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In this study, we investigate thermal transport in d-dimensional quantum harmonic lattices coupled to
self-consistent reservoirs. The d-dimensional system is treated as a set of Klein-Gordon chains by exploiting
an orthogonal transformation. For generality, the self-energy that describes the reservoir-system coupling is
assumed to be a power function of energy � ∝ −iεn, where n is limited to odd integers because of the reality
condition. Total momentum conservation is violated for n = 1 but otherwise preserved. In this approach, we show
that for n = 1, thermal conductivity remains finite in the thermodynamic limit and normal transport takes place
for an arbitrary value of d . For n = 3, 5, 7, . . . , however, thermal conductivity diverges and thermal transport
becomes anomalous as long as d < n, whereas normal transport is recovered when d � n. These criteria derived
for quantum-mechanical lattices imply that normal transport emerges in high enough dimensions despite total
momentum conservation and reinforce the prevailing conjecture deduced in the classical limit.
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I. INTRODUCTION

It is conventional to expect that heat conduction follows
Fourier’s law, which relates heat current to a temperature
gradient as J = −κ∇θ , where κ is the material-dependent
thermal conductivity. Because of energy conservation, this
law predicts a linear temperature profile for a small tem-
perature bias along the direction of heat flow in the steady
state. It also follows that for a fixed temperature bias �θ ,
the heat current varies as J ∝ L−1, where L is the system
size. In nonequilibrium statistical physics, it is a fundamental
challenge to derive Fourier’s law from first principles. This
issue remains unresolved despite extensive theoretical studies
thus far. From these studies, it is widely accepted at present
that Fourier’s law is genuinely broken in a low-dimensional
lattice system without external forces that break total mo-
mentum conservation [1–5]. In particular, anharmonic Fermi-
Pasta-Ulam chains and disordered harmonic chains are the
typical examples showing this anomaly. For these systems,
the finite-size thermal conductivity defined as κ = JL/�θ

diverges in the thermodynamic limit L → ∞. Heat transport
that disobeys Fourier’s law is termed as anomalous transport
to distinguish it from normal transport following this law.

The non-Fourier transport is observed experimentally in
carbon and boron-nitride nanotubes [6] and in single-layer
graphene [7]. In experiments, dimensional crossover of ther-
mal transport is also explored in few-layer graphene [8].

In addition, it may be worth mentioning that the finite-
size conductivity following Fourier’s law is reported for a
disordered harmonic chain with strong boundary mismatch
between the system and the external heat reservoir [9,10].
The investigation of the relevant models may disprove the
prevailing conjecture mentioned above if the normality is also
verified for local temperatures. Apart from the unresolved
issue for boundary-limited transport, in this article, we ad-

dress thermal transport in a lattice system without boundary
mismatch.

A simple model that reproduces normal transport is a
linear harmonic chain coupled to a self-consistent reservoir
(SCR) at each site. In the SCR model, thermal transport
is analyzed self-consistently under the adiabatic condition
that no net energy current flows into each inner reservoir.
The fictitious stochastic reservoir incorporates scattering and
dephasing mechanisms into the system. This is parallel to the
Büttiker probe used to mimic inelastic scattering in electron
transport [11–13]. The classical version of this model was
first studied by Bolsterli et al. [14,15], and exactly solved
by Bonetto et al. [16]. They showed a linear temperature
profile and a finite thermal conductivity obeying Fourier’s
law in the thermodynamic limit. However, the classical model
is valid only in the high temperature limit, since it assumes
the classical Langevin dynamics. The quantum version of the
SCR model was first studied by Visscher and Rich [17] in
terms of the quantum Langevin equation formalism. Subse-
quently, Dhar and Roy [18,19] derived the exact formula for a
temperature dependent thermal conductivity in the thermody-
namic limit. Recently, Hattori and Yoshikawa [20] extended
this model to elucidate anomalous transport occurring in
the quantum systems by introducing an inner reservoir that
preserves total momentum conservation.

The SCR models mentioned above usually consist of a
one-dimensional (1D) chain. The 1D setting may be deficient
due to the following reason. It is implied from the previ-
ous studies based on the classical Langevin dynamics that
the anomaly emerges generically in 1D and 2D whenever
total momentum conservation holds and massless Goldstone
modes persist [1–5]. For instance, momentum-conserving an-
harmonic lattices show a power-law divergence in 1D and a
logarithmic divergence in 2D. However, such anomalies dis-
appear in 3D despite total momentum conservation. Although
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these observations in higher dimensions are verifiable in the
classical limit, it is unclear how dimensional crossover takes
place in quantum-mechanical lattices such as the quantum
version of the SCR model.

The aim of the present study is to resolve this issue
by exploring thermal transport in d-dimensional quantum
harmonic lattices coupled to SCRs. The paper is organized
as follows. In Sec. II, the d-dimensional system is treated
as a set of Klein-Gordon chains by using an orthogonal
transformation. The heat current flowing in each chain is
formulated in the Landauer-Büttiker formalism. In Sec. III,
we compare numerical results for two representative models
of inner reservoirs that lead to total momentum conservation
and nonconservation. Examining dimensional crossovers ex-
hibited by these models, we derive an analytic formula for
thermal conductivity in arbitrary dimensions and an explicit
criterion for validating Fourier’s law in the quantum systems.
Finally, Sec. IV provides a summary.

II. THEORETICAL FORMULATION

Throughout this paper, we shall work in units where h̄ =
kB = 1. We consider a d-dimensional hypercubic lattice with
nearest-neighbor harmonic interactions [4,16,21–23]. Each
lattice site is labeled by the vector (l1, l2, . . . , ld ), where
li = 1, 2, . . . , Mi for i = 1, 2, . . . , d . The heat flux is induced
along a temperature gradient in the first direction i = 1. The
temperature is assumed to be uniform from symmetry in
the remaining d − 1 transverse directions i = 2, 3, . . . , d , on
which periodic boundary conditions are imposed. Henceforth,
we adopt the notations j = l1 and l = (l2, l3, . . . , ld ) for
brevity. The length of the system is N = M1. The cross section
is defined as M = ∏d

i=2 Mi for d � 2 and M = 1 for d = 1.
A scalar displacement q jl of a particle from its equilibrium

position obeys the equation of motion

q̈ jl +
∑
j′l ′

Kjl; j′l ′q j′l ′ = 0, (1)

where the particle mass is taken as unity for simplicity. The
force constant matrix is decomposed into Kjl; j′l ′ = Kj j′δll ′ +
K⊥

ll ′δ j j′ , where Kj j′ = t2(2δ j j′ − δ j, j′+1 − δ j, j′−1) and K⊥
ll ′ =∑d

i=2 Kli,li
′
∏

ī �=iδlī,lī
′ . (The quantity t corresponds to the sound

velocity of a massless phonon and represents the character-
istic energy scale of a harmonic lattice; e.g., the bandwidth
is given by 2

√
dt for a d-dimensional lattice.) We intro-

duce a set of orthonormal basis functions φli (pi ) that sat-
isfy the eigenvalue equation

∑
li

′Kli,li
′φli

′ (pi ) = U (pi )φli (pi ),
where U (pi ) = 4t2sin2 pi

2 and pi = 2πsi/Mi. For odd Mi,
one may choose φli (pi ) = √

2/Mi sin pili for si = −(Mi −
1)/2, . . . ,−1, 1/

√
Mi for si = 0, and

√
2/Mi cos pili for si =

1, . . . , (Mi − 1)/2. The basis functions for even Mi are de-
rived to be in an analogous form. The orthonormal basis
expressed in product form 
l (p) = ∏d

i=2 φli (pi ) is a solu-
tion of the eigenvalue equation

∑
l ′K

⊥
ll ′
l ′ (p) = U (p)
l (p),

where U (p) = ∑d
i=2 U (pi ) and p = (p2, p3, . . . , pd ). Ex-

ploiting this complete orthonormal set, qjl is transformed into
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FIG. 1. Energy dispersion for a periodic 2D lattice of N = M =
100 in a torus geometry. In this figure, M curves represent eigenener-
gies for all p as a function of longitudinal wave number k in the first
direction. The lowest mode highlighted in red (dark gray) is massless
(p = 0), while all the other modes are massive (p �= 0).

q̃ j (p) = ∑
l q jl
l (p), which follows the equation of motion

¨̃q j (p) +
∑

j′
K̃ j j′ (p)q̃ j′ (p) = 0, (2)

where K̃j j′ (p) = Kj j′ + U (p)δ j j′ . Note that U (p) is equivalent
to an on-site pinning potential that acts on a 1D harmonic
chain. This is also analogous to the mass term μ in the lattice
version of the 1D Klein-Gordon equation ψ̈ j = ∑

j′ (� j j′ −
μδ j j′ )ψ j′ , where � j j′ denotes the discrete 1D Laplacian. In
terms of the transformed variables, the lattice Hamiltonian

H = 1

2

⎛
⎝∑

jl

q̇ jl q̇ jl +
∑
j j′ll ′

Kjl; j′l ′q jl q j′l ′

⎞
⎠, (3)

is rewritten as H = ∑
pH̃ (p) and

H̃ (p) = 1

2

⎡
⎣∑

j

˙̃q j (p) ˙̃q j (p) +
∑

j j′
K̃ j j′ (p)q̃ j (p)q̃ j′ (p)

⎤
⎦. (4)

It is easy to see that Eqs. (1) and (2) correspond to the Heisen-
berg equations of motion for Eqs. (3) and (4), respectively.
Thus, the d-dimensional harmonic lattice is reducible to a set
of M Klein-Gordon chains. To supplement the argument, the
energy dispersion for a periodic 2D lattice in a torus geometry
is displayed in Fig. 1, where M curves represent eigenenergies
for all p as a function of longitudinal wave number k in the
first direction. The lowest mode (p = 0) is massless, while all
the other modes (p �= 0) are massive. Note that there exists
only the massless mode in 1D.

Normally, the system where heat flux is induced is sub-
jected to a temperature bias by connecting at both ends to
external heat reservoirs sustained at different temperatures.
We consider a Klein-Gordon chain described by the Hamilto-
nian H̃ (p) connected at both ends to two semi-infinite leads
denoted as L and R, which act as external heat reservoirs.
At each site of the central system, we assume an equal
on-site self-energy � ascribed to an inner reservoir, which
serves as a temperature probe in the SCR approach. To
exclude boundary mismatch, the lead is taken to be a semi-
infinite extension of the system, where the same self-energy
� is incorporated at each site as that in the system. In this
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setup, the model describes a finite segment of an infinitely
extended Klein-Gordon chain with an equal self-energy at
each site. In what follows, each terminal is labeled by α, β ∈
{1, 2, . . . , N, L, R}, while the index notation j ∈ {1, 2, . . . , N}
is used to denote a specific site contained in the system as well
as a virtual probe attached to it. For simplicity, it is assumed
that a single inner reservoir held at a certain temperature θ j

equally couples to all the mode components, and hence the
associated self-energy � is mode independent.

The retarded Green’s function of a Klein-Gordon chain
representing mode p is explicitly written as

g j j′ (p) = − e−λ(p)| j− j′|
2t2 sinh λ(p)

, (5)

where λ = −2i sgn(ε) sin−1 z and z = √
ε2 − � − U/2t

[18,20]. Note that this two-point correlation function depends
only on distance | j − j′| because of lattice translation
invariance. We employ the Landauer-Büttiker formula for
analyzing thermal transport, which is derived from the
quantum Langevin equation formalism [3,4,18] as well as
the nonequilibrium Green’s function formalism [24–26].
In terms of the Landauer-Büttiker formula, the spectral
energy current flowing in terminal α is described by
J̃α (p) = ∑

βG̃αβ (p)(θα − θβ ) for a small enough temperature
difference θα − θβ . The interterminal thermal conductance is
formulated as

G̃αβ (p) = 1

2π

∫ ∞

0
dε

∂ f

∂θ
εT̃αβ (p). (6)

Here, T̃αβ = �α�β |gαβ |2 is the transmission coefficient, and
f = (eε/θ − 1)−1 is the Bose function for phonons. The
linewidth function �α is given by � = −2 Im � for α = j
and 2t2 Im e−λ for α = L, R [20,27]. Note that in this notation,
indices α and β are assigned to the internal sites connected to
the relevant terminals for the correlation function gαβ of the
system.

The Landauer-Büttiker equations are solved under the adi-
abatic condition that no net energy current flows in each inner
reservoir, i.e.,

Jj =
∑

p

J̃ j (p) = 0. (7)

Note that an effective intermode current is allowed to flow via
the inner reservoir unless J̃ j (p) = 0 for all p. The local current
flowing between two adjacent sites j and j + 1 is derived
from the related position-velocity correlation function to be
J̃ j, j+1(p) = ∑

αG̃α
j, j+1(p)(θα − θ ) with

G̃α
j, j+1(p) = 1

2π

∫ ∞

0
dε

∂ f

∂θ
εT̃ α

j, j+1(p), (8)

and T̃ α
j, j+1 = −2t2�α Im g jαg∗

j+1,α , where θ denotes the mean
temperature of the system [18]. In terms of energy conserva-
tion, the probe and bond currents follow

J̃ j (p) = J̃ j, j+1(p) − J̃ j−1, j (p), (9)

and hence the continuity

Jj, j+1 = Jj−1, j, (10)

of the total bond current Jj, j+1 = ∑
pJ̃ j, j+1(p) results from the

adiabatic condition. It is also obvious that Jj, j+1 = JL = −JR,
where JL,R = ∑

pJ̃L,R(p).
The finite-size thermal conductivity of the d-dimensional

system is definable by

κ = 1

M

Jj, j+1(N − 1)

θ1 − θN
, (11)

where θ1 − θN is the internal temperature difference [20]. It
is easily shown from lattice translation symmetry that a linear
temperature profile constitutes a solution for J̃ j (p) = 0 in the
limit of N → ∞ [18,20]. Then, Eq. (11) is reduced to

κ = 1

2πM

∑
p

∫ ∞

0
dε

∂ f

∂θ
εK̃(p), (12)

where

K̃(p) = − � Im[sinh λ(p)]

4t2|sinh λ(p)|2 sinh2 Re λ(p)
. (13)

Consequently, the thermal conductivity is formulated as

κd = 1

2π

∫ ∞

0
dε

∂ f

∂θ
εKd , (14)

in the thermodynamic limit, where

Kd = 1

(2π )d−1

∫ π

−π

d pK̃(p), (15)

for d � 2 and K1 = K̃(0) for d = 1. In what follows, the di-
mensionless quantity Kd is referred to as the thermodynamic
transmission in analogy to Eq. (6).

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we elucidate thermal transport in d-
dimensional systems coupled to SCRs by using numerical
calculations. The previous studies usually assume an Ohmic
inner reservoir, for which � = −iγ ε. This corresponds to a
simple relaxation time approximation. [The quantity γ refers
to the coupling strength, which amounts to the momentum
relaxation rate for Ohmic SCRs; see Eq. (16).] In this study,
we generalize the self-energy function into the form � =
−iγ εn [20]. The exponent n is restricted to odd integers, since
�(ε) should satisfy the reality condition �(ε) = �∗(−ε). In
the numerical calculations, n = 3 is chosen in addition to n =
1. It may be worth noting that � ∝ −iε3θ is derived to second
order from perturbation theory for anharmonic three-phonon
Umklapp processes at high temperatures. Besides, quenched
mass-disorder gives rise to � ∝ −iε3 for harmonic linear
chains. These analytic results [28] exemplify that nonlinear
self-energies are not unphysical.

We begin by discussing the results obtained for n = 1.
Figure 2 shows probe temperatures derived from numerically
solving Eq. (7). As shown in the figure, the numerical results
are very similar for d = 1 and d = 2. The normalized temper-
ature � j = (θ j − θ )/(θL − θR) varies linearly in the bulk with
finite jumps at the boundaries. Recall that the present model is
translationally invariant. Therefore, boundary mismatch is not
the reason for the observed discontinuities. For a finite system
of length N , the internal temperature difference �1 − �N
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FIG. 2. Probe temperatures derived for N = 100, assuming n =
1. (a) and (b) show � j in 1D (M = 1) and 2D (M = 1000),
respectively. The reference point j0 = (N + 1)/2 is employed to
symmetrize these plots. In the calculation, the coupling strength is
taken as γ /t = 0.1, while the mean temperature is varied as θ/t =
10−4, 10−3, . . . , 102.

grows with increasing θ . As N → ∞, �1 − �N tends to
approach unity irrespective of θ (not shown).

The spectral energy currents for d = 2 are displayed in
Fig. 3. The bond current J̃ j, j+1(p) concentrates around p = 0,
indicating that lower modes tend to carry energy current. The
probe current J̃ j (p) fully disappears in the bulk of the system.
This does not contradict a linear temperature profile as shown
in Fig. 2. In the vicinity of the boundaries, J̃ j (p) is negligibly
small but nonvanishing, signaling that in a finite-size system,
an intermode energy transfer occurs near its boundaries to
some extent through the attached inner reservoir. The probe
and bond currents are correlated to each other in terms of
Eq. (9), which is verified numerically. It is also confirmed
that total currents Jj and Jj, j+1 satisfy Eqs. (7) and (10),
respectively.

Figure 4 shows the finite-size thermal conductivity κ in 2D
as a function of temperature, in comparison with that in 1D.
As seen in the figure, there is no noticeable difference between
the numerical results for N = 100 and N = ∞. This feature
implies that Fourier-type transport is retained in the interior
of a finite-length system [20]. It is shown in the upper panels
that κ approaches its thermodynamic limit κ2 as M → ∞.
Even for a finite value of M in the range 10 � M � 1000,
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FIG. 3. Normalized spectral energy currents (a) Ĵ j, j+1(p) =
J̃ j, j+1(p)/Jj, j+1 and (b) Ĵ j (p) = J̃ j (p)/Jj, j+1 derived for d = 2, as-
suming n = 1. The reference points j1/2 = N/2 and j0 = (N + 1)/2
are employed to symmetrize these plots. The parameters used in the
calculations are N = M = 100, γ /t = 0.1 and θ/t = 1.
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FIG. 4. Finite-size thermal conductivity κ as a function of tem-
perature θ derived for d = 1, 2, assuming n = 1. Panels (a) and (b),
(c) and (d) show κ and Mκ , respectively. The numerical results
for N = 100 are presented in panels (a) and (c) in comparison
to those for N = ∞ in panels (b) and (d). The coupling strength
is taken as γ /t = 0.1, while the lateral size is varied as M =
1, 10, 100, 1000, ∞ in panels (a) and (b) and M = 1, 10, 100, 1000
in panels (c) and (d). Note that M = 1 corresponds to d = 1.

κ is very close to κ2 at high enough temperatures. In the
low-temperature regime, however, κ and κ1 exhibit a similar
temperature dependence, which is distinct from that shown by
κ2. Thus, 1D-to-2D crossover of thermal transport depends on
not only lateral size but also temperature. The temperature-
dependent crossover is more quantitatively examined in the
lower panels, where the product Mκ is shown. For all the 2D
systems of finite lateral sizes, this quantity converges to κ1

at low enough temperatures. This is an expected result, since
energy current in such a finite system is carried only by the
lowest mode (p = 0) in the low-temperature limit. Similar
features are observed in 1D-to-3D crossover (not shown).

Figure 5 summarizes the thermal conductivity κd and the
associated transmission Kd in the thermodynamic limit de-
rived for various d . Generally, κd increases with temperature
until reaching its classical limit. A finite value of κd is indica-
tive of normal heat transport. Following Bonetto et al. [16],
the classical limit is evaluated for n = 1 to be κcl = t2/2γ

in 1D, (1 − 2/π )κcl in 2D, and 0.210κcl in 3D. These the-
oretical predictions agree with the numerical results. In the
low-temperature regime, the conductivity behaves as κd ∝
γ d/2−1θd/2, indicating that κ1 decreases with the coupling
strength γ , κ2 is independent of γ , and κ3 increases with γ .
The latter two behaviors, which differ from those observed in
the classical limit, are unusual, given that γ represents the mo-
mentum relaxation rate for n = 1. Naturally, the temperature
dependence of κd reflects the energy dependence of Kd . As
shown in the figure, the thermodynamic transmission varies
as Kd ∝ (γ ε)d/2−1 in the low-energy regime.

The numerical results obtained for n = 3 is quite different
from those for n = 1, as shown in Fig. 6. For n = 3, the
thermodynamic transmission behaves as Kd ∝ γ −1εd−3 in the
low-energy regime. In this case, the thermal conductivity κd

is divergent and thereby transport is anomalous for d � 2.
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FIG. 5. (a)–(c) Thermodynamic transmission Kd as a function
of energy ε and (d)–(f) thermal conductivity κd as a function of
temperature θ derived for d = 1, 2, 3, assuming n = 1. In each plot,
the coupling strength is varied as γ /t = 10−2, 10−1, . . . , 102. The
thin gray lines show the analytical results in the low-ε limit, in the
low-θ limit, and in the high-θ limit.

It is observed in the numerical calculation that the finite-
size conductivity exhibits the power-law divergence κ ∝ N1/2

in 1D and the logarithmic divergence κ ∝ ln N in 2D (not
shown). Interestingly, these asymptotic behaviors are typical
of low-dimensional nonlinear or disordered lattices [1–4].
However, a finite value of κ3 shown in the figure indicates that
normal transport is recovered for d = 3. In 3D, the thermal
conductivity varies as κ3 ∝ γ −1θ at low temperatures.

As demonstrated above, whether the anomaly in thermal
transport disappears or emerges depends on the exponent n as
well as the dimension d . To explore its physical implications,
we first address the kinetic aspects of the present SCR model.
The total linear momentum is expressed as P = ∑

jl q̇ jl =√
M

∑
j
˙̃q j (0) in terms of the transformed variables. Thus, P

correlates only to the lowest mode p = 0 regardless of d . It is
shown from the relevant 1D quantum Langevin equation [20]
that P obeys the differential equation

Ṗ + (−1)(n−1)/2γ P(n−1) = 0, (16)

where P(n) denotes the nth derivative of P with respect to time
(do not confuse this with the nth power of P). In terms of
Eq. (16), one finds that the conservation law for P is broken
by coupling to SCRs for n = 1, whereas P remains a con-
served quantity for n = 3, 5, 7, . . . . Assuming a plane wave
solution q̃ j (0) ∝ ei(k j−εt ), the Langevin equation leads to the
dispersion relation k = (iγ ε)1/2/t for n = 1 and ε/t for n =
3, 5, 7, . . . in the low-frequency and long-wavelength limit.
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FIG. 6. (a)–(c) Thermodynamic transmission Kd as a function
of energy ε derived for d = 1, 2, 3, assuming n = 3. The associated
thermal conductivity κd is divergent in 1D and 2D, while κ3 remains
finite as demonstrated in panel (d), which shows κ3 as a function of
temperature θ . In each plot, the coupling strength is varied as γ t =
10−4, 10−3, . . . , 102. The thin gray lines show the analytical results
in the low-ε limit and in the low-θ limit.

This indicates that the propagating mode with no excitation
gap no longer exists for n = 1, whereas it remains intact for
n = 3, 5, 7, . . . . In the light of these arguments, the observa-
tions for d � 2 imply that thermal transport in low dimensions
becomes normal by violating total momentum conservation
to eliminate the massless mode, whereas anomalous transport
occurs when total momentum is conserved and the massless
mode persists.

Although the generic argument given above is instructive
for thermal transport in low dimensions, it does not account
for how dimensional crossover takes place. To solve this
problem, a more quantitative analysis proceeds as follows.
The thermodynamic transmission Kd is given by integrating
the spectral transmission K̃(p) over the d − 1-dimensional
p space. Note that the p dependence arises from the mass
term U (p) = ∑d

i=2 U (pi ) contained in the equation of motion.
As shown in Fig. 7, K̃(p) behaves as K̃(0)θ (ε − εU ), where
θ (x) denotes the Heaviside step function. The cutoff energy
is given in the U → 0 limit by εU = 2U/γ for n = 1 and√
U for n = 3, 5, 7, . . . . These expressions are implied from

the renormalized variable z in the Green’s function. Thus,
the thermodynamic transmission can be recast into the form
Kd = K̃(0)Jd . Changing variables from pi to ui = U (pi )/4t2,
we obtain

Jd = 1

πd−1

∫ 1

0

d∏
i=2

dui
θ
(
b − ∑d

i=2 ui
)

√∏d
i=2 ui(1 − ui )

� (b/π )(d−1)/2

�[(d + 1)/2]
,

(17)

where �(x) denotes the gamma function, and b = γ ε/8t2

for n = 1 and ε2/4t2 for n = 3, 5, 7, . . . . In performing the
multiple integration in Eq. (17), we assumed b � 1. This
condition is verifiable in the ε → 0 limit. In this limit, K̃(0) =
t/(2γ ε)1/2 for n = 1 and 2t/γ εn−1 for n = 3, 5, 7, . . . .
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FIG. 7. Normalized spectral transmission K̂(p) = K̃(p)/K̃(0) as
a function of U (p) and ε calculated for (a) n = 1 and (b) n = 3. In the
calculation, the coupling strength is taken as γ = 0.1 in units where
t = 1. The solid line inserted in the figure indicates a critical point
where K̂(p) = 1/2.

Hence, we arrive at the low-energy approximations Kd ∝
(γ ε)d/2−1 for n = 1 and γ −1εd−n for n = 3, 5, 7, . . . . These
analytical results agree well with the numerical results. (In
the high-energy regime, Kd is not analytically evaluated.
However, this is irrelevant to finiteness or divergence of κd .)
Furthermore, the thermal conductivity defined by Eq. (14)
is analytically calculated to be κd ∝ Id/2−1γ

d/2−1θd/2 for
n = 1 and Id−nγ

−1θd−n+1 for n = 3, 5, 7, . . . , where Iν =∫ ∞
0 dxexxν+2/(ex − 1)2. Note that Iν diverges for ν � −1.

Again, these theoretical results coincide quantitatively with
the numerical results at low temperatures. Note that both pe-
culiar behaviors in high dimensions for n = 1 and anomalous
transport in low dimensions for n = 3 are accounted for in
a unifying manner in terms of the energy cutoff depending
on n.

These arguments for thermal transport in the d-
dimensional quantum model can be summarized as follows.

For n = 1, total momentum conservation is broken and the
massless mode is eliminated. In this case, κd remains finite
and normal transport occurs for an arbitrary value of d . For
n = 3, 5, 7, . . . , however, total momentum is conserved and
the massless mode is sustained. In this case, κd diverges
and thermal transport becomes anomalous as long as d < n,
whereas normal transport is recovered when d � n. Note that
these criteria are inviolate even in the case of n = 1.

IV. SUMMARY

We have investigated thermal transport in d-dimensional
quantum harmonic lattices in contact with SCRs. An orthog-
onal transformation enables us to treat the d-dimensional sys-
tem as a set of Klein-Gordon chains. For generality, the self-
energy due to SCR is assumed in the form � = −iγ εn, where
n is an odd integer. For n = 1, total momentum conservation is
violated and the massless mode vanishes. In this case, thermal
conductivity remains finite in the thermodynamic limit and
normal transport takes place for an arbitrary value of d . For
n = 3, 5, 7, . . . , however, total momentum is conserved and
the massless mode remains intact. In this case, thermal con-
ductivity diverges and thermal transport becomes anomalous
as long as d < n, whereas normal transport is recovered when
d � n. These criteria derived for quantum-mechanical lattices
imply that normal transport emerges in high enough dimen-
sions despite total momentum conservation, and reinforce the
prevailing conjecture deduced in the classical limit.
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