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Mean first passage time for a particle diffusing on a disk with two absorbing traps at the boundary
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The problem of survival of a Brownian particle diffusing on a disk with a reflective boundary that has two
absorbing arcs is treated analytically. The framework of boundary homogenization is applied to calculate the
effective trapping rate of the disk boundary, and this enables estimation of the mean first passage time. The
method of conformal mapping is applied to transform the original system to a simpler geometrical configuration
(a flat reflective boundary with a periodic configuration of identical absorbing strips) for which the analytical
solution is known. The expression for the mean first passage time is simplified for some limiting cases (small
arc or small gap). The derived analytical expressions compare favorably with the results of Brownian particle
simulations and other analytical results from the literature.
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I. INTRODUCTION

The problem of survival of a Brownian particle diffusing
in a confined domain bounded by a reflective surface that has
a small absorbing trap on it is often referred to as the narrow
escape problem [1–11]. It has many applications in biology,
chemical engineering, and population ecology [12–15]. The
trap can represent a specific search target, an active chemical
site, or an exit to the outer space from a compartment. The
main parameter of interest in these studies is the mean first
passage time (MFPT), i.e., the time taken for the particle to
reach the absorbing trap on the boundary [1,16–18]. At the
narrow escape limit, i.e., as the size of the trap decreases,
the MFPT increases since it takes longer for a particle to
find a smaller target. The rate of this increase depends on the
dimensionality of the problem, size of the trap, and the surface
morphology near the trap (locally smooth surface, corner
point, bottleneck, etc. [5]). For a “regular” three-dimensional
domain the MFPT increases as the inverse size of the trap,
while for a two-dimensional (2D) planar domain this increase
is only logarithmic [5].

Due to the mixed boundary condition on the boundary
the analytical treatment of the problem is often a challeng-
ing undertaking, so only a few analytical results have been
deduced in this context (for a comprehensive review, see [5]
and references therein). A prominent example of such results
is the solution for the MFPT for a particle diffusing inside
a disk (reflective circle) with a single absorbing arc at its
boundary. In addition to its canonical simplicity, this case is
of methodological interest since it has become the “funda-
mental” solution that can be used to infer the MFPT in other
planar geometries by means of conformal mapping [2]. Most
of the approximate solutions derived for the narrow escape
problem have been derived by employing the infinitely small
target approximation. There is a variety of asymptotic meth-
ods to tackle these problems, including matched asymptotic
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expansions, conformal transformation, perturbation theory,
and boundary homogenization [2,9,11,15,19–21].

For the case of many traps (absorbing spots) the calculation
of the MFPT is more difficult, especially when the original
problem cannot be simplified by applying some symmetry
arguments. Indeed, the many-trap solution should account not
only for the simple linear superposition of trapping rates of the
individual absorbing spots but also for the implicit interaction
among them (so-called many-body effects) resulting from
the competition of the different traps for the same diffusing
particles; the latter effect is the major difficulty in the analysis
of the many-trap problem [6,7,22–24]. As a consequence,
the MFPT becomes dependent not only on the size of ab-
sorbing spots but also on their relative location and mutual
arrangements (clustering), and this makes analytical treatment
even more challenging [22–24]. The method of boundary
homogenization, which is a variation of the effective medium
approach, can overcome some of these difficulties, enabling
analytical progress. The aim of the method is to replace the
mixed (absorbing and reflective) boundary conditions with
a single uniform boundary condition imposed on the entire
boundary. Such a replacement is possible because far away
from a nonuniform boundary the fields of the steady-state
fluxes and the concentration profile become rapidly uniform
in the lateral (i.e., parallel to the boundary) direction, and
these fields can be well described with a uniform boundary
condition. This uniform boundary condition is formulated in
terms of the Robin (radiation) boundary condition with some
effective trapping rate. This trapping rate is essentially an ag-
gregated (lumped) parameter that is completely determined by
the geometrical properties of the boundary and the distribution
of absorbing traps. Calculation of the trapping rate for a given
geometrical setting is the critical step and the main complexity
of the boundary homogenization method. It is noteworthy that
there is an intrinsic analogy between the trapping rate of an
absorber and the capacitance of a conductor of the same shape
[18]: this analogy is based on mathematical similarity between
diffusion and electrostatics and allows a simple estimation of
the trapping rate of complex shape absorbers [22,25].
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It should be noted that the boundary homogenization ap-
proach, as with any effective medium theory, is only a lumped-
parameter approximation. Its validity is conventionally formu-
lated in terms of dilute configuration, i.e., the small fraction of
the domain boundary occupied by absorbing traps [5,9],

σ � 1. (1)

This criterion is in line with the setting for the narrow escape
problem and the main rationale for the reported study. Phys-
ically, condition (1) means that a diffusing particle should be
bounced many times from the reflective part of the boundary
before it hits an absorbing spot (i.e., a large trapping time in
comparison with the diffusion time in the domain). Neverthe-
less, the solution for the effective trapping rate derived below
has the correct limit for σ → 1 (i.e., for the fully absorbing
boundary), so the specific threshold value of σ above which
the method of boundary homogenization becomes invalid
should be established numerically. As has been found by
numerical simulations [11] and supported by the current study,
this method can still provide reasonable estimations of the
MFPT even when σ is not infinitesimally small.

Consider a particle diffusing inside a disk with a reflective
boundary with a number of absorbing arcs (traps) on it. As-
sume we seek to replace the nonuniform boundary condition
at the boundary by a uniform radiation boundary condition
with some effective trapping rate κ that would provide the
same trapping capacity as the all traps [21]. As a result, the
problem becomes one-dimensional. The mean lifetime τ (r) of
a particle that starts at distance r from the center of the disk of
radius R with a uniform partially absorbing boundary satisfies
the equation d[rdτ (r)/dr]/dr = −r/D with radiation bound-
ary conditions at the disk boundary dτ (r)/dr = −κτ (r)/D
and dτ (r)/dr = 0 at the disk center [11,20]. Solving this
equation, we can find that the MFPT is

τ (r) = R2 − r2

4D
+ R

2κ
, (2)

which is the sum of the MFPT to the disk boundary, (R2 −
r2)/(4D), and the mean lifetime of the particle that starts
from the boundary, R/(2κ ). Averaging τ (r) over the start-
ing point, assuming that the starting point is uniformly dis-
tributed over the disk, we obtain the averaged lifetime 〈τ 〉 =
(2/R2)

∫ R
0 τ (r)rdr [11,20]:

〈τ 〉 = R2

8D
+ R

2κ
. (3)

Without the specification of trapping rate κ , this formula is
valid for any configuration of absorbing traps. Below we will
be using the terms “absorbing arcs” and “traps” interchange-
ably. The particular expression for κ should account for the
size of the arcs and their mutual arrangement [9,22,23]. For
the case of a single absorbing arc of length l the trapping rate
is given by the formula [9,20,21]

κ = D

2R ln[1/ sin(πσ/2)]
, (4)

where σ = l/(2πR) is the fraction of the circle boundary
occupied by the arc. This expression, as well as the expression
for 〈τ 〉, Eq. (3), logarithmically diverges as σ → 0, in line
with the aforementioned general properties.

FIG. 1. Two absorbing traps at the boundary of a circular do-
main: σ1, σ2 are the fractions of domain boundaries occupied by
traps, and σg is the fraction of the gap between the traps.

For the case of many absorbing arcs the expression for κ

has been determined only for a few particular configurations.
For the case of n identical and equally spaced arcs each of
length l the expression for κ is still given by Eq. (3), but with
[9,20,21]

κ = nD

2R ln[1/ sin(πσ/2)]
(5)

and

σ = nl

2πR
. (6)

The trapping rate is a nonlinear function of n due to intertrap
interaction (a signature of many-body effects). The trapping
rate, Eq. (5), tends to infinity (i.e., the boundary becomes fully
absorbing) in two limiting cases: (i) when σ = 1 and (ii) when
n → ∞ (for a given σ ).

For the case of two identical arcs in an arbitrary location
on the reflective circle (Fig. 1), an approximate formula for κ

was proposed in Ref. [11] based on the numerical data fit. The
same case was treated analytically in Ref. [9], where, under
the “large intertrap gap” assumption, the expression for τ (0)
was derived (Eq. (3.5) of Ref. [9]) that allows one to deduce
the following expression for the effective trapping rate:

κ = D

R

[
ln

(
2

πσ

)
− ln sin

(
θ

2

)]−1

. (7)

Here θ is the minimal polar angle between the centers
of the arcs, so 0 � θ � π (see Fig. 1). For θ → π , κ →
(D/2R)/{ln[2/(πσ )]}, in agreement with Eq. (4).

The aim of this paper is to derive an analytic expression
for the effective trapping rate κ for the general configuration
of two absorbing arcs on the reflective disk, viz., of different
lengths and arbitrary separations, as shown in Fig. 1. This
expression, together with Eq. (3), leads to an analytical es-
timation of the MFPT.

II. MAIN RESULTS

We have found that for the general configuration of two
absorbing arcs, parameter κ in Eq. (3) is given by the formula

κ = D

2R

1

ln(1/F )
, (8)
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FIG. 2. The dimensionless MFPT, Eq. (26), for two identical arcs
as a function of the interarc distance: Eq. (8) (solid line), asymptotic
formula (7) (dashed line), and Brownian particle simulations [11]
(markers as in the original paper). The different lines correspond
to the different values of the boundary fraction occupied by arcs σ :
0.001/π, 0.01/π, 0.05/π, 0.25/π, 0.5/π (from top to bottom).

where F = F1F2, with

F1 = sin[π (σ1 + σ2 + εσg)/2], (9)

F2 = cos(S/2), (10)

and

S = arcsin[sin(π (σ1 − σ2 + εσg)/2)/F1]

− arcsin[ sin(π (σ1 − σ2 − εσg)/2)/F1]. (11)

Parameters σ1, σ2 are the length fractions of the absorbing
arcs, and σg is the length fraction of the smallest reflection
gap between them, so that

σ1 + σ2 + σg � 1, (12)

and ε = I (σ1σ2), with I (ξ ) = 0 if ξ = 0 and I (ξ ) = 1 other-
wise.

It can be seen that this expression reduces to other cases
discussed above. More specifically, for the case of either σ1 =
0 or σ2 = 0 we recover Eq. (4) since ε, S = 0. The expression
is also valid for the case σg = 0 (no gap between absorbing
arcs) for which S = 0. For two identical arcs in antipodal
locations Eq. (8) reduces to Eq. (6) with n = 2 (see the proof
in the Appendix).

For two identical arcs in arbitrary locations the expression
for κ reduces to Eq. (8) with

F = {sin2[π (σ + σg)/2] − sin2(πσg/2)}1/2, (13)

where σ = σ1 + σ2. This solution is also approximately valid
for the case |σ1 − σ2| � σg, i.e., when the difference in length
between the arcs is much smaller than the gap between
them. Below, Eqs. (8), (10), and (13) will be compared with
asymptotic expression (7). A comparison with Eq. (7), the
case of two equal arcs in an arbitrary location, is presented
in Fig. 2.

With an increase of parameter σg from σg = 0 (touching
arcs) to its maximum value σg = 1/2 − σ (two arcs in antipo-
dal locations), we recover a universal intermediate asymptotic
for σ � σg:

κ = D

R

1

ln η
, η � 1

sin(πσ/2) sin(πσg)
. (14)

By substituting it in Eq. (3) we arrive at the expression for the
MFPT,

〈τ 〉 = R2

D

(
1

8
+ 1

2
ln η

)
, σg � σ. (15)

Therefore, at this limit the MFPT slowly (logarithmically)
decreases with the increase of the width of the interarc gap
and length of absorbing arcs (see numerical results below).

The functional form of Eq. (15) enables the deduc-
tion of a simple “product rule” for the MFPT: it is
the same for the configurations with the same product
sin(πσ/2) sin(πσg). This law provides a simple way for
comparing the MFPT for the different two-arc configurations
by translating them to the equivalent two-equal-arc config-
uration in antipodal locations with aggregated length frac-
tion σe = arcsin[(2/π )sin(πσ/2) sin(πσg)]. Obviously, the
length fraction of the equivalent single arc σe that corre-
sponds to the same MFPT is given by the formula σe =
arcsin[(2/π )

√
sin(πσ/2) sin(πσg)].

Equation (8) also provides insights into the effect of the
difference in arc size on the trapping rate of the disk bound-
ary and the MFPT. Formally, the difference σ1 − σ2 appears
only in the argument of function F2. If |σ1 − σ2| � σg, this
difference can be dropped from the argument, and we return
to the case of two equal arcs considered above (with combined
fraction σ = σ1 + σ2). Similarly, in the opposite limit, when
|σ1 − σ2| � σg, the parameter σg can be disregarded, resulting
in the condition F2 = 1, which is valid for the single-arc
configuration. This implies that in the latter case two arcs act
as a single arc of the combined length, so κ and hence the
MFPT become independent of individual arc lengths provided
the sum σ = σ1 + σ2 is preserved. With an increasing interarc
gap solution (8) describes a smooth transition between the
one- and two-arc approximations, as expected from intuitive
arguments.

III. THEORETICAL FRAMEWORK

A. Displacement length

The concept of displacement length (also known as block-
age length [26], slip length [27], or boundary offset [28,29])
naturally emerges in the method of boundary homogenization
when applied to the problems of Laplacian transport and has
been explained in detail in a number of publications [11,26–
31]. There is a direct connection between displacement
length and the effective trapping rate from Eq. (2), as shown
below.

Displacement length is introduced when the original inho-
mogeneous boundary is conceptually replaced by an effective
homogeneous boundary. This replacement leads to the impor-
tant question about the position of the homogeneous boundary
that preserves the lumped parameter of the systems (heat flux,
electric current, momentum). Displacement length is simply
the offset of the position of the effective homogeneous bound-
ary from the original inhomogeneous boundary [27–30,32].

To relate displacement length and effective trapping rate
it is instructive to analyze diffusive transport near a flat
inhomogeneous boundary by employing the following sim-
plified model. Consider a steady-state diffusion of particles
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in a 2D plane layer (strip) of thickness H . In this case the
concentration of particle obeys the 2D Laplace equation,

∂2C

∂x2
+ ∂2C

∂y2
= 0, (16)

where x, y are Cartesian coordinates, y is the coordinate
normal to the layer, and y = 0 corresponds to the bottom
boundary. Assume that the bottom boundary of the layer is ab-
sorbing C(y = 0) = 0 and the top boundary is kept at constant
concentration C(y = H ) = CH = const. Then the solution of
Eq. (16) takes the form

C = ( j0/D)y, (17)

where j0 = DCH/H = const is the flux in the system.
Next, we modify the bottom boundary by introducing

a periodic pattern of reflective intervals (assuming that the
period of this pattern is much smaller than H). This pattern
will affect the concentration profile and diffusion flux to the
modified boundary. At distances far away from the bottom
boundary (but still much less than H) the lateral component of
the flux rapidly decreases, leading to the following saturation
profile of the particle concentration:

C = ( j0/D)(y + �), (18)

involving a parameter � � 0 called displacement length
[28–30,32].

Parameter � is the only signature of the boundary modifi-
cation (since for the original boundary � = 0). The analytical
expression for � can be deduced from the solution of the
Laplace equation (16) and is specific to a particular bound-
ary. Importantly, that � in any case is determined only by
geometrical parameters of the inhomogeneous boundary and
is independent of particle concentration (this comes from the
linearity of the Laplace equation and boundary conditions).
Displacement length completely determines the modified flux
in the system, j = j0/(H + �), since now C = 0 at y = −�

and not at y = 0.
It is well known (see [11,20] and references therein) that

the boundary consisting of a periodic pattern of absorbing
and reflective intervals can be characterized by a radiation
boundary condition,

D
∂C

∂y
= κC, (19)

with some effective trapping rate κ . The limits κ = 0 and κ =
∞ in this boundary condition correspond to the fully reflective
and absorbing boundaries, respectively.

By substituting Eq. (18) into Eq. (19) we can deduce a
simple relation between parameters κ and �:

κ = D/�. (20)

Equation (20) implies that if, for a given inhomogeneous
boundary, we manage to deduce the far-field limit of the
solution of the Laplace equation in the form of Eq. (18), we
can identify displacement length � and then from Eq. (19)
obtain the effective trapping rate κ in the radiation boundary
condition. The trapping rate according to Eq. (3) leads to
calculation of the MFPT.

In the context of the two-trap problem, Fig. 1, we apply the
same framework to the solution of the Laplace equation for a

disk with two absorbing arcs at its boundary and impose the
far-field limit, Eq. (18), in a circular domain. To this end we
employ the method of conformal transformation.

B. Conformal transformation

To illustrate the main idea of the method we begin with
solution (17) for a 2D layer with the perfectly absorbing
boundary at y = 0:

C(x, y) = ( j0/D) Im(z), (21)

where z = x + iy is complex coordinate. Under the confor-
mal map ω = ω(z) = u + iv, which transforms the origi-
nal boundary at y = 0 to a more complex boundary (with
nonuniform absorbing properties or geometrical profile), this
solution becomes

C(x, y) = ( j0/D) Im[ω(z)]. (22)

Then, by imposing the far-field limit, y → ∞, we expect
ω(z) � z + i�, where � is real, and we can identify displace-
ment length �.

Next, we transform solution (22) to a circular domain.
Assuming periodicity along the layer with period 2πR, we ap-
ply conformal map ω/R = exp(iz/R) and transform a period
of the layer [a rectangle 0 � x � 2πR, 0 � y � H onto an
annulus a � |ω| � R, a = R exp(−H/R)]. The internal radius
of the annulus a, where the concentration of particles is kept
constant C = CH , is relatively small (a � R) because H is
much larger than the period 2πR, as initially assumed. If
the bottom boundary of the layer has a periodic pattern of
absorbing and reflective intervals, this map transforms this
pattern into a pattern of absorbing and reflective arcs on the
external circle, preserving their relative fractions. Importantly,
if we apply the boundary homogenization approach to the in-
homogeneous bottom boundary of the layer and replace it with
the uniform partially absorbing boundary with some effective
trapping rate κ , this trapping rate will be the same as for the
external boundary of the annulus. This property is due to the
preservation of total flux under conformal transformation [33]
and the total length of the external boundary (for details, see
[20]). From the equality of the two trapping rates immediately
follows the equality of displacement lengths, Eq. (20), and
this enables us to perform calculations of � in the rectangular
domain with two reflective side boundaries, the top boundary
at y = H , where C = CH = const, and the bottom boundary at
y = 0, which has reflective base with two absorbing intervals
(see Fig. 3).

As the next step we transform the inhomogeneous bound-
ary at y = 0 to the perfectly absorbing boundary by “remov-
ing” reflective parts between absorbing intervals and vertical
reflective boundaries of the rectangle (Fig. 3). We rescale the
width of the rectangle, so it becomes −π/2 � x � π/2. We
can always select the position of the period such that the
reflective intervals adjacent to the vertical walls become equal.
Then we apply the mapping function [30,32,34,35]

ω(z) = arccos[F cos(z)], (23)

where the parameter F is a constant and is initially unde-
fined. This transformation maps the elongated rectangular
domain (actually, strip −π/2 � x � π/2, y > 0) onto itself
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FIG. 3. The result of transformation (23) for some value of
parameter F .

and stretches its boundary. The value of the “stretch” param-
eter F can be selected in a special way so that the ends of
absorbing intervals at the bottom after transformation will
be located at the ends of the period adjacent to the vertical
walls. Therefore, the transformation (23) essentially removes
the reflective gaps adjacent to the vertical boundaries of the
period [30,32,34,35] (see Fig. 3). In a similar manner, if
applied recursively (shifting the origin after each step), this
transformation can remove any number of reflective gaps from
the absorbing boundary, resulting in the perfectly absorbing
boundary located at y = 0. It also shifts the position of the top
boundary, and this shift is equal to � [32] (for more details
see [30,32]).

An important property of mapping (23) is its preservation
of the functional form for subsequent applications and for
inverse transformation (it changes only the stretch parameter
β). For the case of two absorbing intervals the result reads

F = F1F2, (24)

where F1, F2 are given by Eqs. (9) and (10).
By reinstating dimensional variables, substituting Eqs. (23)

and (24) into (22), applying the identity arccos z = −i ln(z +
i
√

1 − z2), and taking limit y → ∞, we derive the following
expression for displacement length:

� = − ln(F1F2). (25)

Finally, by using Eq. (20) we arrive at the main result, Eq. (8).

IV. NUMERICAL VALIDATION

For validation we compare the above analytical results with
some asymptotic formulas and Brownian particle simulations
[11]. We plot the mean particle lifetime, Eqs. (7) and (8),
measured in the diffusion time units, R2/D,

T = 〈τ 〉 D

R2
= 1

8
+ ln

(
1

F

)
, (26)

where for κ we use Eq. (8). The right-hand side of this
equation is a dimensionless function and depends only on
fractions σ1, σ2, σg.

First, we present results for the dimensionless MFPT,
Eq. (26), for the configuration of two identical arcs in arbitrary
locations. In Fig. 2 we depict the plot of the MFPT as a
function of the gap between the arcs. Motivated by Eqs. (14)

TABLE I. Maximum relative error (%) for the simulation data fit.
Note that all simulation results are from Ref. [11] and Fig. 2.

σ

0.001/π 0.01/π 0.05/π 0.25/π 0.5/π

Eqs. (3), (7), (27) 0.45 1.14 1.51 0.75 1.06
Eqs. (3), (8) 0.45 1.14 1.50 0.64 0.42

and (15), we use ln(σg) as a variable so that the intermediate
asymptotic (14) corresponds to the straight lines (assuming
σ1, σ2, σg � 1). The thick solid lines are the solution given by
Eq. (8), the markers are the results of Brownian particle sim-
ulations [11], and the dashed lines are the asymptotic formula
(7). We observe excellent agreement between all data sets for
the broad range of the absorbing-arc fraction, 0.001/π � σ �
0.5/π , where σ = σ1 + σ2. Generally speaking, formula (7),
being developed for the well-separated configurations, is not
directly applicable for the small-gap limit (it logarithmically
diverges as θ → 0). To overcome this issue we modified
Eq. (7) with the substitution

θ = π (σg + σ ) (27)

and found very good agreement with Eq. (8) and Brownian
particle simulations over the broad range of the two-equal-
arc configurations (the dashed lines in Fig. 2 and data in
Table I). The saturation value of each line for the small σg

limit (horizontal asymptotes) corresponds to the solution for a
single arc of combined length.

To compare data fit, given by asymptotic formula, Eq. (7),
and general solution, Eq. (26), we calculated the relative per-
centage error for each data point 100|T − Tsim|/Tsim, where
Tsim is a data point from Brownian particle simulations [11].
The maximum value of the relative error for each scenario of
simulations (data series in Fig. 2) is presented in Table I.

Next, we validate the product rule predicted by Eq. (15).
We plot particle simulation data from Fig. 2 as a function
of one aggregated variable ln η along with the theoretical
prediction for the dimensionless MFPT, Eq. (15): T = 1/8 +
(1/2) ln η (Fig. 4, solid line). Only data points with σg > σ

are presented, which is the condition of validity of Eq. (15).
We can conclude that the results of particle simulations agree
well with the product rule over the six-decade range of the
“aggregated” variable η.

FIG. 4. The product rule for the MFPT for two identical arcs,
Eq. (15) (solid line) and Brownian particle simulations [11] (markers
as in the original paper and in Fig. 2).
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FIG. 5. The MFPT for two arcs of different lengths, σ1, σ2,
normalized with the MFPT for a single arc of combined length σ =
σ1 + σ2: (a) σ = 0.5/π and (b) σ = 0.002/π . The bottom (dashed)
line in each plot is σ1/σ2 = 1 (two identical arcs), the middle line is
σ1/σ2 = 5 × 10−2, and the top line is σ1/σ2 = 5 × 10−5.

Finally, we investigated the effect of the difference in
length of the arcs on the MFPT, as shown in Fig. 5. We use
ln(σg) as a variable, so that when σ, σg � 1, the asymptotes of
large separation given by Eq. (14) correspond to the straight
lines with slope and are clearly identifiable. The values for
the MFPT are normalized with the MFPT for a single arc of
combined length [T∗ = T/T1, where T1 is given by Eq. (26)
with σg = 0], so all plots tend to unity for the small-gap
limit. In line with the theoretical predictions, the deviation
of the plots from the horizontal asymptote, which manifests
a transition from the one- to two-arc approximation, occurs at
σg > σ , which is clearly visible from a comparison of the two
panels in Fig. 5. We also depict the MFPT for two identical
arcs of the same combined length (the dashed line in Fig. 5).
It can be seen that the two-equal-arc solution provides a
reasonable approximation for a broad range of configurations,
including an extreme asymmetry in arc length (note that the
apparent origin in Fig. 5 corresponds to T∗ = 0.5 and not
to T∗ = 0). This means that the effect of the difference in
arc length is relatively weak, as predicated by the theory.
Similarly, the single-arc model performs satisfactorily only in
the limit of a very small gap.

For the case of two unequal absorbing arcs we could not
find any published data on Brownian particle simulations to
compare with our analytical predictions.

V. CONCLUDING REMARKS

In this paper we have calculated the MFPT for a Brownian
particle diffusing in a disk domain with two absorbing traps
at its boundary. The traps are formed by arcs of a different
length with an arbitrary separation. By applying the method
of boundary homogenization and conformal transformation
we derived an explicit expression for the MFPT in terms
of geometrical parameters of the system. We validated our

analytical results with available asymptotic solutions and with
Brownian dynamics simulations reported in the literature and
found excellent agreement. In line with the previous studies,
our results even indicate that the method of boundary homog-
enization can provide a reasonable estimation of the MFPT
outside the very dilute approximation.

We found that the theoretical framework, employing ideas
of boundary homogenization, provides a simple, yet self-
consistent, framework for the analytical treatment of first pas-
sage phenomena for the case of a Brownian particle diffusing
on a disk with a reflective boundary that has two absorbing
traps. This approach allows us to gain some insights into the
effect of relative trap size and their position. In particular,
it provides an intuitively appealing approach for a simple
estimation for the MFPT for an arbitrary configuration of
two traps. Depending on the relative size of the intertrap gap
the original configuration can be replaced with an equivalent
configuration of either one or two traps (arcs) of the same
aggregated length for which the analytical solutions are avail-
able.

The results of this paper also enable a simple refinement
of the condition of validity of the boundary homogenization
approach in the case considered. Indeed, from Eq. (26) and
the requirement for the large trapping time, we arrive at the
refined condition of validity

ln(1/F ) > 1, (28)

where F is given in Eqs. (8)–(11). This condition was fulfilled
in the numerical simulation presented in Fig. 2.

The presented approach can be generalized in two ways.
Being applied iteratively, the conformal transformation (23)
can be extended to treat an arbitrary number of absorbing
arcs in a general configuration. Unfortunately, the analyti-
cal expressions quickly become cumbersome, but numerical
treatment is straightforward. For n different absorbing arcs the
MFPT is always bound by two limits, viz., its maximal value
estimated for a single arc of aggregated length and its minimal
value corresponding to the configuration of n equally spaced
identical arcs of the same combined length.

It is also possible to get insight into the MFPT for a
Brownian particle diffusing in other geometries of the domain
with two absorbing traps on a reflective boundary provided a
conformal transformation between a circle and the domain of
interest is known. The theoretical framework for this general-
ization is presented in [2].
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APPENDIX

Assume an antipodal configuration of two identical absorb-
ing intervals, σ1 = σ2 = σ/2. By substituting it in the general
solution (8) we derive

F1 = sin[π (1 + σ )/4].
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For F2 we use Eq. (11) and conclude

F2 = cos

(
arcsin

[
sin[π (1 − σ )/4)]

sin[π (1 + σ )/4]

])

=
[

sin2[π (1 + σ )/4] − sin2[π (1 − σ )/4]

sin2[π (1 + σ )/4]

]1/2

=
[

sin2[π (1 + σ )/4] − cos2[π (1 + σ )/4]

sin2[π (1 + σ )/4]

]1/2

=
[

sin(πσ/2)

sin2[π (1 + σ )/4]

]1/2

.

Therefore,

F = F1F2 =
√

sin(πσ/2),

or

ln(1/F ) = (1/2) ln[1/ sin(πσ/2)].

From Eq. (8) it can be seen that this result corresponds to
double the value of κ for a single absorbing arc, which is in
agreement with Eq. (5).
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