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The Preisach model has been useful as a null model for understanding memory formation in periodically
driven disordered systems. In amorphous solids, for example, the athermal response to shear is due to localized
plastic events (soft spots). As shown recently by Mungan et al. [Phys. Rev. Lett. 123, 178002 (2019)], the
plastic response to applied shear can be rigorously described in terms of a directed network whose transitions
correspond to one or more soft spots changing states. The topology of this graph depends on the interactions
between soft spots and when such interactions are negligible, the resulting description becomes that of the
Preisach model. A first step in linking transition graph topology with the underlying soft-spot interactions is
therefore to determine the structure of such graphs in the absence of interactions. Here we perform a detailed
analysis of the transition graph of the Preisach model. We highlight the important role played by return-point
memory in organizing the graph into a hierarchy of loops and subloops. Our analysis reveals that the topology
of a large portion of this graph is actually not governed by the values of the switching fields that describe the
hysteretic behavior of the individual elements but by a coarser parameter, a permutation ρ which prescribes the
sequence in which the individual hysteretic elements change their states as the main hysteresis loop is traversed.
This in turn allows us to derive combinatorial properties, such as the number of major loops in the transition
graph as well as the number of states |R| constituting the main hysteresis loop and its nested subloops. We find
that |R| is equal to the number of increasing subsequences contained in the permutation ρ.
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I. INTRODUCTION

When cyclically driven and under conditions where ther-
mal effects are negligible, a wide variety of disordered
condensed-matter systems anneal by settling into a limit cycle
in which a set of microscopic configurations is visited peri-
odically. Examples are magnets, dense colloidal suspensions,
sheared amorphous solids, and granular bead packs, which
have been investigated extensively both experimentally and
numerically [1–18].

In particular, in sheared amorphous solids these limit cy-
cles correspond to a repeating sequence of localized plas-
tic events, referred to as shear transformation zones or soft
spots [19–21]. These soft spots emerge as a result of the
cyclic shearing and appear to be mostly two-state systems
with hysteresis. They interact with each other via long-range
quadrupolar displacement fields, typically associated with
Eshelby inclusions [18,22,23]. As recently shown by Mungan
et al. [18], the primary effect of cyclic annealing is the
formation of the interacting soft-spot system, which in turn
not only produces the periodic response, but at the same
time renders it resilient: When the amplitude of the forcing
is subsequently reduced the system often (but not always)
settles into a subcycle where a subset of the soft spots is
active [16]. Indeed, experiments and numerical simulations
have revealed that the interacting soft-spot system formed by
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annealing gives rise to a hierarchy of cycles and subcycles
that is moreover highly reminiscent of return-point memory
[1,16,18,24,25] (to be discussed further below). Such hierar-
chies were found to persist even at moderately large values of
strain amplitudes [18].

The states of the individual soft spots collectively en-
code the overall plastic configuration of the system via a
mesostate [18]. Mesostates are collections of configurations
that under applied shear can be transformed into each other
purely elastically. Plastic events then correspond to transitions
between mesostates. As was shown in [18], it is possible to
extract mesostates and their transitions from molecular statics
simulations, such as those carried out in Refs. [6–11]. The
description in terms of a state transition graph of mesostates
allows one to relate features of the dynamic response, such as
cycles and subcycles, to their corresponding graph theoretical
counterparts [18].

In the case of amorphous solids, the topology of the
state transition graph is determined by how the soft spots
interact with each other, namely, how the state of a set
of soft spots alters the switching behavior of another soft
spot [18]. However, a connection between graph topology
and dynamics is present even when the soft spots do not
interact and hence switch independently of each other. This
corresponds to the well-known Preisach model [26–28]. This
model has been useful in understanding a broad range of
systems exhibiting hysteresis, including magnetic materi-
als, where the model originated [24,26,29], but also frac-
ture in dilatant rocks [30–32] and more generally memory
formation in matter [15–17,33]. A comprehensive review
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of the Preisach model and its applications can be found
in [34,35].

The goal of this paper is therefore twofold. On the one
hand, treating the Preisach model as a null model of nonin-
teracting soft spots forming the limit cycle of a periodically
sheared amorphous solid, we aim to describe its transition
graph. While transition graphs for some particular and special
realizations of the Preisach model have been considered be-
fore [36,37], our goal here is to provide a general description
of all possible transition graphs. Comparing the structure of
such graphs with those extracted from limit cycles of real
systems (numerically or by experiment), any deviations from
the topology of the Preisach graphs can be attributed to
interactions between the soft spots. This will be useful in
identifying nontrivial network motifs in state transition graphs
that have been extracted from systems with interactions, as
was done in [18].

On the other hand, the Preisach model is the simplest
system exhibiting return-point memory (RPM) [1,24,29], a
property wherein a system remembers the states at which the
direction of an external driving had been reversed. As we have
shown recently [25], the presence of RPM imposes strong
constraints on the topology of the associated state transition
graph. Thus many features of the state transition graph asso-
ciated with the Preisach model, and hence its dynamics, are
a direct consequence of RPM. Our second goal therefore is
to use the Preisach model to illustrate some of the theoretical
results that we obtained before [25].

We conclude this introduction with a summary of our
main results, properties 1–4, and an outline of the paper. In
Sec. II we define the Preisach model, its stable states, and
the transitions between them. Given a stable configuration,
there exists a minimal field change so that a new stable state
is always reached by the state change of a single hysteretic el-
ement (hysteron). In other words, the Preisach model does not
exhibit avalanches. We refer to the set of field values at which
the individual hysterons switch their states as the switching
fields. In Sec. II C we introduce the idea of a ρ-stable state.
A ρ-stable state is a hysteron configuration that is stable
for any realization of the switching fields whose ordering is
compatible with a given permutation ρ. In particular, we show
that all two-loops, i.e., pairs of states that transition into each
other under the state change of a single hysteron, are ρ stable
(property 1). In Sec. III we summarize the general theory
of state transition graphs obeying the return-point memory
property, as worked out by us in [25], introducing the loop-
RPM (�RPM) property and maximal loops. We then turn to an
application of these results to the Preisach model. In Sec. IV
we describe the maximal loops of the Preisach model and
generalize property 1 by establishing ρ stability for all states
associated with nontrivial maximal loops, i.e., loops having at
least two states (properties 2 and 3). As a consequence, the
states associated with the main hysteresis loop of the Preisach
model and all its subloops are ρ stable. In Sec. V we describe
the transition graph of the main hysteresis loop, the Preisach
graph. We show that the permutation ρ completely determines
its topology and conversely that given the Preisach graph,
ρ can be read off from its topology. Having established the
combinatorial structure underlying the transitions graph of the
Preisach model, we turn next in Sec. VI to the derivation of

two statistical results: (i) the disorder-averaged size distribu-
tion of maximal loops and (ii) the number of reachable states
of the main hysteresis loop, i.e., the number of configurations
reachable from one of the saturated states. Given the permu-
tation ρ, we show that this number is equal to the set of in-
creasing subsequences contained in ρ (property 4). Using this
observation, we establish that the disorder-averaged number
of reachable states is asymptotic to L−1/4 exp(2L1/2), where L
is the number of hysterons of the model. We conclude with
a discussion of our results in Sec. VII. Appendix A contains
the proof of ρ stability of two-loops, while in Appendix B we
derive the no-passing property for the Preisach model [38],
which implies the RPM property [1].

II. PREISACH MODEL AS AN ATHERMAL
QUASISTATIC AUTOMATON

A. Definitions

We start with the definition of the Preisach model [26]. We
consider a collection of L two-level systems, the hysterons.
The configurations are L-component vectors σ, with compo-
nents σi = ±1, designating the state of each hysteron. With
every hysteron i we associate a pair of real numbers (F−

i , F+
i ),

the switching fields, satisfying

F−
i < F+

i . (1)

If hysteron i is in state σi = +1, then it will become unstable
when F � F−

i and switch to the state σi = −1. Likewise, if
i is in state σi = −1, it will become unstable and switch to
σi = +1 when F � F+

i . Thus a hysteron i is stable at force
F if either σi = −1 and F < F+

i or σi = 1 and F > F−
i . We

assume that the switching fields F±
i are all distinct. Note

that this assumption is natural in the context that we are
interested in, e.g., sheared amorphous solids [18–21]. Here
one considers a finite but possibly large number of hysteretic
elements, whose switching properties are due to some under-
lying microscopic disorder. Thus the switching fields can be
assumed to be distinct.1

Given a configuration σ, let the sets I±[σ] denote the
collections of hysteron i that are in state ±1:

I+[σ] = {i : σi = +1}, (2)

I−[σ] = {i : σi = −1}. (3)

We define next the threshold fields F±[σ] associated with a
configuration σ as

F+[σ] = min
i∈I−[σ]

F+
i , (4)

F−[σ] = max
i∈I+[σ]

F−
i . (5)

1The point of view underlying the standard treatment of Preisach
models is more macroscopic: One considers a continuum of hys-
teretic elements so that a realization of the Preisach model is de-
scribed by a continuous density of switching fields. Likewise, in such
a setting the output variable of interest is no longer the state of each
individual hysteron but a macroscopic quantity such as the average
magnetization, in the case in which the hysterons carry a magnetic
moment. Details of such treatments can be found, for example, in
[34,35].
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Let α and ω be the states (−1,−1, . . . ,−1) and
(+1,+1, . . . ,+1), respectively. In magnetism language
these are the saturated states. It is convenient to set

F+[ω] = ∞, F−[α] = −∞. (6)

In the Preisach model, a configuration σ =
(σ1, σ2, . . . , σL ) is stable, if there is a field F at which
each hysteron i is stable, in the sense defined above. It is
easily shown that this condition is equivalent to requiring that

F−[σ] < F+[σ]. (7)

We denote the set of all stable states by S and write its number
of elements as |S|. In the athermal quasistatic (AQS) regime
we are interested only in the stable states and the transitions
between them. Note that the states α and ω are always stable,
i.e., irrespective of the choice of switching fields F±

i .
Given a stable state σ, we define i+[σ] and i−[σ] as [cf. (4)

and (5)]

i+[σ] = arg min
i∈I−[σ]

F+
i , (8)

i−[σ] = arg max
i∈I+[σ]

F−
i . (9)

Since the switching fields F±
i of the individual hysterons were

assumed to be distinct, the sites i±[σ] are unique.2 They are
the least stable hysterons with respect to field decrease and
increase, respectively, and will change state when F = F±[σ].

Given a stable state σ and an initial force F such that
F−[σ] < F < F+[σ], we are interested in the transition into
another stable state when the field is raised to F+[σ] (and
kept constant). At least one hysteron, namely, i+, will change
its state in this case. We show next that the state change of
this one hysteron suffices to obtain a new state σ ′ that is
stable at the force F = F+[σ]. To see this, let σ be stable
and assume that σ �= ω. The set I−[σ] is thus nonempty and
there is a least stable site i+[σ] that will become unstable
when F = F+[σ], since by definition F+[σ] = F+

i+[σ]. Let σ ′
denote the configuration obtained from σ by changing only
the state of hysteron i+ from −1 to +1. We claim that σ ′
is stable. Observe that I+[σ ′] = I+[σ] ∪ {i+[σ]}. From (5) it
immediately follows that

F−[σ ′] � F−[σ]. (10)

Likewise, we have I−[σ ′] = I−[σ] \ {i+[σ]}, so

F+[σ ′] � F+[σ]. (11)

Since σ is stable by assumption and (7) holds, it follows that
F−[σ ′] < F+[σ ′] and hence σ ′ is stable too. The case for a
transition when F is lowered to F−[σ] proceeds similarly. We
have thus rederived the following property of the Preisach
model: A stable state σ ∈ S transits at F = F−[σ] (F =
F+[σ]) via the state change of a single hysteron i− (i+) to a
new stable state. This implies that the Preisch model does not

2Note that when σ = ω (σ = α), the set I− (I+) is empty and so
i+ (i−) is undefined. In these cases no transitions occur, so this is
consistent.

have avalanches: As the forcing is lowered or raised, hysterons
change their states one at a time. We will refer to this as the
no-avalanche property.

B. Maps U and D and the state transition graph

Given a stable state σ and setting F = F+[σ] allows us to
define a map that takes a stable state σ to another stable state
σ ′ under minimal field increase. We write this as

σ ′ = Uσ. (12)

Similarly, we define the transition from a state σ under a field
decrease to F = F−[σ] in terms of a map D as

σ ′′ = Dσ. (13)

With (6), it is convenient to define the U (D) transitions
from ω (α) as

Uω = ω, Dα = α. (14)

In this way both U and D map S into itself.
The maps U and D together with the pair of switching

fields F±[σ] of each stable configuration suffice to determine
the AQS response of the Preisach model to arbitrary force
protocols F (t ) [25,39]. We refer to such systems as AQS
automata. To see this, suppose the system is initially in a state
σ that is stable at F0. When we increase the force to some value
F , the system will transit through the states σ, Uσ, U2σ, . . .,
until reaching the first state Ukσ, for which F+[Ukσ] > F .

The maps U and D each have a natural representation as
a directed graph, called the functional graph of the map. Its
vertex set is S and its directed edges are the sets of pairs
(σ, Uσ ) and (σ, Dσ ), respectively. These transitions can be
represented as directed arrows connecting the initial and final
states, as shown in Fig. 1(a). We will adopt the convention to
mark transitions under U and D by upward-pointing black and
downward-pointing red arrows, respectively, using the lighter
colors gray and orange if we want to emphasize these less.
Combining both sets of edges, we obtain the multigraph on
S , the AQS state transitions graph. It governs the dynamics of
the Preisach model under arbitrary forcing, as outlined above.
Figure 1(b) shows the state transition graph for a Preisach
system with five hysterons, giving rise to 14 stable states.

C. Ordering permutation ρ and ρ stability

In order to simplify notation for the rest of the paper
we assume without loss of generality that the hysterons i =
1, 2, . . . , L have been indexed such that

F+
1 < F+

2 < · · · < F+
L . (15)

Denote by

ρ =
(

1 2 · · · L
ρ1 ρ2 · · · ρL

)
(16)

the permutation ordering the F−
i from largest to smallest:

F−
ρ1

> F−
ρ2

> · · · > F−
ρL

. (17)

In a slight abuse of notation we will write the permutation in
(16) as ρ = (ρ1, ρ2, . . . , ρL ).
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FIG. 1. (a) Actions of U and D graphically represented by
upward-pointing arrows (black) and downward-pointing (red) ar-
rows, respectively. This convention for pointing direction (color) will
be used in all subsequent figures, substituting at times gray shades
(pale colors) to deemphasize transitions. (b) State transition graph
of the Preisach model with five hysterons and ordering permutation
ρ = (35214). The vertices associated with the main hysteresis loop
and its subloops are shown in blue and are labeled using the letters
α, α1, α2, α3, α4, and ω, ω1, ω2, ω3, ω4. They constitute the set of
reachable states R, i.e., the states reachable from one of the two sat-
urated configurations α and ω by a sequence of U and D transitions.
The states μ, ν, σ1, and σ2 are not reachable. The pair of states (μ, ν)
form a maximal two-loop, as does the main hysteresis loop (α, ω),
and the two singleton maximal loops consisting of the states σ1 and
σ2, respectively. It turns out that the ordering permutation ρ suffices
to describe the set of all states that are nonsingleton maximal loops
as well as the transitions between them (refer to the text for details).
(c) The U and D orbits of a state σ will be designated by dashed
arrows (refer to Sec. III for details).

As remarked in the Introduction, one of our main findings
is that the topology of a structurally large portion of the tran-
sition graph for the Preisach model depends only on the
relative order of the switching fields, as specified by the
permutation ρ and not their specific values F±

i , as long as
the inequality (1) holds of course. This means that there is
a subset of hysteron configurations whose stability depends
entirely on ρ and hence remain stable for any realization of
switching fields F±

i compatible with ρ. Let us call such states
ρ stable and denote their set by Sρ .

The existence of ρ-stable states might seem counterintu-
itive, since one expects that whether a hysteron configuration
σ is stable or not, and hence satisfies (7), should depend, via
(4) and (5), on the particular values of the switching fields. For
example, if the F±

i were to satisfy the stronger condition

F−
i < F+

j (18)

for all i, j (which can be realized by requiring that F−
i <

0 < F+
j ), then all 2L hysteron configurations are stable, as

is readily shown. It is well known however that for general
choices of F±

i satisfying (1), not all 2L possible hysteron
configurations are stable.

We will call the ordered pair of stable states (σ, σ ′) a two-
loop if the following hold:

σ ′ = Uσ, (19)

σ = Dσ ′. (20)

For example, (μ, ν) and (α3,ω4) in Fig. 1(b) are two-loops.
Denote by S (2) the set of all states that are part of some two-
loop. We derive next the following property of the Preisach
model.

Property 1. All two-loops are ρ stable,

S (2) ⊂ Sρ. (21)

Observe that for any state σ ∈ S (2), we must have that
either

σ = DUσ (22)

or

σ = UDσ. (23)

If σ satisfies (22), then σ ′ = Uσ satisfies (23). Moreover, by
the no-avalanche property established earlier, if σ is stable,
then Uσ has to be stable as well. Thus it suffices to consider
only the set of states σ satisfying (22) and show that these
states belong to Sρ . It is readily shown (see Appendix A) that
any state σ satisfying (22) must be of the form

σi =
⎧⎨
⎩

+1 for i < k
−1 for i ∈ {ρ1, ρ2, . . . , ρr}
±1, otherwise,

(24)

with k = ρr chosen such that it is a lower record of ρ,

ρr = min
1�u�r

ρu. (25)

Moreover, such a state will always be stable and property 1
has been proven.

III. STATE TRANSITION GRAPHS OF AQS SYSTEMS
WITH RETURN-POINT MEMORY

In the preceding section we have cast the dynamics of the
Preisach model in terms of a set of configuration S and two
maps U and D that map S onto itself. Such a description
emerges naturally in the AQS regime [23] in which one
considers the athermal and adiabatic response of a driven dis-
ordered system [25,39]. When such systems exhibit the RPM
property, the corresponding state transition graph possesses
a certain topological structure called �RPM, which we have
identified in [25].

The “classical” route to RPM is via Middleton’s no-passing
(NP) property [1,38]. In the context of AQS dynamics, a
system possesses the NP property if there exists a partial order
� on the set of stable configurations S which is preserved by
the dynamics. Details are given in Appendix B, where we also
provide a proof that the AQS dynamics of the Preisach model
exhibits the NP property. Consequently, the state transition
graph of the Preisach model exhibits �RPM. Note that the
reverse is not true in general; an AQS system whose state tran-
sition graph exhibits the �RPM topology does not necessarily
have to satisfy an NP property.
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In the following we review the structure of state transition
graphs with the �RPM property. Details and proofs of the
statements presented here can be found in [25].

Let σ be any stable state. The sequence of states obtained
by repeatedly applying U is called the U orbit of σ and we
write this as3

U∗σ = (σ, Uσ, U2σ, . . . ,ω). (26)

Likewise, the D orbit of σ is defined as

D∗σ = (σ, Dσ, D2σ, . . . ,α). (27)

Figure 1(c) depicts the graphical representation we will use
for orbits.

A pair of states (μ, ν) forms a loop if ν ∈ U∗μ and simul-
taneously μ ∈ D∗ν. We call μ and ν the lower and upper end
points of the loop, respectively. Moreover, there are (smallest)
integers n, m � 0 such that ν = Unμ and μ = Dmν. The states
νi = Uiμ, with i = 0, 1, 2, . . . , n, and μ j = Dm− jν, with j =
0, 1, 2, . . . , m, are called the U- and D-boundary states of
the loop (μ, ν), respectively. For example, in Fig. 1(b),
the pair of states (α,ω) forms a loop and its U- and D-
boundary states are the set of states {α,ω1,ω2,ω3,ω4,ω} and
{α,α1,α2,α3,α4,ω}, respectively.

Next a loop (μ, ν) has the absorption property if for each
U-boundary state νi and D-boundary μ j the following is true:
μ ∈ D∗νi and ν ∈ U∗μ j . Note that if the absorption property
holds, the pairs (μ, νi ) and (μ j, ν) form loops themselves.
We call these the major subloops of (μ, ν). The absorption
property is illustrated in Fig. 2(a).

The �RPM property for the AQS transition graph can now
be stated as follows: The AQS transition graph has the �RPM
property if every loop (μ, ν) has the absorption property. Note
that this property is defined as a property of the whole AQS
transition graph. This is the case for the Preisach model, since
for the Preisach model RPM is a direct consequence of the NP
property, which in turn is a global dynamic property.4

An immediate consequence of the �RPM property is that
the D orbits off the U boundary of a loop cannot cross, but
must merge at or prior to reaching the lower end point μ.
This is illustrated in Figs. 2(b) and 2(c). An analogous result
holds for the U orbits off the D boundary of the same loop.
In Ref. [25] this was called the nesting property (Proposition
3.5 therein). With the help of the nesting property, a series of
results follows that we summarize next.

A. (μ, ν)-reachable states

With each loop (μ, ν) we can associate a set of stable states
R(μ,ν) ⊂ S . We refer to these states as (μ, ν)-reachable states;

3We are assuming here that the AQS system has unique absorbing
states α and ω, under D and U, respectively, as is the case for the
Preisach model.

4In the case of sheared amorphous solids and other glasses, it is
more useful to work with a local version of �RPM that is restricted
to a given loop (μ, ν), as was done in [18]. The �RPM property for a
loop can be stated as follows: A loop (μ, ν) has the �RPM property
if the following two conditions hold: (i) (μ, ν) has the absorption
property and (ii) all major subloops of (μ, ν) possess the �RPM
property.

Uμ

U2μ

Un−1μ

Dm−1ν

D2ν

Dν

•

•

•

•

•

•

(a)
ν ν

μμ

ν

μ

σ

η

ρ

(b)

ν

μ

σ

η

(c)

FIG. 2. (a) Illustration of the absorption property of a loop (μ, ν).
The U- and D-boundary states of the loop are labeled as Uiμ and D jν,
respectively. The loop (μ, ν) is absorbing if all D orbits off the U
boundary pass through the lower end point μ of the loop (left panel)
and likewise all U orbits off the D boundary pass through ν (right
panel). (b) and (c) Illustration of the nesting property of orbits. The
states σ and η = Uσ are two successive U-boundary states of the
loop (μ, ν). By the absorption property of (μ, ν), their D orbits must
lead to μ. From the �RPM property it follows that these two orbits
must merge either (b) prior to reaching μ at some state ρ or (c) at μ.

these are the states that can be reached from μ by applying
some sequence of U and D operation such that the resulting
intermediate states never leave the end points of the loop, i.e.,
transitions Uν or Dμ are not permitted. Since S is assumed
finite, so must R(μ,ν). Moreover, the �RPM property ensures
that for any σ ∈ R(μ,ν),

ν ∈ U∗σ, μ ∈ D∗σ, (28)

which in turn implies that (μ, ν)-reachable states exit their
loop via their end points.

The set of (α,ω)-reachable states is associated with the
main hysteresis loop. We will refer to them just as reachable
states and denote this set by R. Since the end points of the
loop (α,ω) are absorbing, property (28) is trivial in this case.

Referring to the example of Fig. 1(b), the states
α,α1,α2,α3,α4,ω,ω1,ω2,ω3,ω4 constitute the set of reach-
able states R. Likewise, R(μ,ν) = {μ, ν} are the set of reach-
able states associated with the two-loop (μ, ν).
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μ

μ1

νn−1

ν

μ

νi

νi+1

(a) (b) ν

μ1

μj

νn−1

μj−1
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�+
�+
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(c) (d)

(μ, ν)

(μ, νn−1) (μ1, ν)

(μ, ν)

(μ, νi) (μ1, νn−1) (μj, ν)

FIG. 3. Two possibilities for the standard partitioning of a loop
(μ, ν) into (a) two or (b) three subloops. The subloops are marked
as �−, �+, and �0. Also shown is the tree representation of the
partitioning of the parent loop (μ, ν) into (c) two and (d) three
offspring subloops.

B. Standard partitioning of a loop into subloops

Given a loop (μ, ν) and its associated set of reachable
states R(μ,ν), we say that a pair (κ,λ) of (μ, ν)-reachable
states forms a subloop of (μ, ν), if (κ,λ) forms a loop. The
�RPM property permits the decomposition of a loop (μ, ν)
into two or more subloops. A particular way of doing this
has been called standard partitioning and is illustrated in
Fig. 3. Depending on whether the pair of states μ1 and νn−1

forms a loop or not, (μ, ν) can be decomposed into two
or three loops [see Figs. 3(a) and 3(b), respectively]. One
can think of the decomposition as removing the transitions
indicated by the solid arrows shown in Figs. 3(a) and 3(b).
The �RPM property ensures that the state transition graph
is thereby broken into disjoint components, meaning that no
transitions from one component loop to another remain. The
resulting component loops by definition possess �RPM and
can therefore be partitioned in the same way. This partitioning
procedure can be continued until all remaining components
are singleton loops, i.e., loops whose lower and upper end
points coincide.

In the example of Fig. 1(b), the standard partitioning of
the main hysteresis loop (α,ω) results in the three subloops
(α,ω3), (α1,ω4), and (α4,ω). Note that the decomposition of
the parent loop into component loops also furnishes a parti-
tion of the set of reachable states associated with the parent
loop into the disjoint sets of reachable states associated with
each of the component loops. Thus the standard partitioning

procedure amounts to a successively finer partition of the
reachable states R(μ,ν) associated with the loop (μ, ν).

The standard partitioning procedure has a representation as
a tree whose vertices are the loops and in which the offspring
nodes are the components of the parent loop obtained under
the standard partition procedure, as shown in Figs. 3(c) and
3(d). An immediate consequence of this tree representation is
that the transition graph formed by the set of reachable states
R(μ,ν) of any loop (μ, ν) possessing the �RPM property must
be planar [25]. A similar result for the planarity of the AQS
transition graph associated with a certain class of dynamical
systems was obtained in [36].

C. Maximal loops

As is already apparent from Figs. 3(a) and 3(b), given two
or more loops obeying the �RPM property, their end points
can be connected so that a larger loop possessing �RPM is
formed. If the state transition graph of an AQS automaton
is such that every loop possesses the �RPM property, as is
the case for the Preisach model, then using the observation
just made, it follows that every loop is a subloop of a unique
largest loop. We call such loops maximal loops. Formally, a
loop (μ, ν) is called maximal if (i) for any state ν′ �= ν on
the U orbit of ν, D∗ν′ does not contain any (μ, ν)-reachable
state and likewise, for any μ′ �= μ of D∗μ, U∗μ′ does not
contain any (μ, ν)-reachable state. For example in Fig. 1(c)
the loops (μ, ν) and (α,ω) are maximal loops. Note that due
to the absorption properties of its end points (14), the main
hysteresis loop always is a maximal loop.

In Ref. [25] we introduced an algorithm that determines the
maximal loop containing a given loop (μ0, ν0).

Step 1. Initialize (μ, ν) as (μ0, ν0).
Step 2. Determine the largest m that satisfies the condition

μ ∈ D∗(Umν)

and set Umν to ν.
Step 3. Determine the largest n that satisfies the condition

ν ∈ U∗(Dnμ)

and set Dnμ to μ.
Step 4. Repeat steps 2 and 3 until both m and n are zero and

terminate.
The loop (μ, ν), obtained when the algorithm terminates, is

the maximal loop containing (μ0, ν0). It can be shown that the
assignment of loops to maximal loops is unique, in the sense
that the same maximal loop is reached via the above algorithm
from any of its subloops.

As we have seen in Sec. III A, the �RPM property permits
us to associate with any loop (μ, ν) a set of (μ, ν)-reachable
states R(μ,ν). Thus the set of maximal loops via their associ-
ated set of reachable states furnishes a partition of S: Each
state σ ∈ S belongs to exactly one maximal loop (μ, ν). We
will call the maximal loops consisting of a single state σ

singleton maximal loops. For such loops μ0 = ν0 = σ and the
algorithm terminates right away.

The utility of the maximal loops lies in the local absorption
property (28). Thus a sequence of transitions connecting two
states belonging to different maximal loops must be such
that the maximal loops involved are left through their end
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points. This in turn leads to a coarse-grained description of
the dynamics by means of a condensed state transition graph
where each vertex is a maximal loop, the interloop state
transition graph [25]. The topology of the interloop transition
graph provides useful information about the dynamics, such
as the length of transients upon cyclic forcing. We now turn to
the structure of maximal loops in the Preisach model.

IV. MAXIMAL LOOPS OF THE PREISACH MODEL

In this section we discuss the maximal loops of the Preisach
model. We first define the size of a loop as the number of state
changes that occur as the loop is traversed from one end point
to the other. Since by the no-avalanche property each U and D
step changes the state of only one hysteron, the size of a loop
is also equal to the number of hysterons that change their state
as the loop is traversed. Therefore, the end points of a given
loop (μ, ν) with size j are mapped onto each other according
to

μ = D jν, ν = U jμ. (29)

The maximal loop that contains a given loop (μ, ν) is found
by the algorithm introduced in Sec. III C.

Recall the observation made in Sec. II C that there ex-
ists a subset of stable states Sρ , whose stability is a direct
consequence of the permutation ρ, defined by (17), which
orders the switching fields F−

i . We have called such states
ρ stable. In particular, we showed that all two-loops are ρ

stable [property 1 and Eq. (21)]. By the no-avalanche property,
arbitrary sequences of U and D operations applied to a state σ

in S (2) must lead to some stable state σ ′ ∈ Sρ . Moreover, as a
result of the maximal loop property, any pair of states forming
a two-loop is part of some maximal loop. Denote by M ⊂ S
the set of states that are reachable states of some nonsingleton
maximal loop. Note that M can in principle contain states that
are not ρ stable. For the Preisach model this turns out not to
be the case however and we have the following property.

Property 2. Any state that is a reachable state of some
nonsingleton maximal loop is also the end point of some
two-loop so that

S (2) = M. (30)

In order to prove property 2, we first assume that a state σ

is not an end point of a two-loop. Then we show that the state
σ cannot be a part of a nonsingleton maximal loop. Recall that
a singleton loop is a loop where the two end points coincide,
so we can apply the maximal loop finding algorithm to σ and
find the end points of the maximal loop it is part of. In step 1 of
the algorithm, we therefore have σ = μ0 = ν0. Since we are
assuming that σ is not an end point of a two-loop, we have
DUσ �= σ and UDσ �= σ. Using the no-avalanche property,
we can write these two conditions as

σ �∈ D∗(Uσ), σ �∈ U∗(Dσ). (31)

These conditions together with the absorption property under-
lying �RPM (cf. Sec. III) imply that the largest integers m and
n satisfying the conditions in steps 2 and 3 of the algorithm are
zero. Hence the algorithm terminates right away and the state
σ is a singleton maximal loop. A state that is not an end point

of a two-loop cannot be a part of a nonsingleton maximal loop
and therefore property 2 holds.

From property 2 and the ρ stability of two-loops (property
1) the following property immediately follows.

Property 3. The states of all nonsingleton maximal loop are
ρ stable:

M ⊂ Sρ. (32)

In other words, all states that are part of some loop
which involves two or more states are necessarily ρ stable.
Consequently, the topology of a structurally large part of the
state transition graph, namely, the transition among states that
are part of nontrivial loops, is determined entirely by the
permutation ρ.

To summarize,

M ⊂ Sρ ⊂ S (33)

and the only stable states that are not ρ stable are singleton
maximal loops. By property 3, Sρ \ M is the set of singleton
maximal loops that are ρ stable. It turns out that this set is
empty and thus

M = Sρ. (34)

The Preisach model does not have ρ-stable singleton maximal
loops.5

To give an example of a singleton maximal loop and its
stability, consider the state σ1 = (−1,+1,−1,−1,−1) in
Fig. 1(b). With ρ = (35214) and using (17), it is readily
checked that F+[σ1] = F+

1 , while F−[σ1] = F−
2 . The permu-

tation ρ is compatible with an ordering of the switching fields
as F+

1 < F−
2 < F+

2 , which in turn would imply that σ1 is not a
stable state. Thus specifying the ordering permutation ρ does
not suffice to guarantee the stability of this state. We will not
pursue the properties of singleton maximal loop states further
in this paper.

V. STRUCTURE OF THE PREISACH GRAPH

We are primarily interested in the structure of the state tran-
sition graph on R, the set of reachable states associated with
the main hysteresis loop (α,ω). Since (α,ω) is a maximal
loop, it follows from property 3 of Sec. IV that all states of
R are ρ stable. Thus the permutation ρ determines the entire
transition graph on R. We call this graph the Preisach graph.
Using the �RPM property defined in Sec. III, our main goal
in this section is to work out the topology of this graph and
show how it is determined by ρ. We will then address the
reverse problem of how, given an unlabeled Preisach graph,
the permutation ρ can be inferred from its topology.

5The proof of this statement is not difficult, but beyond the scope
of this article. We sketch out the key ideas leading to it. We consider
realizations of ρ-compatible switching fields F±

i , i.e., realizations
that satisfy (1), (15), and (17). Among these, the realizations for
which the F−

i take their largest possible value relative to some fixed
values of the F+

i will have the following properties: (i) All states
of this realization are ρ stable, S = Sρ , and (ii) S (2) = Sρ , from
which it follows that Sρ does not contain singleton maximal loops,
so M = Sρ .
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FIG. 4. Preisach partitioning of the main hysteresis loop (α, ω) for (a) k = L, (b) 1 < k < L, and (c) k = 1. This partition is an
adaptation of the standard partition [cf. Figs. 3(a) and 3(b)] and always results in a pair of loops: the left and right loops, labeled ρ−
and ρ+ and also highlighted, respectively, by boxes with red and green backgrounds. The left loop has end points (α, ωL−1) and is a
consolidation of the loops �− and �0 of the standard partitioning. The right loop has end points (αL−k+1, ω), where k is the element of
the ordering permutation ρ for which ρk = L. The special cases k = L and k = 1 are depicted in (a) and (c). The middle loop of the
standard partition is only present when k �= L. The left and right subloops are the hysteresis loops of Preisach systems with L − 1 and
k hysterons, respectively, and are generated by the permutations ρ− and ρ+, as defined in (37) and (38). (d) Preisach partitioning of a
parent loop ρ into two offspring loops ρ− and ρ+ can be represented in terms of a tree, shown in (d) and (e) and corresponding to the
cases in (a) and (b) and in (c), respectively. When k = 1, the right loop has a single state and ρ+ = ∅ [cf. (38)]. (f) Tree representation of
the Preisach partitioning of the loop (α, ω) of Fig. 1(b). The loop is generated by the permutation ρ = (35214). The parent-child relation
is as given by (d) and (e), with the Preisach graph constituting the root of the tree. Nodes of the tree shown that are not leaves are
depicted by black boxes. They correspond to intermediate loops and the labels next to these indicate the permutations that generate them.
The leaves of the tree are the states associated with the Preisach graph. They turn out to be in one-to-one correspondence with the set
of increasing subsequences contained in ρ. The labels below each leaf node establish this correspondence. Refer to the text for further
details.

We denote the U- and D-boundary states of (α,ω), respec-
tively, by ωi = Uiα and αi = DL−iω, with i = 0, 1, 2, . . . , L.
This labeling is illustrated in the example of Fig. 1(b).

Having ordered the switching fields F+
i as in (15) and using

the no-avalanche property, the U-boundary states of the loop
(α,ω) are given in terms of the sets I+[ωi] [cf. (2)] as

I+[ωi] =
{∅, i = 0
{1, 2, . . . , i}, 0 < i � L.

(35)

Likewise, for the configurations associated with the D-
boundary states αi = DL−iω we find from (3) that

I−[αi] =
{∅, i = L
{ρ1, ρ2, . . . , ρL−i}, 0 � i < L.

(36)

As discussed in Sec. III B and illustrated in Figs. 3(a) and
3(b), the �RPM property permits a partitioning of the loop
(α,ω) into two or three subloops. We call this procedure
the standard partitioning of the loop. For the Preisach model,
whether the standard partitioning results in two or three loops
turns out to depend on the position of the element L in the
ordering permutation ρ.

Let k be the element of ρ that is mapped to L so that
ρk = L. As we will see shortly, a partition into two loops
occurs only if k = L and hence ρL = L. In this case the loops
are labeled as �− and �+, with end points (α,ωL−1) and
(α1,ω), respectively. This is shown in Fig. 4(a). In all other
cases the partition yields three loops which we label as �−, �0,
and �+, with the center loop �0 having end points (α1,ωL−1).
Figure 4(b) depicts the three-way partition of the Preisach
graph when 1 < k < L.

For the Preisach model it turns out to be more convenient
to define a binary partition where the left loop is the consol-
idation of �− and �0 (if it exists) and the right loop is the
loop �+. In Figs. 4(a)–4(c) these partitions are highlighted by
boxes shaded in light red and green and labeled as ρ− and
ρ+, respectively. Regardless of whether the standard partition
would have led to two or three loops, the left loop of the
binary partition will always have end points (α,ωL−1). The
right loop has upper end point ω. We claim that its lower
end point is given by the boundary state αL−k+1, with k such
that ρk = L. To see this, consider the configurations ωL−1 and
ωL = ω on the U boundary of the loop (α,ω). Recall that
the �RPM property implies the nesting property of orbits off
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the boundary of a loop, as illustrated in Figs. 2(b) and 2(c).
Consequently, the two orbits D∗ωL−1 and D∗ω must either
merge at α or merge further “upstream” at some state that
lies on the D boundary of the loop (α,ω). We claim that the
merging occurs at the D-boundary state αL−k , with k being
again the element of ρ for which ρk = L. In fact, note that
for each i with 0 � i < k, the configurations DiωL−1 and Diω

differ only by the state of the Lth hysteron. Moreover, since
ρk = L, it follows that Dkω = Dk−1ωL−1. This means that the
orbits D∗ωL−1 and D∗ω merge at the state αL−k , as illustrated
in Figs. 4(a)–4(c). We have thus shown that a Preisach graph
can always be partitioned into a left and right a loop, with its
end points given by (α,ωL−1) and (αL−k+1,ω), respectively.
The following observations are immediate consequences of
this result.

First, by the �RPM property applied to the left loop, the
pair of states (αL−k,ωL−1) must also form a loop. Let us
denote this loop by �′

0. For k = L this loop coincides with the
loop �− of Fig. 4(a), while for k = 1, �′

0 is the singleton loop
consisting of the state ωL−1 = α1, as shown in Fig. 4(a). The
generic case is depicted in Fig. 4(b). Note that, regardless of
k, the loops �′

0 and �+ are always isomorphic, since their end
points and hence all other states associated with the two loops
differ only by the state of the Lth hysteron.

Second, and more importantly, the left and right loops
can be regarded as the main hysteresis loops of two smaller
Preisach systems with L − 1 and k − 1 hysterons, respec-
tively. Specifically, the transition graph associated with the
left loop (α,ωL−1) is the Preisach graph of a system with
L − 1 hysterons. These are the hysterons 1, 2, . . . , L − 1 of
the parent Preisach system. The ordering permutation ρ−
associated with this subsystem is thus obtained from ρ by
removal of the entry for L so that

ρ− =
⎧⎨
⎩

(ρ2, . . . , ρL ), k = 1
(ρ1, . . . , ρk−1, ρk+1, . . . , ρL ), 1 < k < L
(ρ1, . . . , ρL−1), k = L,

(37)

where k is the index for which ρk = L. Define also ρ+ as

ρ+ =
{∅, k = 1

(ρ1, ρ2, . . . , ρk−1), 1 < k � L.
(38)

We see that for k > 1, ρ+ contains the first k − 1 elements
of ρ. By the argument leading to the binary partition of a
Preisach graph, it follows that the right loop is isomorphic
to a Preisach graph generated by a system of k − 1 hysterons,
labeled in terms of the corresponding hysterons of the parent
system by the elements of ρ+. By our ordering convention
(15) for the switching fields, the sequence in which each
hysteron of the subsystem changes its state when moving from
the lower to upper end point is given by the ordering of their
labels from smallest to largest. The permutation ρ+ therefore
prescribes again the sequence of hysteron state changes, as
we move back from the upper to the lower end point. When
k = 1, the right loop is a singleton loop [cf. Fig. 4(c)]. Since a
Preisach system with one hysteron already has two states, it is
convenient to interpret such a singleton loop as corresponding

to a Preisach system with no hysterons at all. We assign the
empty set ∅ as its ordering permutation.

We have thus shown how the Preisach graph associated
with ρ can be partitioned into two subloops that in turn are
the Preisach graphs generated by ρ− and ρ+. The Preisach
partition in effect removes the Lth hysteron, resulting in two
subsystems with L − 1 and k − 1 hysterons, with ordering
permutations given by (37) and (38). Figures 4(d) and 4(e)
depict the parent-child relation induced by this partition for
the cases k > 1 and k = 1, respectively. The left and right
Preisach graphs in turn can be partitioned in a similar man-
ner and this procedure can be continued, until all loops are
singleton loops and hence cannot be further partitioned.

Figure 4(f) depicts the Preisach partition of the loop (α,ω)
in Fig. 1(b). By virtue of the distinction between left and right
subloops, this is again an ordered tree. The nonleaf nodes of
this tree correspond to Preisach subsystems with one or more
hysterons and are labeled by the corresponding permutations
generating these. The root node is the main hysteresis loop
with ordering permutation ρ = (35214) so that k = 2. Its
Preisach partition thus yields the left and right offspring loops
that are generated by the permutation ρ− = (3214) and ρ+ =
(3). The leaves of the tree are the ten states constituting the
main hysteresis loop and all of its subloops. We have identified
these states by their hysteron configurations.

We conclude this section by showing how, given an un-
labeled Preisach graph, one can infer from its topology the
ordering permutation ρ generating it. The end points of the
loop are easily identified. Counting the number of transitions
from the lower to the upper end point, we obtain the number
of hysterons L. Denote the U-boundary states of the loop as
ωi = Uiα, with i = 0, 1, 2, . . . , L. Consider next the D orbits
off a pair of successive U-boundary states ωi−1 and ωi. By the
�RPM property these orbits must merge by the time the lower
end point is reached. For i = 1, 2, . . . , L, let ki be the number
of transitions after which the D orbit off ωi merges with the D
orbit from ωi−1. The permutation ρ is then obtained from the
set of L integers ki by the following procedure. Initialize ρ as L
empty slots. Proceeding in decreasing order, i = L, L − 1, . . .,
placing the symbol i in the kith empty slot counted from the
left. Upon completion, the slots contain the permutation ρ.

A related question is whether, given the transition graph
associated with an �RPM loop, one can decide whether it
is a Preisach graph or not. A relatively straightforward pro-
cedure is to infer, if possible, the permutation ρ from the
main hysteresis loop (α,ω), as described above. If this is
possible, perform next the Preisach partition and infer from
the topology of the left and right loops the corresponding
permutations. If these are related to ρ as prescribed by (37)
and (38), then this is a valid partition. If this validation
procedure can be recursively repeated on the subloops without
any inconsistencies, the given loop is a Preisach graph.

Observe that by the isomorphism of the subloops �′
0 and

�0 arising in the course of the partition [see Fig. 4(b)], the
Preisach graph contains many repeated motifs of various
sizes, since such isomorphisms persist at all levels of the par-
titioning. Thus the transition graph associated with a Preisach
graph has a highly distinct topology.
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VI. STATISTICS

In Secs. VI A and VI B we provide combinatorial results
for the size distribution of maximal loops and the number
of reachable states associated with the main hysteresis loop.
Denote by �L the set of permutations of L elements. We will
assume that the ordering permutation ρ is drawn at random
and uniformly from �L. For many applications, such an
assumption is not realistic and the distribution from which
the switching fields are drawn will in general not result in
a uniform distribution of ρ. However, it is possible that the
asymptotic forms of the results, which are obtained from
saddle-point approximations in the limit that L becomes large,
are robust to changes in the distribution of ρ.

The calculation of the mean number of reachable states
follows a divide-and-conquer approach that utilizes the �RPM
property of the Preisach model. Such an approach can be
applied to other models exhibiting �RPM, such as the toy
model of depinning [40,41] and perhaps the random-field
Ising model [1]. This section therefore also serves as an
example for how to use the �RPM property in a combinatorial
setting.

A. Size distribution of maximal loops

Let (μ, ν) be the end points of a maximal loop. Then the
maximal loop finding algorithm (steps 2–4) imposes three
conditions on μ and ν: (i) U jμ = ν and D jν = μ, (ii)
D j+1Uν �= μ, and (iii) U j+1Dμ �= ν. Recall that the size j of
a maximal loop (μ, ν) is defined to be the number of hysterons
that change their states as the loop is traversed. Condition (i)
sets μ and ν as end points of a loop and conditions (ii) and
(iii) ensure that the loop is a maximal loop.

We will determine first the number NL, j of all possible
maximal loops with size j for a given system size L. We will
do this by summing over all possible ρ permutations. First,
determine NL, j for the maximal loops that have i hysterons
in the configuration +1. We will call the quantity i the level.
The total number of maximal loop with size j and level i will
be denoted by NL, j,i. Then, by summing over i, NL, j will be
determined.

Let us assume that (μ, ν) is a maximal loop with size j
and level i. Here (μ, ν) must satisfy conditions (i)–(iii). The
condition of being a loop (i) is now restated as a condition on
the permutation ρ. During the evolution from μ to ν the first j
hysterons in state − flip to +. If the same j hysterons revert to
their states when the D j operator is applied to ν, then μ and ν

are the end points of a loop. The condition of having D jν = ν

is that the j positive hysterons that flipped back lie to the left
of the initial i hysterons in permutation ρ. In other words, we
seek a permutation in which the j hysteron labels come before
the i hysterons with no further restriction on the remaining
L − (i + j) hysterons. Therefore, the number of permutations
that satisfy (i) for loops with level i is

N (i)
L, j,i =

(
L

i + j

)
i! j![L − (i + j)]!, (39)

where the binomial coefficient gives the number of possible
choices of i + j hysterons, i! gives the permutations of hys-
terons in state + configurations, j! gives the permutations of

hysterons that revert to their states as the loop is traversed,
and [L − (i + j)]! gives the possible permutations of the
remaining hysterons.

The number of permutations that satisfy condition (ii) is
determined similarly. First we find the number of loops with
length j + 1 and subtract this from the expression for the
number of loops with size j. The result becomes

N (i)+(ii)
L, j,i = N (i)

L, j+1,i − N (i)
L, j,i = iL!i! j!

(i + j + 1)!
(40)

and it gives the number of permutations that satisfy both con-
ditions (i) and (ii). The ratio of expression (40) to expression
(39) i

i+ j+1 gives us the ratio of loops with size j and level i that
do not extend with the U transition (via step 2 of the maximal
loop finding algorithm). Then, the ratio of loops of size j and
level L − (i + j) that do not extend with the D transition is
given by

N (i)+(iii)
L, j,L−(i+ j)

N (i)
L, j,L−(i+ j)

= L − (i + j)

L − i + 1
. (41)

Finally, multiplying this ratio by expression in (40), we
determine the number of possible permutations that satisfy
conditions (i)–(iii),

NL, j,i = i[L − (i + j)]

L − i + 1

L!i! j!

(i + j + 1)!
. (42)

For a given system system size L, there are L! different
permutations ρ which give us L! transition graphs. For a given
system size L, among all L! permutations, the number of
maximal loops with size j is therefore

NL, j =
L− j−1∑

i=1

(
L

i

)
NL, j,i

=
L− j−1∑

i=1

i
L − i − j

L − i + 1

L!i! j!

(i + j + 1)!

(
L

i

)
, (43)

where the binomial term gives the number of ways to choose
i hysterons.

We are interested in the large-L limit of the sum given in
Eq. (43). In order to determine an asymptotic approximation,
we first rescale the distribution NL, j as

nL, j = (L + j + 2)!

L!L! j!
NL, j, (44)

which after some rearrangements becomes

nL, j =
L− j−1∑

i=1

i(L − j − i)

(
L + j + 2

i + j + 1

)
. (45)

Observe that the terms in the sum are symmetric around i =
(L − j)/2, which also gives the largest binomial coefficient.
Approximating the sum by an integral and making a saddle-
point approximation, we find

nL, j = 2L+ j (L − j)2

[
L2 − 6L j − 3 j2

2(L2 − j2)
erf (t0)

+ L2 + 6L j + j2

L2 − j2

t0√
π

e−t2
0

]
, (46)

012122-10



STATE TRANSITION GRAPH OF THE PREISACH MODEL … PHYSICAL REVIEW E 102, 012122 (2020)

j/L

n
ap

pr
ox

L
,j

/n
L

,j
−

1

10.90.80.70.60.50.40.30.20.10

2

1.5

1

0.5

0

FIG. 5. Ratios of the maximal loop distribution (43) and its ap-
proximations (46) (dark blue symbols) and (48) (light blue symbols)
for values of L = 20 and 200, distinguished by circles and squares,
respectively.

where erf (t ) is the error function, while t0 is the limit of the
integral being approximated and is given by

t0 = 1

2

√
2

L + j + 2
(L − j). (47)

For large L, Eq. (46) turns out to be a very good approximation
of nl, j for the large systems as long as j/L is smaller than
∼0.9. For values of j/L close to 1, the sum can no longer
be approximated by an integral. Instead, we approximate
the binomial coefficients in the sum by its maximum value
i = (L − j)/2, which is also in the central term of the sum.
Expanding the binomial coefficient using Stirling’s approxi-
mation and performing the sum of the remaining terms, we
obtain the approximation for large j/L values

nL, j = 2L+ j+2

6
[(L − j)3 − (L − j)]

√
2

π (L + j + 2)
. (48)

In order to illustrate the quality of our approximations, we plot
in Fig. 5 the ratio between Eq. (43) and its approximations
(46) and (48).

B. Mean number of reachable states

Consider the Preisach graph (α,ω) generated by the per-
mutation ρ. As we have shown, this is the main hysteresis
loop of the model and it is a maximal loop. Consequently,
the reachable states of this loop are all ρ stable and we have
denoted the set of these states by R. We would like to derive
an expression for the number of reachable states this loop
contains. From the discussion in Sec. V it is clear that this
is the number of leaves of the tree generated by the Preisach
partition.

Let N (ρ) = |R| be the number of reachable states asso-
ciated with the Preisach graph generated by ρ. Let k be the
position where ρk = L. Then with ρ− and ρ+ as defined in
(37) and (38), we have

N (ρ) = N (ρ−) + N (ρ+). (49)

Recall our convention to consider the empty permutation as
a Preisach system with L = 0, containing a single state, so
that N (∅) = 1. Applying (49) recursively, the number of
reachable states can be calculated for any permutation ρ.
Doing so, we are using in effect the partition tree generated
by ρ as a substitution tree.

We will be interested in the mean number of reachable
states nL of a Preisach system with L hysterons. Since we are
assuming that ρ is drawn uniformly from the set �L of all
permutations of L elements, this is given by

nL = 1

L!

∑
ρ∈�L

N (ρ). (50)

Using (49) conditioned on the position k where ρk = L and
letting k run from 1 to L, the recursion

nL = 2nL−1 − L − 1

L
nL−2 (51)

can be obtained, where n0 = 1 and n1 = 2.
The numbers nL turn out to coincide with the mean number

of increasing subsequences found in a permutation of the
integers {1, 2, . . . , L} drawn uniformly at random (see [42],
examples VIII.13 and VIII.43 on pp. 596–597). The asymp-
totic form of these numbers is given by [42,43]

nL = 1

2

√
1

eπ

e2L1/2

L1/4
. (52)

Thus the leading-order behavior of the mean number of reach-
able states in the Preisach graph grows with L as a stretched
exponential. It turns out that a stronger connection between
reachable states and increasing subsequences holds.

Property 4. For each permutation ρ, the number of reach-
able states of the corresponding Preisach model is equal to the
number of increasing subsequences contained in ρ.

To see this, let �(ρ) be the set of increasing subsequences
contained in ρ. This set can be partitioned into increasing
subsequences containing the largest element L and those that
do not. If the largest element occurs at position k of ρ so
that ρk = L, then the set of increasing subsequences with and
without L are equal to the number of increasing subsequences
in the subpermutations ρ− and ρ+, respectively, with the latter
given in terms of ρ by (37) and (38). Letting |�(ρ)| denote the
number of elements of �(ρ), we therefore find that

|�(ρ)| = |�(ρ−)| + |�(ρ+), (53)

which is identical to (49). Moreover, for the empty permu-
tation we have |�(∅)| = 1, so the recursions (49) and (53)
are initialized with the same value and the equality N (ρ) =
|�(ρ)| follows. The one-to-one correspondence between in-
creasing subsequences and the reachable states of the Preisach
graph generated by the same ρ is demonstrated in Fig. 2(f),
where below each state we have indicated the corresponding
subsequence.

VII. DISCUSSION

The dynamics of the Preisach model is captured by its
state transition graph, which describes the transitions between
the configurations of its hysteretical elements as the driving
field is changed just enough to trigger a state change. We
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have shown that the part of the transition graph that captures
the transitions on hysteresis loops and all their subloops is
actually not directly due to the particular values of the switch-
ing fields describing the switching behavior of the individual
hysterons but a coarse-grained parameter, the permutation ρ,
which prescribes the sequence in which each of the hysterons
returns to its initial state relative to the order in which it was
excited. These observations have led us to the notion of ρ

stability by identifying hysteron configurations that remain
stable for all realizations of the switching fields that are
compatible with ρ. We have shown that a state that is not ρ

stable cannot be part of any loop of the transition graph. We
have called such states singleton states. While the presence or
absence of singleton states in a transition graph depends on,
besides ρ, also the particular values of the switching fields, the
same loops and subloops will be present in the transition graph
generated by any ρ-compatible realization of the switching
fields.

An immediate consequence of ρ stability is the robustness
of the loop and subloop topology of the Preisach transition
graph when interactions between hysterons are included, so
the switching fields of individual hysterons depend on the
states of the other hysterons [44]. Such interactions occur
between soft spots in sheared amorphous solids and they are
identifiable from numerical simulations [18]. As long as these
interactions are sufficiently weak so that they do not alter
the switching sequence ρ, it then trivially follows from ρ

stability that the Preisach topology of the transition graph
involving all states that are part of some hysteresis loop will
prevail. The presence (or absence) of Preisach-like loop motifs
in transition graphs arising from soft-spot systems therefore
provides a means by which one can infer the weakness
(or strength) of the soft-spot interactions that realize these.
Such Preisach motifs have indeed been observed in transition
graphs extracted from the simulation of sheared amorphous
solids and under conditions where interactions between soft
spots are clearly present [18].

The one-to-one correspondence between the states of the
main hysteresis loop and the set of increasing subsequences
contained in ρ is not a mere coincidence. It turns out that
each increasing subsequence can be regarded as a field history,
providing directions for how to reach a state via a sequence of
field increases and decreases. The proof and further details on
this correspondence have been given elsewhere [45]. Here we
note one interesting consequence: The length of the increasing
subsequence is equal to the number of field reversals and
is therefore a physically meaningful quantity, characterizing
the amount of memory that can be encoded via RPM [46].
When the permutation ρ is drawn uniformly at random, it
is known that the expected length of the longest increasing
subsequence grows with L to leading order as 2

√
L [42,47,48].

It can therefore be regarded as the typical amount of memory
that can be encoded in a Preisach system via RPM.6

6It is tempting to consider the expected length of the longest
increasing subsequence as an upper bound on the amount of memory
that can be encoded in an interacting soft-spot system via RPM, since
one would expect that the primary effect of adding interactions would
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APPENDIX A: ρ STABILITY OF TWO-LOOPS

Suppose that σ satisfies the two-loop condition (22). From
the no-avalanche property it then follows that under U and
subsequent D, a single hysteron k first changes its state from
−1 → 1 and then back from 1 → −1. In order for this to
occur it must be that

i+[σ] = i−[Uσ] = k. (A1)

We first show that the choice of σ and k satisfying the above
condition depends entirely on ρ and then show that such σ are
stable for all choices of switching fields compatible with ρ.

Given ρ, let us fix k and ask for the configurations σ for
which the condition (A1) holds. From the ordering of the
switching fields (15) it follows that in order for i+[σ] = k, it
must be that

σk = −1, (A2)

σ j = +1 for j < k. (A3)

This leaves the values of σ j for j > k undetermined. Applying
now U, it is clear that

(Uσ)i = +1 for i � k. (A4)

The subsequent D operation must change the value of hys-
teron k back to −1. Let r be the element of ρ for which
ρr = k. The condition i−[Uσ] = k requires that for all u � r,
σρu = −1. However, by (A4) the first k hysterons must be in
state +1. These two conditions can only be met if

ρu � k for u � r, (A5)

which, by uniqueness of the elements of ρ, is equivalent to
requiring k = ρr to be such that

ρr = min
1�u�r

ρu. (A6)

In other words, k must be a lower record of the sequence
of elements of ρ. Assuming such a choice of k = ρr , the

be a reduction of the number of stables states and the emergence of
transitions between these involving more than one soft spot change,
i.e., avalanches. Both of these effects would tend to reduce the
number of field reversals of a field history leading to a reachable
state. There are caveats though, one of them being that the leading-
order behavior of the length of the longest increasing subsequence
was obtained under the assumption that the permutations are drawn
at random and uniformly.
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configurations σ satisfying (22) must be of the form

σi =
⎧⎨
⎩

+1 for i < k
−1 for i ∈ {ρ1, ρ2, . . . , ρr}
±1, otherwise,

(A7)

with k = ρr a lower record of ρ. Note that condition (A7)
depends only on ρ and that given the record value k, there
are 2L−k−r+1 possible states σ that satisfy it. What remains
to be shown is that all such configurations σ are stable for
any choice of ρ-compatible switching fields, i.e., the stability
condition (7) holds. First observe that σ = α is of the form
(24) with k = 1 and thus r is such that ρr = 1. The state α

is stable by assumption. With ρr = k being a lower record
of ρ, consider a σ �= α of the form given by (24). We have
F+[σ] = F+

k . Let us determine F−[σ]. Recall that F−[σ]
is given by (5), which in turn depends on the set I−[σ] of
hysterons in state +1. Since σ �= α, there is at least one site j
for which σ j = +1. Let j be any such hysteron. Next observe
that the hysterons ρ1, ρ2, . . . , ρr = k are all in state −1, so by
(17) we must have F−

j < F−
k for all such j. Hence F−[σ] <

F−
k < F+

k = F+[σ] and we conclude that σ is stable.

APPENDIX B: PROOF OF THE NO-PASSING PROPERTY
FOR THE PREISACH MODEL

In the context of the Preisach model and AQS dynamics,
Middleton’s no-passing property reduces to finding a partial
order on the set of stable states S that is preserved by the
dynamics. Let two initial configurations σ1 � σ2 be given,
respectively stable at initial forces F1(0) � F2(0). Assume
that these configurations are subject to forces F1(t ) � F2(t ).
Denote the evolution of these states under their respective
forces by σ1(t ) and σ2(t ). Middleton’s no-passing property
is the statement that σ1(t ) � σ2(t ) for all subsequent times t .

Since we consider AQS dynamics, the evolution of σ1(t )
and σ2(t ) proceeds through a sequence of U and D transitions
under the influence of the driving forces. Since in the Preisach

model hysterons change their state only from −1 to 1 under
U (but not from 1 to −1) and similarly from 1 to −1 for D
transitions, a natural partial order on the set of stable states is
the following:

I+[σ] ⊂ I+[σ ′] ⇔ σ � σ ′. (B1)

From the actions of U and D as defined in Sec. II, it is clear
that for all configurations σ, we have

σ � Uσ, (B2)

with the equality holding only when σ = ω (in which case
Uω = ω). Likewise, we have

Dσ � σ, (B3)

again with the equality holding when σ = α.
We now turn to the proof of the no-passing property for

the Preisach model. Assume that the no-passing property does
not hold. We will show that this leads to a contradiction.
Suppose that initially σ1 � σ2 with the partial order defined
by (B1). If the no-passing property fails, then there is a
smallest time t and a hysteron j for which σ2, j (t ) < σ1, j (t )
and hence σ2, j (t ) = −1 and σ1, j (t ) = 1. This implies that
prior to time t the values of hysteron j in both configurations
must have been equal. In the Preisach model the tipping fields
F±

i of a hysteron i depend only on the site, but not the full
configuration. This implies that the tipping fields of j are
the same in both configurations. Suppose that prior to the
flip hysteron σ j = −1 in both configurations. Since F1(t ) �
F2(t ), it follows that if hysteron j of the first configuration
flipped from −1 to 1, then certainly the same hysteron must
have flipped also in the second configuration and thus a
configuration with σ2, j (t ) < σ1, j (t ) is impossible. The case
when σ j = +1 in both configurations prior to the flip leads to
the same result. Thus the Preisach model has the no-passing
property. Using the result of [1], the no-passing property then
implies the return-point memory property.
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