dimensionless) coupling J between the nearest-neighbor
spins is given by

J = 1

2
ln

(
w1

w2

)
= 1 − ε

2T
. (22)

The known critical value of the Ising coupling reads [3]

Jc = 1
2 ln(1 +

√
2). (23)

Consequently, Eqs. (21) and (22) imply the following critical
parameters of the symmetric 16-vertex model:

ε(I) = 1 − ln(1 + √
2)

ln(5 + 4
√

2)
= 0.627516 . . . , (24)

T (I)
c = 1

ln(5 + 4
√

2)
= 0.422618 . . . . (25)

In contrast to standard mappings of models on dual lattices,
the mapping between the symmetric 16-vertex and the Ising
models is made on the same square lattice [25,26]. The
relation between the polarization of the symmetric 16-vertex
model and the magnetization of the equivalent Ising system
can be derived with the technique presented in Ref. [38]. This
relation is linear, and, therefore, the critical exponents of the
symmetric 16-vertex model are identical to the ones of the
Ising model. The Ising critical exponents are summarized in
Table I.

C. Eight-vertex point

When ε → ∞, the vertex weights w1 and w3, correspond-
ing in Fig. 1 to configurations with odd numbers of (+), or
equivalently (−), edge states, vanish. The consequent Baxter’s
eight-vertex model has vertex-weight parameters a = w0 =
w4 = 1 and b = c = d = w2 = exp(−1/T ) [3]. The vertex
system exhibits the ferroelectric-A phase for a > b + c + d .
The second-order transition between the ferroelectric-A and
disordered phases takes place at

ac = bc + cc + dc, Tc = 1

ln 3
= 0.910239 . . . . (26)

Introducing the auxiliary parameter

μ = 2 arctan

(√
acbc

ccdc

)
= 2π

3
, (27)

according to Ref. [20] the electric critical exponents are given
by

βe = π − μ

4μ
= 1

8
, δe = 3π + μ

π − μ
= 11,

FIG. 2. The CTMRG renormalization process. The density ma-
trix ρ is composed of four transfer matrices C. The expansion process
of the corner transfer matrix C → C′ = O†HWCHO and the half-
row transfer matrix H → H ′ = O†HW O from the previous iteration
RG step; see the text.

γe = π + μ

2μ
= 5

4
, νe = π

2μ
= 3

4
,

ηe = 1 − μ

π
= 1

3
. (28)

These critical exponents are listed in Table I.

III. NUMERICAL METHOD

The CTMRG method [30–32] is based on Baxter’s tech-
nique of corner transfer matrices [3]. Each quadrant of the
square lattice with size L × L is represented by the corner
transfer matrix C. The reduced density matrix is defined by
ρ = Tr′ C4 (where the partial trace Tr′ is taken), so that the
partition function Z = Tr ρ; see Fig. 2. The number of degrees
of freedom grows exponentially with L, and the density matrix
is used in the process of their reduction. Namely, degrees
of freedom are iteratively projected to the space generated
by the eigenvectors of the reduced density matrix ρ with
the largest eigenvalues. The projector on this reduced space
of dimension m is denoted by O; the larger the truncation
parameter m is taken, the better precision of the results is
attained. In each iteration the linear system size is expanded
from 2L to 2L + 2 via the inclusion of the Boltzmann weight
W of the basic vertex (see Fig. 1). The expansion process
transforms the corner transfer matrix C to C′ and the half-row
transfer matrix H to H ′ in the way represented schematically
in Fig. 2. The thin (thick) lines represent renormalized (multi-)
arrow variables obtained after the renormalization. The fixed
boundary conditions are imposed, i.e., the state (−) is fixed
on the boundary arrows only. This choice ensures a quicker
convergence of the method in the thermodynamic limit.

IV. NUMERICAL RESULTS

According to Eq. (14), the critical temperature Tc is
the lowest temperature at which P = 0 or, equivalently, the
highest temperature at which P �= 0. Based on comparison
with the known values of the Ising (25) and Baxter’s (26)
critical temperatures, the error in estimation of Tc(ε) is of
order 10−4 for all values of ε. The error is even smaller (of
order 10−5) when fitting data for the spontaneous polarization
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FIG. 3. The ε dependence of the critical temperature Tc of the
symmetric 16-vertex model, for dimension of the truncated space
m = 100 (open circles) and m = 200 (open circles with stars). The
inset shows a linear dependence of Tc(ε) for small values of ε.

close to the critical point according to (14). Numerical results
for the ε dependence of the critical temperature are shown in
Fig. 3. We see that Tc(ε) is only weakly affected by dimension
of the truncated space m = 100 and m = 200, which means
that our results reached the sufficient accuracy.

The inset of Fig. 3 documents the log-log plot of the small-
ε behavior of Tc(ε). The power-law least-square fitting at low
ε < 10−8 yields

Tc(ε) = −6.6 × 10−18 + 0.954(5)ε0.9998(3), (29)

where the absolute term is on the accuracy border of the com-
puter (the machine precision). We conclude that in the limit
of small ε the critical temperature converges to zero linearly.
On the other hand, as ε increases, the critical temperature
saturates quickly to the value 0.91024 which is close to the
asymptotic ε → ∞ analytic result (26) of the eight-vertex
model.

The critical exponent βe is expected to interpolate between
the same values 1/8 at small and large ε. It is calculated
by fitting the polarization data according to formula (14).
With Tc fixed in the previous calculation, we have selected a
series of temperatures below the threshold value Tc − 0.0002
with a temperature spacing (discretization step) �T at which
the polarization is evaluated. For each value of ε, we have
generated six polarization values with �T = 10−4 and 30
polarization values with �T = 10−5 if taking the dimension
of the truncated space m = 100 and m = 200. The corre-
sponding ε dependences of the critical exponent βe within the
range of ε ∈ [0, 25], are pictured in Fig. 4. We see that the too
small value of the temperature step �T = 10−5 and m = 100
(triangles) leads in the region of large ε incorrectly to βe >

1/8. If increasing the accuracy to m = 200 (diamonds), data
converge to the correct value βe = 1/8 at large ε. On the other
hand, for a larger temperature step �T = 10−4, both m =
100 (circles) and m = 200 (squares) data are consistent with
βe = 1/8 at large ε. We refer to the parameters �T = 10−4

and m = 200 as the optimal ones. The choice of these opti-
mal parameters correctly reproduces the exact results for the

FIG. 4. The ε dependence of the critical exponent βe for the
symmetric 16-vertex model with the temperature steps �T = 10−4

and 10−5 and dimensions of the truncated space m = 100 and
m = 200.

Ising ε(I) ≈ 0.6275 and the eight-vertex ε → ∞ models, and,
therefore, it is expected to be adequate also in the transition
region between the two solvable cases. The above-discussed
cases are presented in Fig. 4 to judge the relative accuracy of
the relevant data in the transition region of ε values. In the
interval of ε � 2 containing the Ising point ε = 0.627516 . . .,
the exponent is roughly constant βe = 1/8. In the transition
region 2 � ε � 14, βe varies nonmonotonously as a function
of ε. For ε � 14, the exponent βe is again constant and
acquires its Baxter’s (ε → ∞) value βe = 1/8, as it should.

To document the accuracy of the CTMRG method, we
present in Fig. 5 the evaluation of the critical exponent βe

for the energy ε = 11, which lies in the transition region. The
truncation orders m range from 100 to 350, and the optimal
�T = 10−4 is chosen. We define the effective exponent βeff

FIG. 5. The polarization (the order parameter) P as a function
of temperature T calculated at ε = 11 and for various numbers of
the states reduction m ranging from 100 to 350. The inset shows the
dependence of the effective critical exponent βeff on the logarithmic
distance of the temperature from the critical temperature Tc; as T
approaches Tc from below, βeff (T → Tc ) → βe.
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as follows:

P(T ) ∝ (Tc − T )βeff (T ), for 0 � T � Tc, (30)

where the prefactor does not depend on the temperature. As T
approaches Tc from below, the exponent βeff (T ) converges to
the electric exponent βe we are looking for:

lim
T →Tc

βeff (T ) = lim
T →Tc

∂ ln P(T )

∂ ln(Tc − T )
= βe. (31)

As seen in the inset of Fig. 5, the data for βeff as the function of
the logarithmic distance of the temperature from Tc converge
starting from m = 200. The plot of βeff is almost constant for
ln(Tc − T ) < −7.8; with regard to the fine scale on the βeff

axis this fact permits an accurate determination of βe. Since
the accuracy of the CTMRG method is superior to standard
numerical approaches like Monte Carlo simulations, the con-
tinuous variation of βe in Fig. 4, ranging in the large interval
2 � ε � 14, exhibits a relatively large amplitude exceeding
by orders the error bars in the exponent determination by the
present technique. In the same manner, we have analyzed the
critical exponents investigated in the remaining part of the
paper.

As seen in Table I, the critical exponent δe is expected to
interpolate between the values 15 at small ε and 11 at large
ε. It is calculated by fitting the polarization data at the critical
temperature Tc according to the relation (15) which can be
rewritten as

δe = lim
E→0

(
∂ ln P

∂ ln E

)−1

. (32)

This formula has to be considered for a very small value
of field E , but not too small to avoid numerical errors due
to the critical state of the vertex system. The obtained data
for E = 10−5 and 2.5 × 10−5 are presented in Fig. 6, within
the range of ε ∈ [0, 18]. Data for E = 10−5, evaluated at ap-
proximation orders m = 100 (circles) and m = 200 (squares),
converge below the anticipated value 11. On the other hand,
numerical data for the optimal field E = 2.5 × 10−5 eval-

FIG. 6. The ε dependence of the critical exponent δe for the
symmetric 16-vertex model. Data are generated for the electric field
E = 10−5 at approximation orders m = 100 (circles) and m = 200
(squares), and the optimal E = 2.5 × 10−5 at m = 100 (triangles).

FIG. 7. The ε dependence of the critical exponent γe for the
symmetric 16-vertex model. Data are generated from fitting of the
formula (16), in the region T > Tc and the susceptibility values
χ ∈ [10 000, 50 000] calculated with dimension of the truncated
space m = 100 (triangles). The exponent γ̃e, calculated by inserting
the previous data for βe and δe into the scaling relation (19a), is
represented by circles.

uated at approximation order m = 100 (triangles) lie close
to the previous data for E = 10−5 with m = 200 in the re-
gion 0 � ε � 12 and tend to the correct value 11 for large
values of ε.

The critical exponent γe is expected to interpolate between
7/4 at small ε and 5/4 at large values of ε. This exponent is
calculated by fitting the susceptibility data according to the
formula (16). The fitting is performed in the region T > Tc

with the susceptibility functional values from the interval χ ∈
[10 000, 50 000]. Within the range of ε ∈ [0, 18], the obtained
m = 100 data are represented by triangles in Fig. 7. Data
tend for small and large values of ε correctly to 7/4 and 5/4,
respectively. Because the fits of the singular formula (16) are
accompanied by relatively large errors, we have calculated
alternatively γ̃e by inserting the previous data for βe and
δe into the scaling relation (19a). Hereinafter, we adopt the
convention that an exponent deduced with scaling relations
will be denoted by a tilde on its top. The data for γ̃e are
represented in Fig. 7 by circles. Note that the plot exhibits
a monotonous decay.

The critical exponents ν̃e and η̃e, calculated by inserting
the previous data for βe (�T = 10−4 and m = 200, squares
in Fig. 4) and δe (E = 2.5 × 10−5 and m = 100, triangles in
Fig. 6) into the scaling relations (19b) and (19c), respectively,
are represented as functions of ε in Fig. 8 by triangles and
circles. Both plots exhibit nonmonotonous behavior. The ex-
ponent ν̃e interpolates correctly between 1 at small ε and 3/4
at large ε, and η̃e interpolates correctly between 1/4 at small
ε and 1/3 at large ε.

The accuracy of the CTMRG method is superior to that
of the standard numerical transfer matrix and Monte Carlo
methods. The crucial feature of the present method is the
extremely small error of order 10−4 − 10−5 in the determi-
nation of the critical temperature Tc(ε), whereas the error
decreases to the machine precision (10−16) off Tc(ε). Having
the precise value of the critical temperature, the fitting of the
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FIG. 8. The critical exponents ν̃e (triangles) and η̃e (circles),
calculated by inserting the previous data for βe (�T = 10−4 and
m = 200) and δe (E = 2.5 × 10−5 and m = 100) into the second
and third of scaling relations (19b), respectively, as functions of
ε ∈ [0, 18].

critical exponents βe using (14) and γe using (32) is very
accurate. For the purpose of benchmarking, we employ a
numerical method, the Higher-Order Tensor Renormalization
Group (HOTRG) [39] in order to provide an independent
comparison with the CTMRG. We chose the HOTRG method
for its numerical reliability and high accuracy with respect
to the Monte Carlo simulations. Having defined the abso-
lute errors ETc (ε) = |T HOTRG

c (ε) − T CTMRG
c (ε)| and Eβe (ε) =

|βHOTRG
e (ε) − βCTMRG

e (ε)|, we confirmed an excellent agree-
ment between the CTMRG and HOTRG methods. In particu-
lar, we evaluated the errors at four points ε = 9, 10, 11, 12 of
the transition region, where the exponents change rapidly; see
Table II.

Our first aim was to confirm that there is a line of critical
points connecting the two exactly solvable Ising ε(I) ≈ 0.6275
and eight-vertex ε → ∞ points which belong to two different
universality classes. The order parameter, namely, the polar-
ization (4), is unique for all values of ε � 0. The next question
was whether the critical exponents are changing along the line
continuously, or whether they are constant in the regions of
small and large ε with a discontinuous change at intermediate
values of ε. As seen in Figs. 4 and 6, the variation of the two
crucial critical exponents βe and γe is considerable and takes
place on a relatively large interval 2 � ε � 14. With regard to
the high accuracy of the CTMRG method, this fact supports
the scenario of a continuous change of the critical exponents

TABLE II. The absolute errors of the results for the critical
temperatures Tc and the critical exponents βe obtained with the
CTMRG and HOTRG methods.

ε ETc (ε) Eβe (ε)

9 5 × 10−6 6.8 × 10−4

10 3 × 10−6 7.8 × 10−4

11 2 × 10−6 2.8 × 10−4

12 2 × 10−6 1.9 × 10−3

along the line. The same arguments hold as to the variation
of the critical exponents γ (ε) in Fig. 7 and η(ε) in Fig. 8,
but the variation of νe in Fig. 8 permits the scenario of two
universality classes only.

To judge the validity of the hypothesis of weak universality,
it is sufficient to test the thermal renormalized exponents
βe/νe, γe/νe and the exponents δe, ηe, which are independent
of ε if weak universality applies, at the two exactly solvable
points. In particular, from Table I we have

βe

νe
=

{
1
8 ε(I) ≈ 0.6275,

1
6 ε → ∞,

(33)

γe

νe
=

{
7
4 ε(I) ≈ 0.6275,

5
3 ε → ∞,

(34)

δe =
{

15 ε(I) ≈ 0.6275,

11 ε → ∞,
(35)

ηe =
{

1
4 ε(I) ≈ 0.6275,

1
3 ε → ∞.

(36)

The fact that γe/νe and δe, ηe are different at the two exactly
solvable cases supports the full nonuniversality of the sym-
metric 16-vertex model on the square lattice.

V. CONCLUSION

The system under consideration was the symmetric two-
state 16-vertex model on the square lattice. Its vertex weights,
which are invariant under any permutation of adjacent edge
states, are considered to be symmetric with respect to the flip
of all adjacent edge states (+) ↔ (−) (see Fig. 1). Such vertex
weights automatically lie on the self-dual manifold of the
gauge transformation (12), i.e., the subspace of the parameter
space which contains all the critical points. The order parame-
ter is the mean polarization P; see Eq. (4). The parametrization
of vertex weights (13) contains two positive parameters, the
temperature T and the energy ε. The two exactly solvable
cases, namely, the Ising model and the specific version of
Baxter’s eight-vertex model correspond to ε(I) ≈ 0.6275 and
ε → ∞, respectively. To study the critical properties of the
model, we have applied the very accurate CTMRG method.
The dependence of the critical temperature Tc on ε is pictured
in Fig. 3. The fit of the plot in the region of small ε (see
the inset) indicates the linear dependence with Tc going to
0 as ε → 0. The plot of the critical exponent βe versus ε,
calculated with optimal parameters of the temperature step
�T = 10−4 and dimension of the reduced space m = 200,
is represented by squares in Fig. 4. The critical exponent
δe(ε) is calculated with optimal parameters of the electric
field E = 2.5 × 10−5 and m = 100; see triangles in Fig. 6.
The plots of the exponent γe versus ε are evaluated “from
first principles” (triangles) and using the scaling relation (19a)
(circles) in Fig. 7. The dependence of the critical exponents νe

and ηe on ε, evaluated by (19b) and (19c), are presented in
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Fig. 8. All the critical exponents interpolate correctly between
their known values at the two solvable cases ε(I) ≈ 0.6275 and
ε → ∞. The continuous variation of the critical exponents
with the model parameter ε is such that the weak universality
hypothesis is violated.
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