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Models with symmetry-breaking phase transitions triggered
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Recently, a number of sufficiency conditions have been shown for the occurrence of a Z2-symmetry breaking
phase transition (Z2-SBPT) starting from geometric-topological concepts of potential energy landscapes.
In particular, a Z2-SBPT can be triggered by double-well potentials, or equivalently by dumbbell-shaped
equipotential surfaces. In this paper, we introduce two models with a Z2-SBPT that, due to their essential feature,
show in the clearest way the generating mechanism of a Z2-SBPT. Although they cannot be considered physical
models, they all have the features of such models with the same kind of SBPT. At the end of the paper, the φ4

model is revisited in light of this approach. In particular, the landscape of one of the models introduced here
turned out to be equivalent to that of the mean-field φ4 model in a simplified version.
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I. INTRODUCTION

Phase transitions (PTs) are very common in nature. They
are sudden changes in the macroscopic behavior of a natural
system composed of many interacting parts occurring while
an external parameter is smoothly varied. PTs are an example
of emergent behavior, i.e., of collective properties having no
direct counterpart in the dynamics or structure of individual
atoms [1]. The successful description of PTs starting from
the properties of the interactions between the components of
a system is one of the major achievements of equilibrium
statistical mechanics.

From a statistical-mechanical viewpoint, in the canonical
ensemble, describing a system at constant temperature T , a
PT occurs at special T -values called transition points, where
thermodynamic quantities such as pressure, magnetization, or
heat capacity are nonanalytic-T functions; these points are the
boundaries between different phases of the system. PTs are
strictly related to the phenomenon of spontaneous symmetry
breaking (SB). For example, in a natural magnet below the
Curie temperature, the 0(3) symmetry is spontaneously bro-
ken. This is witnessed by the occurrence of a nonvanishing
spontaneous magnetization. In this paper, we mostly consider
the origin of spontaneous symmetry breaking, and secondarily
the origin of nonanalytic points in thermodynamic functions.

Despite great achievements in our understanding of PTs,
the situation is still not completely satisfactory. For example,
while necessary conditions for the presence of a PT can be
found, nothing general is known about sufficient conditions,
apart from some particular cases [2,3]: no general procedure
is available to determine whether a system in which a PT is
not ruled out from the beginning has such a transition without
computing the partition function Z . This might indicate that
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our deep understanding of this phenomenon is still incom-
plete.

Because of these considerations, a study of PTs based on
alternative approaches is warranted. One of these approaches
is the geometric-topological approach based on the study
of energy potential landscapes. In particular, equipotential
surfaces, i.e., potential level sets (v-level sets), have gained
a great deal of importance within this approach. In addition
to the study of v-level sets, the study of critical points has
also taken on considerable importance. These ideas have been
developed and discussed in many recent papers [4–34].

In particular, Ref. [36] states that there is a link between the
occurrence of a Z2-SBPT and dumbbell-shaped v-level sets.
Intuitively, a v-level set is said to be dumbbell-shaped when
it is made up of two major components connected by a shrink
neck. Something similar to this SBPT-generating mechanism
has been put forward in Refs. [19,20]. According to this
framework, spontaneous Z2-SB is entailed by dumbbell-
shaped v-level sets. The thermodynamic critical potential 〈v〉c

corresponds with a particular vc-level set that can be said
to be critical in the sense that it is the boundary between
the dumbbell v-level sets for v < vc and the non-dumbbell
ones for v > vc. An advantage with respect to the traditional
definition of SBPTs is that this definition holds for finite N , so
that it is not necessary to resort to the thermodynamic limit
in order to define a SBPT. In the past few decades, many
examples of transitional phenomena in systems far from the
thermodynamic limit have been found (e.g., in nuclei, atomic
clusters, biopolymers, superconductivity, superfluidity, etc.),
therefore it would be desirable to have a description of SBPTs
that is valid also for finite systems.

In this paper, we will introduce two models showing a
Z2-SBPT that illustrate in the clearest way the generating
mechanism based on the concept of dumbbell-shaped v-level
sets. Such sets are generated in turn by double-well potentials.
These models do not describe any physical system, thus they
can be used to provide hints about physical models and for
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didactic purposes. Despite this, one of the two models is very
close to a physical model, i.e., the well-known mean-field φ4

model with a suitable simplification.
The structure of the paper is as follows. In Sec. II we

will introduce the framework of the geometric-topological ap-
proach to SBPTs in the canonical treatment. In Sec. III we will
build a model with a nonsmooth potential. In Sec. IV we will
derive from that model another model with a smooth potential.
The potential landscape of this model is characterized by the
presence of three stationary points only. Finally, in Sec. VI we
will revisit the mean-field φ4 model in light of the scenario of
dumbbell-shaped v-level sets, and we will compare it with the
model with a smooth potential introduced here.

II. FRAMEWORK OF THE GEOMETRIC-TOPOLOGICAL
APPROACH TO SBPTS

Hereafter, we will refer to the canonical treatment, al-
though the dumbbell-shaped v-level set approach can be
extended to the microcanonical one.

Consider a system with N degrees of freedom with a
Hamiltonian given by

H (p, q) = T + V =
N∑

i=1

p2
i

2
+ V (q). (1)

Let M ⊆ RN be the configuration space. The partition func-
tion is by definition

Z (β, N ) =
∫
RN ×M

dp dq e−βH (p,q)

=
∫
RN

dp e−β
∑N

i=1
p2

i
2

∫
M

dq e−βV (q) = ZkinZc, (2)

where β = 1/T (in units kB = 1), Zkin is the kinetic part of Z ,
and Zc is the configurational part. To develop what follows,
we assume the potential to be lower-bounded, thus Zc can be
written according to the co-area formula [35] as follows:

Zc = N
∫ +∞

vmin

dv e−βNv

∫
�v,N

d�

‖∇V ‖ , (3)

where v = V/N is the potential density, and the �v,N ’s are the
v-level sets defined as

�v,N = {q ∈ M : v(q) = v}. (4)

The set of �v,N ’s is a foliation of configuration space M while
varying v between vmin and +∞. The �v,N ’s are very im-
portant submanifolds of M because as N → ∞ the canonical
statistic measure shrinks around �〈v〉(T ),N , where 〈v〉(T ) is the
average potential density. Thus, �〈v〉(T ),N becomes the most
likely accessible v-level set based on the representative point
of the system. This fact may have significant consequences on
the symmetries of the system because the ergodicity may be
broken by the mechanisms pointed out in Refs. [2,36].

We can have the same considerations about Zkin, but the
related submanifolds �e,N , where e = E/N is the kinetic
energy density, are all trivially N-spheres, thus they cannot
affect the symmetry properties of the system. Furthermore,
Zkin is analytic at any T in the thermodynamic limit, so that
it cannot entail any loss of analyticity in Z . For the above

considerations, hereafter we will consider Zc alone, as is done
for the thermodynamic functions.

III. THE REVOLUTION MODEL BY THE
“DOUBLE-WELL METHOD”

In Refs. [2,3] a sufficiency condition for the occurrence
of a Z2-SBPT has been proven. This condition is a double-
well potential with two global minima separated by a gap
proportional to N . Here, we will apply this result (“double-
well method”) to build a toy model with a Z2-SBPT that we
will call the revolution model.

Let q1, . . . , qN be the standard coordinate system of RN .
The starting point is setting a new coordinate system

(m, q̃1, . . . , q̃N−1), (5)

where m = 1/N
∑N

i=1 qi. m labels the points on the line or-
thogonal to the hyperplane at constant m passing through the
origin and at a distance

√
Nm from it. (q̃1, . . . , q̃N−1) are an

orthonormal coordinate system contained in the hyperplane at
constant m for m = 0 with the origin coinciding with that of
the standard coordinate system.

At first, we define the potential as an m-function as follows:

V = N (m4 − Jm2), (6)

where J > 0 plays the role of a coupling constant. V is flat
along the hyperplanes at constant m. V has two degenerate
global minima at m = ±√

J/2 of value −NJ2/4, whose coor-
dinates in the system (5) are (±√

J/2, q̃1, . . . , q̃N−1) for every
q̃i with i = 1, . . . , N − 1. Furthermore, V has a degenerate
local maximum at m = 0 of coordinates (0, q̃1, . . . , q̃N−1) for
every q̃i.

The �V,N ’s describe hyperplanes of RN at constant m,
which for convenience we define in the standard coordinate
system as follows:

�m,N =
{

q ∈ RN :
1

N

N∑
i=1

qi = m

}
, (7)

or in the coordinate system (5)

�m,N = {(m′, q̃1, . . . , q̃N−1) ∈ RN : m′ = m}. (8)

Now, to define the double well we introduce a suitable con-
straint M ⊆ RN , which will be the configuration space. We
will define it in such a way that the Taylor expansion of the
entropy at fixed m,

sN (m) = 1

N
ln μ(M ∩ �m,N )

= 1

N
ln

(∫
M∩�m,N

d�

‖∇M‖
)

= 1

N
ln

(√
N vol(M ∩ �m,N )

)
, (9)

has a nonvanishing-second-order term. “vol(·)” stands for the
volume calculated by the standard measure on M ∩ �m,N

entailed by the embedding in RN . This term will compete with
the second-order term of the Taylor expansion of V giving rise
to the critical temperature Tc. To attain this effect, the simplest
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FIG. 1. (a) Some �v,N ’s (segments) for N = 2 of the model (12)
for J = 1, external magnetic field H = 0, and potential values v =
0, −0.1, −0.25 from left to right, respectively. The configuration
space M is the white region. (b) The same as panel (a) for H = 0.3
and v = 0, −0.03, −0.47, respectively.

choice is

vol(M ∩ �m,N ) = e−(N−1)m2
, (10)

which yields in the thermodynamic limit

s(m) = lim
N→∞

sN (m) = −m2. (11)

Now, the problem is to arrange these volumes to complete
the definition of M. We can give them the shape of an
(N − 1)-ball contained in the hyperplane �m,N with the center
belonging to the line orthogonal to �m,N and passing through
the origin. The radius of the (N − 1)-ball is chosen to yield
the volume (10). Summarizing, the complete definition of the
potential is the following:

V =
{

N (m4 − Jm2) if q ∈ M,

+∞ if q /∈ M,
(12)

where

M = ∪m∈RB
N
R (m, 0, . . . , 0), (13)

where B
N
R (m, 0, . . . , 0) is the closed N-ball of radius R, of

volume (10), and with the center coordinates (m, 0, . . . , 0)
expressed in the system (5). So built, M has the shape of
an N-dimensional “spindle” of infinite length (see Fig. 1).
The potential V , in addition to the Z2 symmetry, also has an
O(N − 1) symmetry (hence the name revolution model).

A. Canonical thermodynamic

The free energy turns out to be

f = v(m) − T s(m) = m4 + (T − J )m2, (14)

where v = V/N . Tc = J is the critical temperature of the
system. The spontaneous magnetization is given by a mini-
mization process of f with respect to m, and it is given as

FIG. 2. Model (12) for J = 1. (a) Spontaneous magnetization,
(b) free energy, (c) average potential, and (d) specific heat as
functions of the temperature. The thin (blue) lines are for N =
10, 100, 1000, while the thick (red) ones are for N = ∞.

follows:

〈m〉 =
{

±[
1
2 (J − T )

] 1
2 if T � Tc,

0 if T � Tc.
(15)

The free energy, the average potential, and the specific heat as
functions of T are, respectively,

f (m(T ), T ) =
{− 1

4 (J − T )2 if T � Tc,

0 if T � Tc,
(16)

〈v〉 = −T 2 ∂

∂T

(
f

T

)
=

{− 1
4 JT 2 if T � Tc,

0 if T � Tc,
(17)

cv = ∂〈v〉
∂T

=
{ 1

2 T if T � Tc,

0 if T � Tc.
(18)

The partition function is

ZN =
√

N
∫

dm e− N
T (m4−m2 )−(N−1)m2

, (19)

which allows the calculation at finite N of the thermodynamic
functions (see Fig. 2). We do not report the calculations here
because they are trivial. The uniform convergence toward
the limit N → ∞ is broken in conjunction with the critical
temperature Tc.

B. External magnetic field and critical exponents

Our purpose is to find out the critical exponents α, β, γ , δ

of the Z2-SBPT. α = 0 because the specific heat cv (T ) has
a finite jump at Tc. β = 1/2 has already been discovered in
Sec. III A because 〈m〉 ∝ √

T − Tc. The effect of an external
magnetic field H can be taken into account by the Hamiltonian
interacting term

VH = −H
N∑

i=1

qi = −NHm. (20)
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FIG. 3. Model (12). Effect of an external magnetic field H on
the spontaneous magnetization as a function of the temperature. The
thin (blue) lines are for H = 0.01, 0.1, 0.5 from the lowest to the
highest, respectively. The thick (red) line is for H = 0.

The free energy (14) becomes

f (m, T ) = m4 + (T − J )m2 − mH. (21)

By solving the third-order equation in m, ∂ f /∂m = 0, we
obtain the spontaneous magnetization 〈m〉(H, J, T ). The solu-
tion is trivial but quite complicated and we prefer not to report
it here (see Fig. 3 for a plot). By inserting T = Tc = J in
〈m〉(H, J, T ), and by some algebraic manipulations, we obtain

〈m〉(H ) = 1
2 H

1
3 , (22)

from which we get δ = 3. To find γ , we solve

∂2 f

∂m∂H
= −1 + 2(T − J )

∂ f

∂m
+ 12m2 ∂ f

∂m
= 0, (23)

from which we get the magnetic susceptibility

χ (T ) = ∂ f

∂m
= 1

2(T − J ) − 12m2
, (24)

where, by inserting m(T ) given in (15), we obtain

χ (T ) =
{

1
2(T −J ) if T � Tc,

1
10(T −J ) if T � Tc,

(25)

from which γ = 1. Summarizing, the critical exponents are
those of a classical SBPT.

C. Geometry and topology of the �v,N’s and
their link with the Z2-SBPT

In Ref. [2] a topologically sufficient condition for Z2-SB
has been given (Theorem 1 in the paper). Simplifying the pic-
ture, Theorem 1 states that if the �v,N ’s are formed by at least
two connected components, one being on the opposite side of
the other with respect to the m-level set �0,N for v ∈ [v′, v′′],
then the Z2 symmetry is broken for the same v-values. We
are assuming that the connected components are accessible
to the representative point of the system. In this framework,
the spontaneous magnetization 〈m〉 is the ensemble average
of m calculated on the connected component of the �v,N for
which the density of states takes the global maximum. In the
thermodynamic limit, v is selected by the temperature, i.e.,
v = 〈v〉(T ), and the spontaneous magnetization is in turn a
T -function 〈m〉(T ).

The �v,N of the model (12) is given by

�v,N = {q ∈ M : m4 − Jm2 = v}, (26)

i.e.,

�v,N = ∪m(v)∈I (M ∩ �m(v),N ), (27)

where I is the set of the solutions of −Jm2 + m4 = v given by

m(v) = ±
(

J ± (J + 4v)
1
2

2

) 1
2

. (28)

We distinguish three cases:
(i) v ∈ [−J/4, 0). Equation (28) has four distinct solutions,

each of them corresponding to a single connected component
of the �v,N made by an (N − 1)-ball of volume e−(N−1)m(v)2

.
These �v,N ’s satisfy the hypotheses of Theorem 1 in Ref. [2],
which implies the Z2-SB for T -values such that 〈v〉(T ) ∈
[−J/4, 0) (see Fig. 1).

(ii) v = 0. Equation (28) has three distinct solutions, one
of which equals zero. The connected components of �v,N

are three (N − 1)-balls. In this case, the Z2 symmetry is
intact because the (N − 1)-ball located at m = 0 has a greater
volume than the others. In the following, we will see how to
calculate it.

(iii) v > 0. Equation (28) has two distinct solutions. Ac-
cording to Theorem 1 in Ref. [2], the Z2 symmetry should
be broken, but the v-values above zero are inaccessible to the
representative point, so that �0,N plays the role of a critical
v-level set separating the broken symmetry phase from the
unbroken one.

The density of states at fixed v is given by

ωN (v) = μ[∪m(v)∈I (M ∩ �m(v),N )]

=
∑

m(v)∈I

μ(M ∩ �m(v),N )

=
∑

m(v)∈I

∫
M∩�m(v),N

d�

‖∇V ‖ . (29)

To evaluate the global maximum of sN (v, m) =
1/N ln ωN (v, m), we need to know ∇V in (29). It can be
expressed in the coordinate system (5) as follows:

∇V = (
N (4m3 − 2mJ ), 0, . . . , 0

)
, (30)

from which ‖∇V ‖ = N |4m3 − 2mJ|. The last quantity is
constant on the whole surface of M ∩ �m,N , so that it can be
factorized in the integral (29). In the limit N → ∞, the con-
tribution of ‖∇V ‖ to ωN (m)1/N is 1, except at m = 0,±√

J/2
where it becomes infinite. Hence, we can replace the measure
ωN (m) with the standard volume e−(N−1)m2

defined in (10).
The singularities at m = 0,±√

J/2 do not cause any uncer-
tainty in locating the spontaneous magnetization because of
the structure of the �v,N ’s for v = −J/4, 0.

The spontaneous magnetization as a v-function is plotted in
Fig. 4. At v = 0, a topological change occurs. When v reaches
zero from below, the two innermost (N − 1)-balls of the �v,N

joint becoming an (N − 1)-ball alone. This is equivalent to
what happens for a smooth potential when the �v,N crosses a
critical level with a saddle point of index 1. In this model, the
derivative along m is negative and the derivatives along the
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FIG. 4. Solutions (28) for J = 1. The thick (red) curve corre-
sponds to the spontaneous magnetization as a function of the specific
potential. The thin (blue) curves correspond to inaccessible regions
of configuration space.

q̃i’s, i = 1, . . . , N − 1, are vanishing. In any case, the shape
of the �v,N ’s can be continuously deformed in such a way
as to make the last derivatives positive without changing the
properties of the model. This is what happens in the model
introduced in Sec. IV, which is equipped with a smooth
potential. In this case, a positive shift between the critical
average thermodynamic potential and the critical topological
level is entailed, in contrast to this model where they exactly
coincide.

IV. REVOLUTION MODEL WITH SMOOTH POTENTIAL

In this section, we will modify the definition of the po-
tential (12) in such a way as to make it smooth. This is
more realistic from a physical viewpoint. In that case, we
have constrained the configuration space M into a sort of N-
dimensional “spindle” such that vol(M ∩ �m,N ) = e−(N−1)m2

.
Here, we will follow a different approach. At each point of
the line passing through zero and orthogonal to the hyper-
planes �m,N ’s, we will attach a paraboloid weighted by the
factor e−m2

. In the coordinate system (5), the potential turns
out to be

V = N (m4 − Jm2) +
N−1∑
i=1

(
q̃i

e−m2

)2

. (31)

This potential has two global minima of value −NJ/4 whose
coordinates are ±(

√
J/2, 0, . . . , 0) expressed in the system

(5). Similar to model (12), this model has an O(N − 1)
symmetry in the coordinates (q̃1, . . . , q̃N−1) in addition to the
Z2 symmetry.

A. Canonical thermodynamic

The partition function is given by

ZN =
√

N
∫

dm dq̃ e− 1
T (N (m4−Jm2 )+e2m2 ∑N−1

i=1 q̃2
i ), (32)

which can be rewritten as

ZN =
√

N
∫

dm e− N
T (m4−Jm2 )

(∫
dq e− e2m2

T q2

)N−1

. (33)
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FIG. 5. Model (31) for J = 1. (a)–(d) Spontaneous magnetiza-
tion, free energy, average potential, and specific heat vs the tempera-
ture, respectively.

By applying the Gaussian integral formula in the large-N
limit, we get

ZN �
√

N
∫

dm e− N
T (m4+(T −J )m2− T

2 ln(πT )). (34)

In the thermodynamic limit, the free energy, the spontaneous
magnetization, the average potential, and the specific heat are,
respectively,

f = m4(T − J ) + m2 − T

2
ln(πT ), (35)

〈m〉 =
{

±[
1
2 (J − T )

] 1
2 if T � Tc,

0 if T � Tc,
(36)

〈v〉 =
{

1
2 T − 1

4 (J − T 2) if T � Tc,
1
2 J if T � Tc,

(37)

cv =
{ 1

2 (1 + T ) if T � Tc,

0 if T � Tc,
(38)

where Tc = J is the critical temperature (see Fig. 5). The
SBPT is of second order with classical critical exponents.

B. Dumbbell-shaped �v.N’s at the origin of the Z2-SBPT

In Ref. [36], a new way of understanding a Z2-SBPT was
introduced. It is based on the concept of dumbbell-shaped
�v,N ’s defined in the following way. Each �v,N is in agree-
ment with the microcanonical density of states

ωN (v, m) = μ(�v,N ∩ �m,N ) =
∫

�v,N ∩�m,N

d�

‖∇V ∧ ∇M‖ .

(39)
A �v,N is defined as dumbbell-shaped if the microcanonical
entropy sN (v, m) does not take the global maximum at m = 0
at fixed v. An equivalent definition can be given in terms of
ωN (v, m)1/N = esN . Note that this definition is valid for each
N , so that the study of SBPTs based on this framework is
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FIG. 6. (a) Some �v,N ’s for N = 2 of the model (31) for J =
1 and v = −0.2, 0, 0.25, 0.5, 1 from the innermost subset to the
outermost one, respectively. �0.5,2 is marked. It is the boundary
between the dumbbell-shaped �v,N ’s for v ∈ [−0.25, 0.5] and those
that are not dumbbell-shaped for v � 0.5. (b) The same as panel
(a) for J = 0 and v = 0.01, 0.1, 0.25, 0.5, 1.

suitable not only in the thermodynamic limit but also in the
case of finite N .

The main result of this approach is summarized in a
straightforward theorem stating that the Z2 symmetry is bro-
ken if, and only if, the �〈v〉(T ),N corresponding to the tem-
perature T is dumbbell-shaped for all N > N0, where N0 is a
fixed natural. Furthermore, the critical average potential vc =
〈v〉(Tc) is in exact correspondence with the �v,N , which is the
boundary between the dumbbell-shaped �v,N ’s and those that
are not dumbbell-shaped. This �v,N is called critical.

The topology of the �v,N ’s can be discovered by Morse
theory. The key concept is the attachment of an i-handle at
each critical point of index i. The index is defined as the num-
ber of negative eigenvalues of the Hessian matrix. The poten-
tial (31) has two critical levels. A critical level is a v-level set
that contains at least one critical point. The lower one contains
two critical points: ±(

√
J, . . . ,

√
J ). The Hessian matrix is

diagonal, HV = 2 diag(5NJ, e2m2
, . . . , e2m2

), thus the indexes
are 0. This corresponds to the attachment of two 0-handles,
so that the topology is that of the union of two disjointed
N-spheres. The other critical level contains the saddle point
(0, . . . , 0), for which HV = 2 diag(−NJ, e2m2

, . . . , e2m2
), thus

the index is 1. After attaching a 1-handle, the topology be-
comes that of a single N-sphere. Summarizing,

�v,N ∼

⎧⎪⎪⎨⎪⎪⎩
SN−1 if v > 0,

critical if v = 0,

SN−1 ∪ SN−1 if 0 > v � − J
4 ,

∅ if v < − J
4 ,

(40)

where “∼” stands for “is homeomorphic to” (see Fig. 6).
There exists only a topological change at v = 0. This potential
satisfies the hypotheses of Theorem 1 in Ref. [2] for v ∈
[−J/4, 0), so that the Z2-SB is guaranteed for T ∈ [0, T ′),
where T ′ = 〈v〉−1(T ) = −1 + √

1 + J for 〈v〉 = 0, due to
topological reasons. Indeed, the �v,N ’s are composed of two
connected components that are located on opposite sides of
the m-level set �0,N . The critical average potential 〈v〉c = J/2
is located above the unique critical v-level set �0,N . This
is due to the presence of dumbbell-shaped �v,N ’s in the

interval [0, J/2). Indeed, they imply the Z2-SB according to
the theorem in Ref. [36].

The simplicity of this model, in particular the presence of
the O(N − 1) symmetry, allows us to identify the dumbbell-
shaped �v,N ’s by the explicit calculation of the density of
states ωN (v, m). Indeed, �v,N ∩ �m,N is an (N − 1)-sphere
defined by the following implicit equation:

Nv = N (m4 − Jm2) + e2m2
N−1∑
i=1

q̃2
i . (41)

The radius R is given by

R2 =
N−1∑
i=1

q̃2
i = Ne−2m2

(v − m4 + Jm2), (42)

and the volume is given by

vol(�v,N ∩ �m,N ) = 2π
N−1

2

�
(

N−1
2

)RN−2. (43)

To calculate ωN (v, m) we need to take into account the
Gramian square root ‖∇V ∧ ∇M‖ in (39). In the coordinate
system (5),

∇V = (
N (4m3 − 2Jm), 2e2m2

q̃1, . . . , 2e2m2
q̃N−1

)
(44)

and

∇M = (N, 0, . . . , 0). (45)

Thus,

‖∇V ∧ ∇M‖2 = det

(∇V · ∇V ∇M · ∇V
∇V · ∇M ∇M · ∇M

)
, (46)

from which, after some trivial algebraic manipulations, we get

‖∇V ∧ ∇M‖ = 2Ne2m2
R. (47)

The last term is constant onto the whole integration support of
the integral (39), so that it can pass under the integral sign. As
N → ∞ we find the entropy,

s(v, m) = lim
N→∞

ln ωN (v, m)
1
N

= −m2 + 1
2 ln(v − m4 + Jm2) + 1

2 ln(2πe).

(48)

See Figs. 7 and 8 for plots.
According to the definition given in Ref. [36], a �v,N is

called dumbbell-shaped if the related s(v, m) does not take the
global maximum at m = 0. For v ∈ [−J/4, 0) the �v,N ’s are
dumbbell-shaped because they are the union of two connected
components (see Fig. 6). The solution with respect to v of the
equation

∂s(v, m)

∂m
= 0 (49)

gives the spontaneous magnetization as a v-function,

m(v) =
⎧⎨⎩±

(
1 − (

v + 1
2

) 1
2

) 1
2

if − 1
4 � v � 1

2 ,

0 if v � 1
2

(50)

(see Fig. 9).
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FIG. 7. (a) Model (31) for J = 1. Contour plot of the micro-
canonical entropy s(v, m) (48); the dark region surrounded by the
curve of equation v = −m2 + m4 is the domain. v = 〈v〉c = 0.5 is
the boundary between the dumbbell-shaped �v,N ’s and the non-
dumbbell-shaped ones. (b) The same as panel (a) for J = 0.

By inserting Eq. (37) in the preceding equation, we get
Eq. (36). It is a remarkable fact that we could get the same
result in two independent ways: via canonical thermodynamic
and via geometry of the potential landscape. Consider v � 0.
To discover whether a �v,N is dumbbell-shaped, it is sufficient
to set to zero the second partial derivative of s(v, m) with
respect to m at m = 0,

∂2s(v, m)

∂m2

∣∣∣∣
m=0

= 2v − J = 0. (51)

Therefore, v = J/2 is the boundary between the dumbbell-
shaped �v,N ’s and those that are not dumbbell-shaped.
In particular, the �v,N ’s are dumbbell-shaped for v <

J/2 (see Fig. 6). �J/2,N plays the role of a critical
v-level set.

From the thermodynamic viewpoint, we know that the
critical average potential is just 〈v〉c = J/2, so that the canon-
ical thermodynamic picture of the Z2-SBPT is in perfect
agreement with the geometric picture based on that of the
dumbbell-shaped �v,N ’s framework. Furthermore, we note
that the microcanonical entropy ŝ(v) can be obtained by a
maximization process of s(v, m) with respect to m, as was

FIG. 8. Microcanonical entropy (48) of the model (31) for J = 1
and v = −0.2, 0, 0.1, 0.25, 1.5 from the lowest graph to the highest
one, respectively. The thick curve is the boundary between the
dumbbell-shaped �v,N ’s for v ∈ [−0.25, 0.5] and those that are not
for v � 0.5.

FIG. 9. (a) Microcanonical entropy of the model (31) for J = 1
as a function of the specific potential. At v = 〈v〉c = 0.5 there is a
third-order singularity. (b) Spontaneous magnetization as a function
of the specific potential. The SBPT is at the same v-value.

done in Ref. [37] for the mean-field φ4 model (see Fig. 9),

ŝ(v) =
{

e(v+ 1
2 )

1
2 −1

((
v + 1

2

) 1
2 − 1

2

) 1
2 if − 1

4 � v � 1
2 ,

e
1
2 if v � 1

2 ,

(52)
and s(T ) can be calculated by inserting Eq. (37) in the
equation above, yielding

s(T ) =
{

1
2 ln

[
1
4

(
T 2 + 2T − 1

)]
if 0 � T � 1,

1
2

[
T + ln

(
T
2

) − 1
]

if T � 1.
(53)

The same is true for m(T ).

C. The case at finite N

The formula of the microcanonical entropy for finite N is
the following:

sN (v, m) = −N − 5

N
m2 + N − 5

2N
ln N + N − 1

2N
ln π

+ N − 3

2N
ln(v − m4 + Jm2)

− 1

N
ln �

(
N − 1

2

)
. (54)

There are no substantial differences in the shape of the graph
compared to the case N = ∞ discussed in the previous sec-
tion. The definition of SBPT given in Ref. [36] holds also for
finite N . Therefore, the model (31) undergoes the spontaneous
symmetry breaking of its Z2 symmetry for every N > 5. The
smaller N’s must be excluded because formula (54) makes no
sense. The critical potential vc,N turns out to be an N-function
tending to 1/2 for N → ∞,

vc,N = J (N − 3)

2(N − 5)
. (55)

We do not enter into the discussion of what the temperature
for finite N may be, in particular the critical temperature, be-
cause this is not the right place to deal with this problem. We
merely observe that we do not see any substantial difference
with respect to the thermodynamic limit except in the fact that
the fluctuations of the physical quantities are nonvanishing.
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D. On the origin of the PT

In Refs. [6,12,14–16,19–26,28,29,31–33,37,38] a great ef-
fort was made to try to understand the deep origin of a PT
meant as a loss of analyticity in the thermodynamic functions.
Here, our purpose is to propose some considerations about
that question.

The free energy f in the (m, T )-plane is an analytic func-
tion in the thermodynamic limit, but, e.g., this is not the case
of the spontaneous magnetization as a T -function. By resort-
ing to the Dini theorem (or the implicit function theorem), we
know that the graph of the zeros of the partial derivative with
respect to m of f , i.e., the spontaneous magnetization, is an
analytic function, too. More precisely, if f (m, T ) ∈ Ck , then
also m(T ) ∈ Ck for k = 1, . . . ,∞.

The singular point in the graph of m(T ) arises because it is
the union of two analytic branches connected by a nonanalytic
point. The two branches are the line m(T ) = 0 for T � Tc and
the parabola m(T ) = ±[1/2(Tc − T )]1/2 for T � Tc, which
touch each other at (0, Tc). In Ref. [37] it was shown that
nonanalyticity in the microcanonical entropy s(v) stems from
a maximization process of the entropy s(v, m) with respect
to m, which is strictly correlated to what was mentioned
earlier in the paper. This holds only if the graph of s(v, m) is
nonconcave. There is no way to generate such nonanalyticity
starting from a strictly concave graph.

Generally, the presence of a singularity in the thermody-
namic functions is associated with the presence of sponta-
neous SB, but there are cases in which this is not true. For
example, in the hypercubic model introduced in Ref. [2], the
first-order PT is not related to the Z2-SB, but rather it stems
from the fact that the potential is not a continuous function of
coordinates. Indeed, it assumes two discrete values only. To
conclude, at this stage we cannot suggest any unified origin
for a PT to occur.

V. OTHER CRITICAL EXPONENTS
AND UNIVERSALITY CLASSES

We can generalize the definition of the potential (31) as
follows:

V = N (m2l − Jm2k ) +
N−1∑
i=1

(
q̃i

e−m2k

)2

, (56)

with k, l naturals such that 0 < k < l . The same can be
done for the potential (12) by redefining the volume of
the subsets of configuration space M at constant m (10)
as e−(N−1)m2k

. For suitable choices of k, l , the revolution
model belongs also to other universality classes than the
classical one.

For example, we will calculate the critical exponents for
the case k = 8 and l = 16 corresponding to the universality
class of the short-range two-dimensional (2D) Ising model.
The free energy in the thermodynamic limit is

f = m16 + (T − J )m8 − T

2
ln(πT ), (57)
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FIG. 10. Model (56) for J = 1. Contour plot of the microcanon-
ical entropy s(v, m) (62); the dark region surrounded by the curve
of equation v = −m8 + m16 is the domain. The dashed curve is the
spontaneous magnetization.

and the critical temperature is Tc = J . By solving ∂ f /∂m = 0
we obtain the spontaneous magnetization

〈m〉 =
{

±[
1
2 (J − T )

] 1
8 if T � Tc,

0 if T � Tc,
(58)

where Tc = J , from which β = 1/8. 〈v〉(T ) and cv (T ) are the
same as those in the model (31), so that α = 0. After inserting
the external magnetic field H , the free energy becomes

f = m16 + (T − J )m8 − mH − T

2
ln(πT ), (59)

from which, by following the same procedure of Sec. III B,
we get

〈m〉(H ) ∝ H
1
15 , (60)

from which δ = 15, and

χ (T ) ∝ |Tc − T |− 7
4 , (61)

from which γ = 7/4, as promised. We can also give the
microcanonical entropy as (see Fig. 10 for a plot)

s(v, m) = lim
N→∞

ln ωN (v, m)
1
N

= −m8 + 1
2 ln(v − m16 + Jm8)

+ 1
2 ln(2πe). (62)

However, there is a difference that is worth noting with
respect to the short-range 2D Ising model. In the case of the
latter, the specific heat undergoes a logarithmic divergence at
the SBPT. We are currently unable to justify this difference.
We merely suggest that it may be related to the fact that the
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revolution model with potential (56) belongs to the class of
long-range systems, unlike the short-range 2D Ising model.

VI. CONNECTION WITH PHYSICAL MODELS

In this section, we will deal with a physical model with the
aim of highlighting its connection with the revolution model
with smooth potential (31) proposed in this article.

A. The mean-field φ4 model

We recall that the potential of the mean-field φ4 model is
as follows:

V =
N∑

i=1

(
φ4

i

4
− φ2

i

2

)
− J

2N

(
N∑

i=1

φi

)2

. (63)

The model is known to undergo a second-order Z2-SBPT
with classical critical exponents. In Ref. [37] the authors
have been able to calculate the thermodynamic limit of the
microcanonical entropy s(v, m) using the large deviations
theory. The microcanonical entropy ŝ(v) is obtained by a
process of maximization of s(v, m) with respect to m,

ŝ(v) = max
m

s(v, m). (64)

The domain of s(v, m) is a nonconvex subset of the plane
(v, m), and s(v, m) is a nonconcave function. The critical
average potential 〈v〉c of the Z2-SBPT is located in such a way
as to divide the concave sections of the graphs s(v, m) at fixed
v for v � 〈v〉c from the nonconcave ones for v < 〈v〉c. The
graph of s(v, m) (Fig. 5 in Ref. [10] and Fig. 2 in Ref. [37])
is qualitatively identical to that of the model (31) reported in
Fig. 7. This holds for both J > 0 and J = 0.

In Refs. [39,40] the topology of the �v,N ’s has been studied
exhaustively by means of Morse theory. The following three
cases have been delineated:

(i) v ∈ [vmin, vt ). vmin = −(1 + J )2/4 is the global mini-
mum of the potential. vt depends on the coupling constant J ,
and vt < −1/4. The �v,N ’s are homeomorphic to the union
of two disjointed N-spheres. The thermodynamic critical po-
tential 〈v〉c of the Z2-SBPT can be less than 0, but 〈v〉c > vt

holds for all J > 0.
(ii) v ∈ [vt , 0]. There are a huge number of critical points

growing as eN as a consequence of the topological changes.
We can say that the whole interval [vt , 0] plays the role of
a critical level because it discriminates between the �v,N ’s
that are homeomorphic to two disjointed N-spheres and those
that are homeomorphic to an N-sphere alone. In Ref. [41]
it was shown how to reduce this critical interval to a single
v-value corresponding to a critical v-level set containing a
single critical point. Furthermore, as J → +∞, vt → −1/4−.

(iii) v ∈ (0,+∞). The �v,N ’s are homeomorphic to an N-
sphere.

Let us try to interpret this picture in the framework of
the dumbbell-shaped �v,N ’s. In case (i), the hypotheses of
Theorem 1 in Ref. [2] are satisfied, thus the topology of the
�v,N ’s implies the Z2-SB. This is in accordance with 〈v〉c >

vt for all J > 0 because the spontaneous magnetization cannot
vanish below vt . Since Theorem 1 in Ref. [2] is a special case
of the theorem given in Ref. [36], also the hypotheses of the

last case are satisfied. In case (ii), the hypotheses of Theorem
1 in [2] are not satisfied, so that only the theorem in Ref. [36]
may imply the Z2-SB. Indeed, the �v,N ’s may be dumbbell-
shaped below 〈v〉c and non-dumbbell-shaped above 〈v〉c (if
〈v〉c < 0) independently of their intricate topology. Finally,
the hypotheses of case (ii) hold for case (iii). The difference
is that in the last case, the �v,N ’s are all diffeomorphic to an
N-sphere alone. However, this difference is not significant.

�〈v〉c,N plays the role of the critical level in the sense of the
theorem in Ref. [36] because it separates the dumbbell-shaped
�v,N ’s from those that are not dumbbell-shaped. For the sake
of precision, we assume that at fixed N the critical �v,N in
the above-specified sense is not located exactly at 〈v〉c, but
that there exists a sequence of critical �vN ,N such that vN →
〈v〉c for N → ∞. Further analytic and numerical studies may
check this conjecture.

The potential of the mean-field φ4 model is made by a
mean-field-like interacting part with the addition of a con-
straint given by the quartic potential for each degree of free-
dom. In this way, the double-well potential that is sufficient for
the Z2-SBPT is generated. The occurrence of the Z2-SBPT
does not depend on the details of the constraint, which has to
satisfy only the condition V → +∞ as φi → ±∞ for every
i = 1, . . . , N . These characteristics have been pointed out
in Refs. [2,36]. Unfortunately, the topological complication
of the potential landscape of this model does not allow us
to highlight the connection with the revolution model with
a smooth potential introduced in this article. The following
section will remedy this problem.

B. A simplified version of the mean-field φ4 model

In Ref. [41] a simplified version of the φ4 model was
introduced and studied in the mean-field version. The simpli-
fication is merely the elimination of the quadratic term in the
local potential. The new potential is therefore the following:

V =
N∑

i=1

φ4
i

4
− J

2N

(
N∑

i=1

φi

)2

. (65)

It has been shown that the quadratic term has no role in
the generation of the Z2-SBPT, which is identical to that
of the traditional model apart from quantitative differences.
On the other hand, the quadratic term is a cause of great
complication in the topological structure of the �v,N ’s, which
has been described in the previous section. Thanks to this
simplification, the potential landscape undergoes a topological
trivialization. Indeed, only three critical points survive against
the immense multitude of the model with a nonvanishing
quadratic term. We speak of topological trivialization because
to have a double-well potential at least two global minima
with index 0 and a central saddle point with index 1 are
needed. In Fig. 11 the proliferation of the critical points in the
mean-field φ4 model due to the nonvanishing quadratic term
of the local potential is already evident at N = 2.

In the case of the model (65), the connection between
the model with a smooth potential proposed in this article
and a physical model becomes truly evident. We want to
emphasize that the potentials of the two models have the
same topological and geometric structure; indeed, they can be
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FIG. 11. (a) Some �v,N ’s for N = 2 of the mean-field simplified
φ4 model (65) for J = 1 and v = −0.4, 0, 0.01, 0.05, 1. �0.05,2

is marked. It is the boundary between the dumbbell-shaped �v,N ’s
and those that are not dumbbell-shaped. 0.05 is only a numerical
estimate because it is not possible to evaluate it analytically. (b) The
same as panel (a) for the mean-field φ4 model (64) for J = 1 and
v = −1.8, −0.6, −0.4375, −0.1, 2.

transformed one into the other by a mere variation of shape.
A comparison between panel (a) of Fig. 6 and panel (a) of
Fig. 11 clarifies this at N = 2. The difference is that only
in the case of the model (31) is the analytical calculation of
the microcanonical entropy s(v, m) feasible. In the case of the
mean-field simplified φ4 model the large deviation theory may
be applied, as was done in Ref. [37] for the traditional model.

VII. CONCLUSIONS

In this paper, we have introduced two Hamiltonian mod-
els with continuous Z2-SBPT along with some sufficiency
conditions given on the potential energy landscape. These
conditions are specified in Refs. [2,3]. The substantial feature
is a double-well potential with a gap that is proportional to
the number of degrees of freedom N . This implies that the
factor e−βV competes with the density of states at constant
magnetization involving the critical temperature.

In Ref. [36], a straightforward theorem was proven ac-
cording to which dumbbell-shaped �v,N ’s are a necessary and

sufficient condition of a Z2-SBPT. Roughly speaking, a �v,N

is dumbbell-shaped if it is composed of two major compo-
nents connected by a shrink neck. Generally, such a �v,N

stems from a double-well potential, as is the case of the mod-
els introduced here. In this framework, the thermodynamic
critical potential 〈v〉c turns out to be in exact correspondence
with a critical �vc,N in the sense that it is the boundary
between the dumbbell-shaped �vc,N ’s for v < vc and those
that are not for v > vc.

The model (12) introduced herein is a toy model, but
it serves as a basis for introducing the model (31) with a
smooth potential, which instead has characteristics that are
very similar to those of some physical models. Furthermore,
the model (31) can belong to several universality classes in
addition to the classical one by modulating its free parameters.
As an example, the case of the short-range 2D Ising model has
been studied. However, there is a difference that we are unable
to account for: the specific heat has a logarithmic divergence
in the case of the Ising model, while it has a jump in the model
(31).

At the end of the paper, the results for the mean-field φ4

model in Refs. [2,39–41] have been compared with those of
the models introduced herein in order to show the link with
physical models. The main result lies in the fact that the
potential landscape of a simplified version of the φ4 model
introduced in Ref. [41] is completely equivalent to that of
the model (31) with a smooth potential from a geometric and
topological point of view. This suggests that the framework
proposed in Ref. [36] to describe Z2-SBPTs by means of
dumbbell-shaped �v,N ’s may be applicable for any physical
model with continuous potential.

Finally, the model introduced herein may be suitable also
for didactic purposes and more analytical studies. In par-
ticular, we suggest the possibility of studying the curvature
properties of the �v,N ’s of the model with a smooth potential,
e.g., by Gaussian curvature, to be related with the Z2-SBPT.
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