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Generalized Fokker-Planck equations derived from nonextensive entropies asymptotically
equivalent to Boltzmann-Gibbs
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We derive generalized Fokker-Planck equations (FPEs) based on two nonextensive entropy measures S± that
depend exclusively on the probability. These entropies have been originally obtained from the superstatistics
framework, therefore they regard nonequilibrium systems outlined by a long-term stationary state in view of
a spatiotemporally fluctuating intensive quantity. Moreover, entropies S± as well as Boltzmann-Gibbs (BG)
entropy SB both pertain to the same asymptotical equivalence class, thus suggesting that S± could depict a
consistent thermodynamic generalization of BG. For these reasons, we assert that transport phenomena to
be accounted for by our models shall coincide with the portrait given by the conventional FPEs for systems
comprehending short-range interactions or a high number of accessible microstates, whereas, for systems
composed of a small number of microstates, or those with long-range interactions, the governing equations of
motion are to be the FPEs here derived, as long as the system fulfills the attributes mentioned above. We discuss
the anomalous diffusion exhibited by the two generalized FPEs and also present some numerical applications.
In particular, we find that there are models regarding biological sciences, for the study of congregation and
aggregation behavior, the structure of which coincides with the one of our models.
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I. INTRODUCTION

The concept of entropy occupies a central role in deriving
the probability distributions (MaxEnt distributions) that gov-
ern the microscopic behavior of general statistical systems.
In the traditional theory, for instance, the thermodynamics
of short-range, weakly interacting systems composed of a
large number of microstates is successfully described by
the Boltzmann-Gibbs (BG) probability distribution—in turn
obtained by maximizing the BG entropy subject to certain
constraints. For complex systems, however, the story becomes
different since their dynamics are no longer conducted by
typical BG-like distributions but instead generalized entropies
have to be introduced [1–7].

Different forms of entropies as a function of probabilities,
and possibly additional parameters, have been proposed in
order to describe the thermodynamics of complex, nonequi-
librium, or strong interacting systems, namely, out of the
thermodynamic limit [8,9]. The behavior of those systems is,
in general, described by a non-BG probability distribution,
meaning that the functional form of the entropy that governs
the related dynamics depends on the probability in a different
way than SB does. Some interesting consequences emerge
from nonextensive entropies; for instance, it has been nicely
shown in Ref. [10] that the self-similar structures derived from
the scaling properties in the Yang-Mills theories behave as
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fractals, from which one obtains a nonextensive statistical
scheme. This approach has been applied to the parameter
dependent entropy of Tsallis. Although, in general, the frame-
work does also support some other entropies that convey
complexity.

In recent years, by following the superstatistics formalism
[11], it has been proposed in Ref. [12] a pair of general
entropic forms S± that depend only on the probability and,
in consequence, furnish generalized probability distributions.
The thermodynamic systems that obey these generalized
statistics are slightly out of equilibrium, although there exists
temporally local equilibrium within each of the cells that sub-
divide the system. In other words, the generalized entropies
S± give rise to a long-term stationary state in view of a
spatiotemporally fluctuating intensive quantity, such as the
inverse temperature β in our case. The physical consequences
are that the system shall feel an effective interaction repre-
sented by an extra attractive (repulsive) contribution in the
case of S+ (S−) (see [13,14]).

As previously stated, in this paper we are to consider
systems slightly out of thermodynamic equilibrium since the
long-term stationary states assure, in a way, that the ampli-
tudes of the fluctuations remain small even when they are
subject to small variations in the initial conditions. This stable
behavior also confers universality to the scheme; that is, the
corrections to the standard Boltzmann factor are to be nearly
the same for all superstatistics. In our case the corrections
to BG delivered by S± are monotonically subdominant. We
remark that this is an interesting attribute since such ten-
dency indicates that S± and SB will coincide asymptotically,
making it possible to resemble the standard theory when S±
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encompass a large number of accessible states, whereas for
a reduced number of them a modest difference between both
approaches is found.

Assuming a more formal attitude, these latter facts can
be put in the spirit of the asymptotic classification stated in
Ref. [15] where, as an attempt to understand the nature of a
wide number of entropies, it has been formulated a classifi-
cation according to their limiting behavior. In that sense, the
entropies that fulfill the first three Shannon-Khinchin (SK) ax-
ioms (SK1, continuity; SK2, maximality; SK3, expandability;
SK4, additivity) [16,17] become characterized uniquely by a
pair of critical exponents (c, d ). For instance, in the case of
entropies SB and S±, they pertain to the class (c, d ) = (1, 1).
It is possible that other entropic forms g(ρ) could belong to
the equivalence class (1,1), although to our knowledge no
others than S± have been proposed with the particularity of
fulfilling axioms SK1–SK3 while a violation of SK4 arises
at some scale. Even if such were the case, those entropies
would provide nearly the same corrections to BG for the
reason that S± already draw nonequilibrium systems with
stable long-term fluctuations, implying universality according
to the superstatistics formulation.

Inspired by the axiomatic classification made in Ref. [15]
another critical exponent was introduced in order to take into
account the time scaling of time-dependent probability distri-
butions [18]. Those probabilities are encountered in stochastic
processes, for instance, in the anomalous diffusive phenomena
described by the generalized Fokker-Planck equations (FPEs)
useful in describing the movement of particles and living
subjects [19–21]. The generalized Fokker-Planck equations
and the corresponding asymptotic scalings were derived for
several generalized entropic forms in Refs. [18,22]. In this
paper we are to adopt such an approach and derive the Fokker-
Planck equations associated with S±.

Below we are to review the corresponding asymptotic
analysis for the entropic forms that depend only on the proba-
bility [12,23,24]. These entropies, as the ones considered in
Refs. [15,18], do not fulfill SK4 but we have surprisingly
found that they possess the same asymptotic exponents as
the BG entropy; namely, they fall into the same equivalence
class. Besides the asymptotic analysis, we also construct the
generalized FPEs in the Fickian form and make a general
analysis of their solutions and scaling behavior. Moreover,
it is worth mentioning that the kind of Fokker-Planck equa-
tions derived here emerge, as well, in several stochastic pro-
cesses studied in biological sciences [19,20]. We will also
show that the usual FPE is consistently recovered from our
generalizations.

The rest of our discussion is organized as follows. In Sec. II
we formally introduce the generalized entropies S± to be
considered in this paper. Based on the axiomatic classification
proposed in Ref. [15], we briefly analyze these entropies in
the asymptotic limit to show that they belong to the same
equivalence class as BG entropy [25]. In Sec. III, we derive the
generalized FPEs corresponding to the generalized entropies
S±. In Sec. IV, we compute numerical solutions to FPEs
and discuss some properties of their stationary solutions. The
anomalous diffusion portrayed by these equations is also
discussed. Finally, Sec. V is devoted to conclusions and a
general discussion of our results.

II. GENERALIZED ENTROPIC FORMS

In this section we introduce a generalized family of en-
tropies on the basis of the asymptotic analysis made in
Ref. [15] that allows us to establish a classification of en-
tropies in terms of scaling exponents. Particular cases of
especial interest in this paper are surveyed.

The kind of generalized entropies to be considered in this
paper adopt the general form [26]

S[ρ] =
W∑
i

g(ρi ), (1)

where W represents the number of states with corresponding
densities of probability denoted by ρi, such that ρi ∈ ρ for
i = 1, . . . ,W , and g is a generic entropic form. The notation
S[ρ] signifies the evaluation of S over the whole set of ρ.

As stated by the authors in Ref. [15], it is possible to
establish a distinction and a classification of entropies of the
general form (1) by observing the SK axioms [16,17]. For
instance, if S[ρ] is such that it does satisfy the four SK axioms
and is of the form (1), then it corresponds univocally to BG
entropy SB, in which case g(ρ) = −ρ ln ρ.

Yet, entropies associated with strong interacting systems
are known to satisfy SK1–SK3, whereas there is a violation
to SK4. Remarkable examples of this kind of entropies are,
for instance, the ones of Tsallis, Rényi, and Kaniadakis (for
a general review, we encourage the reader to see the classifi-
cation in Ref. [15] and its generalization [25]). In this paper,
however, we limit our analysis to the two entropies

S±[ρ] =
W∑
i

(±1 ∓ ρ
±ρi
i

)
, (2)

and by association with the general form of entropy (1) the
respective entropic forms of S±[ρ] are identified as

g±(ρ) = ±1 ∓ ρ±ρ, (3)

and it can be shown that they satisfy SK1–SK3 [25]. Further-
more, these particular forms arise in the formalism of super-
statistics [11,12] by considering local temperature fluctuations
averaged by a specific real distribution H (β ), addressing to a
generalized Boltzmann factor

B(E ) =
∫ ∞

0
dβ H (β )e−βE , (4)

where E is the energy of a microstate associated with each
of the considered cells. From the integral transform (4), we
can deduce generalized entropies of the form (1) through the
formula [27]

g(ρ) =
∫ ρ

0
dx

E (x) + δ

1 − E (x)/E∗ , (5)

where E (x) is the inverse function of B(E )/
∫ ∞

0 dE ′B(E ′)
and E∗ = max{E (x)}. In particular, Eq. (3) is recovered by
characterizing H (β ) with a generalized gamma distribution;
in other words, S± have a well defined thermodynamic limit.

We are to discuss ahead how the properties adjudicated to
the entropies (2) serve as a motivation for considering them in
modeling nonequilibrium effects; for instance, whenever an
equipartition configuration is assumed, these entropies differ
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from the BG entropy when the number of accessible states
(microstates) W is considerably small [25]; nonetheless, when
W is large, the three entropies are asymptotically equivalent.

As we have already mentioned, several generalized en-
tropies have been proposed in order to model a number of
complex systems, provided they do not behave in accordance
with BG statistics. Several of these general entropies, satisfy-
ing only SK1–SK3, were originally classified in terms of their
asymptotic properties in Ref. [15] whereas a wider class of
entropies, comprising S±, can be found in Ref. [25]. In the
following, we are to explain the asymptotic laws that give
rise to the universal exponents; then our purpose is to state
to which equivalence class belong the generalized entropies
defined in Eq. (2).

For systems characterized by any general entropic form
g(ρ) depending only on the (density of) probability ρ (and
even on other parameters), such that the axioms SK1–SK3
(except SK4) are all fulfilled, the first scaling function is given
by [15]

f (z) = lim
ρ→0

g(zρ)

g(ρ)
= zc, (0 < z < 1), (6)

with 0 < c � 1. The associated asymptotic law is given by

lim
W →∞

Sg(λW )

Sg(W )
= λ1−c. (7)

The second asymptotic law is found by substituting λ →
W a, hence the resulting scaling function is defined as

hc(a) = lim
ρ→0

g(ρ1+a)

ρacg(ρ)
= (1 + a)d , (a, d ∈ R). (8)

Every entropy is characterized by the pair of numbers
(c, d ); in consequence those entropies with the same (c, d )
belong to the same equivalence class. In particular for the
entropic form g(ρ) = −ρ ln ρ that corresponds to BG entropy,
Eqs. (6) and (8) lead to (c, d ) = (1, 1). Likewise, the asymp-
totic constants related to S±, with entropic forms (3), are given
in the case of S+ by

lim
ρ→0

1 − (zρ)(zρ)

1 − ρρ
= z, (9)

where l’Hôpital’s rule is used to easily calculate this limit, de-
termining the first constant c = 1 [see Eq. (6)]. Analogously,
the second exponent is given by

lim
ρ→0

1 − ρ (1+a)ρ1+a

ρa(1 − ρρ )
= (1 + a), (10)

where this implies that d = 1. Then, we have that for S+
the scaling exponents are (c, d ) = (1, 1); we have the same
result for S−. Therefore, both entropies belong to the same
equivalence class as that of the BG entropy. It is in this
sense that the entropies S± are consistently, asymptotically
equivalent to the BG entropy (or to the Shannon entropy in
the context of information theory).

The scaling exponents c and d are of such importance for
they enable a classification of generalized entropies according
to their asymptotic behavior. The exponent d is responsible for
the regime of stability adjudicated to an entropy. With respect

to the exponential c, it can assume values in (0,1], otherwise
the axioms SK2 or SK3 could be compromised [15].

Even more, the exponential c has a further implication. It
was noted by the authors in Ref. [18] that c can be interpreted
as a degree of deviation from a stochastic (Markovian) system
in a stationary state—in turn characterized by c = 1. Yet,
the question whether this exponential may also participate
in the classification of dynamical systems has an affirmative
response.

The idea has its origin in the known fact [28] that transport
phenomena can be phenomenologically classified in accor-
dance with the rescaling of a given distribution ρ(x, t ) by a
factor τ−γ , under the condition that

ρ(x, t ) = τ−γ ρ

(
x
τ γ

,
t

τ

)
(11)

remains invariant [29,30], leading to the dynamical equation
in terms of the flux J(x, t ):

τ−(γ+1)∂tρ = −τ−γ (c+2)∇ · J, (12)

which is an FPE as long as both members are equivalent
[18,22,31], hence γ = 1/(c + 1) has to be fulfilled. The result
suggests the relevance of c in the classification of dynamical
systems.

Inspired by these arguments, our purpose from now on
is to find the generalized FPEs corresponding to S± by fol-
lowing the methods stated in Ref. [18]. Since S± belong to
the equivalence class (1,1), the resulting FPEs will coincide
asymptotically with the linear FPE that governs the dynamics
of a memoryless, short-range interaction process, i.e., with
γ = 1/2. However, as will be evident soon, there is a regime
where nonlinear effects arise naturally, which suggests their
contribution may be in charge of some interesting conse-
quences.

III. GENERALIZED FOKKER-PLANCK EQUATIONS

Let us begin by stating the general form of the FPEs that
we are to consider hereafter, namely,

∂tρ = ∇ · [D(ρ)∇F [ρ] + νχ (ρ)∇�], (13)

where D(ρ) and νχ (ρ) are the diffusion and drift (or mobility)
coefficients, F [ρ] is an effective density, and �(x) is the
potential field where the Brownian particles are assumed to
move. Alternatively, Eq. (13) can also be put in its conser-
vative Fickian form by replacing the right-hand side by the
negative divergence of an effective current of probability J as

∂tρ = −∇ · J

= −∇ · (Jdiffusion + Jdrift ).
(14)

To get a handle in the following discussion we are to make use
of both representations.

In the following discussion we focus on the general case in
three plus one dimensions; however, for a number of problems
as in Sec. IV, we limit our attention to the x axis as the
only direction of movement, ρ(x, t ) = ρ(x, t ); then FPE (13)
becomes

∂tρ(x, t ) = D∂2
x F [ρ(x, t )] − Dν∂x{χ [ρ(x, t )]∂x�(x)}, (15)

012118-3



FUENTES, LÓPEZ, AND OBREGÓN PHYSICAL REVIEW E 102, 012118 (2020)

having assumed D(ρ) = D = const as well as the presence
of an attractive field �(x) → −D�(x). Also note that the
term ∂2

x ρ(x, t ) in the usual diffusion model has been replaced
by ∂2

x F [ρ(x, t )] to account for anomalous (or generalized)
diffusion [18,22].

Now, we are interested in pursuing an entropic formulation
to derive FPEs of the form (13); to this aim we need the notion
of generalized logarithm �(ρ) [32]. This function permits
us to construct effective densities F [ρ] that shall be used
to compute the spatial variations of the corresponding FPE
(13). In fact, each term in Eqs. (13) and (14) is uniquely
characterized by the entropy functional; hence there exists a
unique FPE for each entropy. For instance, from the standard
BG entropy, one obtains the usual FPE.

In what follows we are to make use of entropies (2) to
derive FPEs that are thermodynamically compatible with the
usual mean-field FPE (as for BG), although there exists a
regime where our models differ from the standard case for
the reason that they possess nonlinear terms the contribution
of which accounts for anomalous diffusion. This is due to the
fact that S± are nonextensive entropies that describe systems
slightly out of thermodynamic equilibrium. Then, it seems
reasonable to suggest that the resulting FPEs may describe
the early stages of processes that tend to balance their inner
influences in order to reach the equilibrium as a function of
time.

To proceed, the first ingredient we need is to variate a
functional of the form

ϒ = g(ρ) − αρ − βw(ρ)E , (16)

where E is the internal energy of the system, α and β

are Lagrange multipliers, and w(ρ) ∈ C1 is a monotonically
increasing function univocally related to the entropy inasmuch
as statistical completeness is guaranteed. It can be computed
directly by solving for E (y) from the effective Boltzmann
factor (4) and then substituting into the formula

w(x) = (1 + α/E∗)
∫ x

0

dy

1 − E (y)/E∗ , (17)

where α = − ∫ 1
0 dyE (y) and E∗ is the minimum value of E (y)

(see [27]). Note that the MaxEnt functional (16) consists of
the entropic form g(ρ) subject to the constraints of normaliza-
tion of probability (second term) and conservation of energy
(third term); from the theory of ensembles such a functional
represents a canonical configuration.

Differentiating (16) with respect to ρ and equating to zero,
the generalized logarithm is identified as �(ρ) ≡ E , that is,

�(ρ) = E = G′(ρ) − α

βw′(ρ)
, (18)

subject to the conditions �(1) = 0 and �′(1) = 1.
Once the generalized logarithm has been constructed, and

assuming that the stationary condition ∂tρ = 0 is fulfilled, it
is possible to compute explicitly the effective density F [ρ] via
the formula [18]

F [ρ] = −β

∫ ρ

0
dx x∂x�(x). (19)

This functional is, in general, nonlinear in ρ and pos-
sesses the needed information to account for the changes in

TABLE I. Some models that can be characterized through the
mean-field Eq. (13).

Model D(ρ ) F [ρ] νχ (ρ ) �ext

Smoluchowski D ρ νχ �

Debye and Hückel D ρ νχ �electric

Diffusion D ρ 0
Porous medium D ργ 0
Plastino D ργ νχ (ργ ) �

diffusion throughout the space. The particular case F [ρ] =
ρ corresponds to the mean-field FPE that describes regular
(nonanomalous) diffusion as long as the accompaniment co-
efficient is constant.

Even more, as we mentioned already, the diffusion and drift
terms in Eq. (14) are uniquely determined by the entropy.
For the diffusion term, the recipe to compute the effective
density F [ρ] is given by formula (19). It remains to find the
appropriate drift coefficient that modulates the intensity of
the force ∇�. To this aim we use the relation provided by
Chavanis [22]:

−g′′(ρ) = D(ρ)

νχ (ρ)
� 0, (20)

where g(ρ) is the entropic form given by (1). For example, in
the particular case of BG entropy, one gets −g′′(ρ) = −1/ρ.
Then, if one assumes a constant diffusion coefficient D(ρ) =
D, it follows that the drift coefficient is proportional to ρ and
the (mean-field) current of probability reads J = −[D∇ρ +
ν ′ρ∇�], with ν ′ a constant.

Further models can be obtained from the mean-field equa-
tion (13); we mention a few of them in Table I.

A. Our model

We are now in the position to derive the corresponding
FPEs to the nonextensive entropies S±. These differential
equations are, in general, nonlinear, although they will be-
come mean field and linear once the processes of generalized
diffusion and drift have attained the equilibrium—at this stage
the system will be described by a stationary state.

To begin with, we are to obtain the generalized logarithms
�±(ρ) that are associated with S± via the MaxEnt functional
(16). In this case the entropic form g(ρ) has to be charac-
terized by (3) and, from formula (17), the proper weighting
functions have to be characterized by

w±(ρ) = ρρ±1.

A straightforward calculation leads to the generalized loga-
rithms

�+(ρ) = 1

β

1 − ρ−ρ + ln ρ

1 + ρ + ρ ln ρ
, (21)

�−(ρ) = 1

β

1 − ρρ + ln ρ

1 − ρ − ρ ln ρ
. (22)

With the aid of the generalized logarithms �±(ρ) we can
now compute the effective densities F±[ρ] as follows. In
the case of F+[ρ], one merely substitutes (21) into (19) and
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performs the integration to obtain

F+[ρ] =
∫ ρ

0
dq

(
1 + x1−x + x1−x ln x

1 + x + x ln x

− (ln x + 2)(x − x1−x + x ln x)

(1 + x + x ln x)2

)

= ρ + ρ2

4
+ ρ3

27
+ ρ4

128
+ · · · . (23)

In an analogous way, for the other case we have

F−[ρ] =
∫ ρ

0
dx

(
1 − x1+x − x1+x ln x

1 − x − x ln x

+ (ln x + 2)(x − x1+x + x ln x)

(1 + x + x ln x)2

)

= ρ − ρ2

4
+ ρ3

27
− ρ4

128
+ · · · . (24)

Note that the nonlinear terms are monotonically subdominant
provided the density ρ is normalized and the coefficients
diminish progressively; therefore the contribution of these
terms becomes negligible, especially whenever the density ρ

comprises a large number of accessible states or, as will be
evident soon, after the system has reached the equilibrium.

It only remains to compute the effective drift terms νχ±(ρ)
to complete our FPEs. To this end we assume that D and ν are
constants. Then, by substituting (3) into (20) and integrating,
we get

χ±(ρ) = ± ρ1∓ρ

(ln ρ + 2)ρ ln ρ + ρ ± 1
, (25)

that completes the procedure to finally write the nonlinear
FPEs that govern the dynamical fluctuations of the effective
densities F±[ρ], namely,

∂tρ = −∇ · J±
= ∇ · [D∇F±[ρ] + νχ±(ρ)∇�], (26)

noting that the standard Smoluchowski equation (see Table I)
is directly recovered at first order approximation, namely,
F±[ρ] = ρ + O(ρ2) and χ±(ρ) = ρ + O(ρ2).

In this paper we limit our interest to external potentials
� as for Eqs. (26). However, interesting aspects can take
place when the potential arises self-consistently by means
of the interaction of particles themselves (see, for instance,
[33]), in which case the resulting potential is given by � =∫

d3x′F [ρ ′]φ′(|x − x′|), with φ′ the interaction potential.
The conservative representation of (26) in terms of the ef-

fective current J± must guarantee the conservation of the mass
distribution M = ∫

d3x ρ such that the normal component of
each J± vanishes at the boundary; hence by simply application
of the divergence theorem to (26) one gets

∂t

∫
V

d3x ρ = −
∮

S
dS · J±. (27)

One can note from Eq. (27) that the generalized current
vanishes for systems the mass of which does not depend on
time, hence leading to stationary solutions. Yet, in a more
general scenario, when statistical systems are thermodynam-
ically open they become subject to the exchange of energy

and matter with the environment, in which case the analysis
of the solutions can be put in terms of the free energy A in
turn having the form of a Lyapunov function for any potential
(see [22,33]). Unfortunately, regarding the FPEs expressed in
Eq. (26) we cannot give general closed solutions in the pres-
ence of a potential, but only semianalytical solutions when
the potential has been neglected—as presented in the section
below– -, but instead in Sec. IV some numerical solutions are
studied and discussed for some idealized physical models.

B. Generalized diffusion equation

As a special case of the FPE (26), in this section we study
the generalized diffusion equation arisen by neglecting the
drift term, that is,

∂tρ = ∇ · (D∇F±[ρ]); (28)

these models exhibit the interesting aspect of containing
the usual diffusion model plus a diffusion-drift term [see
Eq. (34)], capable to produce anomalous diffusion in some
regimes, as we are to discuss ahead.

Notice that the effective densities in Eqs. (23) and (24) can
also be expressed in the form

F±[ρ] =
∫ ρ

0
dx R±(x); (29)

following this notation the generalized flux becomes

J±(ρ) = −D∇
[∫ ρ

0
dx R±(x)

]
, (30)

which is proportional to the gradient of the chemical potential
μ(ρ) [34], namely, J±(ρ) = −D∇μ±(ρ). Furthermore, the
chemical potential μ(ρ) comes from the gradient of some
function f [ρ], namely, μ(ρ) = f ′(ρ) (see [34]). Hence we
can identify f ′

±[ρ] = ∫ ρ

0 dx R±(x); therefore the continuity
equation transforms into

∂tρ = ∇[DR±(ρ)∇ρ]; (31)

from this expression we can recognize the generalized diffu-
sion coefficient of our model:

D±(ρ) = DR±(ρ); (32)

the standard diffusion coefficient is recovered at first order
approximation from the effective density in either Eq. (23) or
Eq. (24).

Please note that the generalized, nonlinear diffusion equa-
tion (31) corresponds to the generalized FPE derived from the
entropies S±. It can be expressed in terms of f±[ρ] as

∂tρ = D∇[∂ρρ f±[ρ]∇ρ]. (33)

At this point the reader can be aware that the linear dif-
fusion equation is recovered by considering the first term in
the expansions (23) and (24), yet an interesting aspect arises
from simply observing that for S± we have f±[ρ] = ρ2/2 ±
ρ3/12 + · · · ; therefore the generalized diffusion equation be-
comes

∂tρ = D(�ρ + ϕ(ρ)∇ρ), (34)

where � is the Laplacian operator and ϕ(ρ) contains all the
ρ-dependent terms in f ′′(ρ). Additionally, we notice that (I)
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the generalized diffusion equation (34) induces in a natural
way a density-dependent drift term weighted by ϕ(ρ) and (II)
the form of the drift term can be connected to congregation
diffusion models which take into account interactions that
tend to form aggregates or to separate the particles [19], as
we are to discuss in Sec. IV B.

IV. NUMERICAL SOLUTIONS

In this section, we are to present numerical experiments
based on the nonlinear FPEs (26) being characterized by some
specific external potentials � = �ext. To serve as comparison
with other models we also look for effective potentials �eff

that approximate the behavior prescribed by Eqs. (26). We
shall distinguish between the solutions of each FPE in Eq.
(26) using the notation ρ+ and ρ−; when there is no risk
of confusion we simply write ρ. Additionally we explore
generalized diffusivity models and contrast them with the
chemotaxis-aggregation approach studied in Ref. [19]. Finally
we consider a transient diffusivity modification into our mod-
els that results in agreement with experiment and with the
respective phenomenological model whenever long relaxation
times are appointed in our nonequilibrium approach. In all of
our numerical simulations we have fixed D = ν = 1.

A. Beyond the mean field

In general, Eqs. (26) are non-mean-field models for a set
of random variables the values of which are such that the
asymptotic limit, ρ → 0, is far below their regime. Otherwise
one is allowed to use the mean-field approximation, F±[ρ] ≈
FBG[ρ] = ρ, related to the BG entropy. This fact becomes
evident from the expansion of the generalized currents J± in
Eq. (26), yielding

J± = −[D∇ρ + νρ∇�] ∓ [
1
4 D∇ρ2 − νρ2∇�

]
− [

1
27 D∇ρ3 + νρ3∇�

] + · · · ; (35)

the first term is directly related to the standard case JBG,
whereas higher-order terms can be interpreted as a result of
advection and generalized forces. Other terms arising from
nonlinear combinations of variables have been kept aside from
the expansion since they belong to higher-order statistics, used
in the estimation of skewness and kurtosis, for instance.

We now would like to compare the behavior between the
corresponding models to SBG and S±. To this end we have
computed numerical solutions in one plus one dimensions us-
ing a linear potential � = x, for the non-mean-field Eqs. (26)
as well as for the particular mean-field case.

The results are shown in the above panel of Fig. 1, where
a stronger influence of the drift terms for both ρ+ and ρ−
than the one related to ρBG is observed. Hence, it becomes
natural to find higher velocities of propagation for ρ± than for
ρBG, a situation depicted in the respective phase portrait, in
the bottom panel. This fact can be interpreted as the influence
of the additional repulsive forces considered in the non-mean-
field models, thus obliging the system to move faster towards
the diffusion as compared with the customary equation of
motion.

FIG. 1. (a) Normalized density profiles belonging to the non-
mean-field Eqs. (26) as well as the particular mean-field case FBG =
ρ. Solutions were computed using a linear potential � = x. (b) Phase
portrait corresponding to the solutions depicted in panel (a). The
presence of the drift term induces a higher propagating velocity for
ρ± than for ρBG.

However, if the corresponding BG model were individually
characterized by an effective potential �eff = 1.45x—which
means subject to a stronger repulsive field force while keeping
the potential � = x for the S± models—then the dynamical
behavior of ρBG would approximately coincide with the be-
havior of ρ± but under the influence of �; in that case their
centers of mass would nearly agree. This situation is shown
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FIG. 2. (a) Density profiles. As for the BG model, it moves
under the influence of an effective field �eff = 1.45x, while the
S± associated models move in the field � = x. (b) Phase portrait
corresponding to the solutions depicted in panel (a). The three
densities feel approximately the same repulsive force; note that
their diffusion velocities (below zero) are in agreement with their
respective behavior, higher for ρ+ and lower for ρ−.

in Fig. 2, where one can observe the spatial evolution of the
density profiles.

B. Anomalous diffusion

In this section, we are to compare our diffusion models
(28)—alternatively represented as (33) or (34)—with the non-
linear, diffusion aggregation prototype proposed in Ref. [19]
for the study of random walks of length λ, average time τ , and

FIG. 3. In the plot we show the effective densities (23) and (24)
truncated to second order, as well as the density of aggregation as for
Eq. (36). The latter case is characterized by κ = −2 and ω = 7/5.
Note that when the aggregation model exhibits a critical density ω =
9/2 and κ = 1/4 the generalized diffusion model associated with S+
is recovered.

a maximum degree of attraction bias k0, which reads

∂tρ =�
[

Dρ − κρ2 + 2κ

3ω
ρ3

]

=� Fagg, (36)

where κ = k0λ
2/τ and ω stands for the critical density that

turns the movement from attractive into repulsive.
To outperform this comparison we are to consider only the

first three terms in the expansion of the effective densities
F±, (23) and (24) (that is, F±[ρ] ≈ ρ ± ρ2/4 + ρ3/27), for
the reason that the nonlinear terms in Eq. (36) obey the
same power law as those for the truncated F±. Our diffusion
models exhibit nonlinear diffusion for regions of space where
the system experiences a sort of faint interactions before
reaching the equilibrium, in other words, those regions where
the confined constituents are arranged such that the resulting
interaction forces are not entirely negligible.

The behaviors of the effective densities F for the models
(33) and (36) are shown in Fig. 3. Please note that, regarding
the aggregation model, two stages are exhibited if one chooses
the particular values κ = 2 and ω = 5/4. In that case, for
some regions of ρ the dynamical description will be linked
to subdiffusion phenomena, while for other regions of ρ the
transport picture will behave anomalously, corresponding to a
congregative mode of movement [19]. The latter is a typical
case of strong congregation given that Fagg has a minimum
and a maximum, hence differing from weak congregation for
which there is only one extremal point. Each of these extrema,
F ′

agg = 0, are equilibrium points.
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FIG. 4. Numerical solutions of Eqs. (33) and (36). Density pro-
files at t = 4 in dimensionless time units. As for the aggregation
model (36) we have selected κ = −2 and ω = 7/5.

From Fig. 3 one can also observe that F± is devoid of
global extremal points, which suggests that Eqs. (28) cannot
describe strongly congregation movements for the reason that
F ′

± > 0 for any region of ρ. Yet, whether congregations can
arise or not depends entirely on the aggregative force κω. As
an example, the effective densities F± are related to the forces
κω = ±9/8, hence showing a repulsive and an attractive
behavior, respectively, as shown in Fig. 3.

We now would like to compare the evolution of the density
profiles for each case by numerically solving the differential
models (28) and (36). To compute the solutions, we have
considered normalized, stretched Gaussians (in terms of the
exponential functions exp± defined in the Appendix), as
initial conditions, and stretched cosines as boundary con-
ditions. These stretched cosines are defined as cos±(x) =
1
2 [exp±(ix) + exp±(−ix)]. The numerical solutions are com-
puted using the method of lines with a spatial domain x ∈
[0, 10] and a temporal domain t ∈ [0.01, 10]. The resulting
density profiles are shown in Fig. 4.

In the realm of ecology and biology, aggregation and
chemotaxis models receive a wide application [20]. In such
contexts the nonlinear terms in the effective density func-
tions, Fagg or F±, are regarded as effective fluctuating forces
resulting from the interaction between the individual and its
surrounding. The reason is that the movement of a given
animal species through a certain distance could be facilitated
(or impeded) by the current conditions of the environment
(predators, food, climate). Nonetheless, when the effect of
the interactions is incorporated in the dynamical description,
the behavior of the species or individuals could be seen as
externally influenced.

For instance, the parameter κ in Eq. (36) indicates the ten-
dency to move away from conspecifics, if κ > 0, or to move

towards conspecifics, if κ < 0. By direct comparison, the
effective density F+ characterizes an attractive movement be-
tween conspecifics for a fixed critical density ω < 0, whereas
F− describes a repulsive movement for ω > 0. Furthermore,
notice that, as for F+, the nonlinear terms ρ2/4 + ρ3/27 are
always positive, thus concentring high densities. On the other
hand, for the case F−, the nonlinear terms −ρ2/4 + ρ3/27
are always negative, meaning they represent low densities.
In practice, however, organisms usually aggregate at low
densities and avoid them at high densities [19], meaning there
is a density-dependent response that can be modeled with the
diffusion-aggregation Eq. (36).

In particular, respecting Fagg as shown in Fig. 4, the nonlin-
ear terms are −2ρ2 + 40ρ3/21 < 0 in the interval ρ ∈ [0, 1],
although unlike F− these do not exhibit a monotonically
decreasing behavior, meaning that there is a slight tendency
to aggregate even at low densities. Our numerical tests show
that regarding the pair of parameters κ = −2 and ω = 7/5
characterizing Eq. (36) the probability of finding an individual
at point x < 3 at time t = 4 is less than that estimated by
the other two models, ρ+ and ρ− (while ρagg is appreciably
greater than ρ± for 3 < x < 8). This is a direct consequence
of the nonmonotonicity portrayed by the nonlinear terms in
Fagg, which predict that there could be a certain distance at
which the individuals congregate or aggregate regardless of
the seminal type of movement.

C. Transient diffusion

Alternatively, one can even explore transient diffusivity
models characterized as in Eq. (33); to this aim let us make
the substitution Dη(ρ) → D0 + D+(t ) into the model charac-
terizing the density F+ in Eq. (23).

In what follows, we want to analyze the transport of excited
carriers considering an electron mobility μ with fundamental
charge e. Hence the Einstein relation [35] becomes D0 =
μkBT0/e, where kB is the Boltzmann constant and T0 is the
environment temperature (for numerical purposes 300 K). On
the other hand, when the excess energy of the excited carriers
is taken into account, there arises the transient diffusivity term,
D+(t ) = μkBT ∗(0) exp+(−t/τ )/e, where T ∗(0) is the initial
carrier temperature (T ∗(0) � T0) and τ is the relaxation time
(see [36]).

In recent years, scanning ultrafast electron microscopy
has been successfully implemented to observe a transient
superdiffusivity behavior in the dynamics of electrons and
holes in Si after excitation with a short pulse laser [37]. The
phenomenological model introduced by the authors reads

∂tρc = [D0 + D∗(t )]∇2ρc, (37)

where ρc denotes the distribution associated with the carriers
and D∗ = μkBT ∗(0) exp(−t/τ )/e. Furthermore, as for defini-
tions of the stretched exponentials exp± (see the Appendix)
one is aware that exp+(−t/τ ) decays slower than exp(−t/τ ),
although both vanish after a brief relaxation time τ .

We solved numerically Eqs. (33) and (37) using different
initial conditions. in Ref. [37] Eq. (37) is configured with a
relaxation time τ = 77 ps and an initial carrier temperature
T ∗(0) = 4 × 105 K when regarding electrons, and τ = 161 ps
and T ∗(0) = 2.7 × 105 K for holes. Here we set these same
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FIG. 5. (a) Normalized distributions characterizing the transport
of excited carriers. (b) Square mean deviation for transient diffu-
sivity observed from noninteracting carriers ρc and for interacting
carriers ρ+.

values as for Eq. (37) but we are to choose different values for
Eq. (33).

In case of holes, we have considered an initial temperature
T ∗(0) = 2.16 × 105 K and a relaxation time τ = 40 ns, i.e.,
more than 300 times the relaxation time originally adjusted
for model (37). The results are shown in the top panel of
Fig. 5. Notice that the behavior of both distributions as well
as the square mean deviation, bottom panel, is roughly the
same for both cases, exhibiting a transient superdiffusivity
that increases monotonically in both models at early times
(less than 250 ps); eventually, as time elapses, a steady-state
diffusivity is attained.

Yet, the manifested behavior of Eq. (33) is a consequence
of its high relaxation time if compared with the values given
for models in Ref. [37]. The reason is that this parameter is
associated with the time that the sample needs to reach the
equilibrium with the medium after the excitation with the
laser pulse. Recall that Eq. (33) comes from a nonequilibrium
background, involving nonlinear forces and other interactions
that have been neglected in Eq. (37); thus our model inherently
needs a larger amount of time to reach the equilibrium.
However, for higher laser intensities feeding the sample,
the electron-electron interactions would not be inappreciable
anymore and a description provided by Eq. (37) alone might
fall into controversial results. Indeed, our model has, among
its attributes, the flexibility to describe a nonequilibrium stage
for early times, converging on the region of steady states for
larger periods of relaxation time.

V. CONCLUSIONS

We have pursued the entropic derivation of FPEs proposed
in Refs. [18,22] to obtain the two generalized FPEs (26)
associated with the nonextensive entropies S±. The resulting
models include nonlinear terms which can be also interpreted
as corrections to the usual mean-field FPE, either directly
derivable from the BG entropy or recovered by truncating
Eqs. (26) to first order—see, for instance, the expansion in
Eq. (35).

Unlike other nonextensive entropies, the pair of entropies
S± is nonparametric, but only depends on the probability; thus
its associated Fokker-Planck equations do provide distribu-
tions exempt of parameters as well.

Furthermore, as we have shown, these sets of entropies
belong to the classes (c, d ) = (1, 1) and γ = 1/2, indicating
that they are thermodynamically compatible with BG entropy.
This is an interesting result, and let us reason that Eqs. (26)
provide the suitable corrections to the BG model when regard-
ing a system of few accessible microstates [25]. This argument
can be supported by simply noting that the first two nonlinear
terms in the series representation of the effective densities
F±[ρ] indeed correspond to the corrections introduced in the
aggregation prototype of movement Fagg[ρ] (see [19]).

As noted from (26), the potential term is weighted by
a function νχ± depending only on the distribution density
ρ. This function is univocally determined from the entropic
form, an aspect that deserves consideration since every modi-
fied Fokker-Planck equation derived by means of the entropic
formulation must take into account the very specific weight
to the drift potential in order to be in agreement with the
respective stochastic equation.

To compare the dynamical Eqs. (26) with other models,
we have also computed numerical solutions portraying dif-
ferent circumstances. In the first place we have found that
the weighted potential term in Eq. (26) is equivalent to an
effective potential. In particular, we note that the drift term
as seen from νχ ± (ρ)∇� has a subtle but stronger influence
on the distribution ρ than the standard term ρ∇�. This be-
havior enables us to conclude that for systems characterizing
a small number of microstates the degree of heterogeneity
is such that the interaction among its constituents produces
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non-negligible effective forces, which tend to vanish as the
sample is increased substantially to enlarge the homogeneity.

The generalized diffusion model (28) displays nonlinear
anomalous diffusion. As mentioned above, we have found
that these models are directly comparable with the segregation
models studied in Refs. [19,20] although derived by other
means. We stress that, with respect to Eqs. (28), the nonlinear
terms associated with interactions between individuals in the
biological context arise naturally as a consequence of the
generalized entropies S± (see Fig. 4).

Finally, we have also reproduced numerically the general
properties of the distributions that suit the transient diffusion
model in Eq. (37) originally proposed in Ref. [37]. In our
framework, this model is rewritten in terms of our general-
ized FPE (33). We have observed interesting deviations in
the superdiffusivity regime, mainly in the relaxation time.
According to our model, differences in the relaxation time
will be due to nonequilibrium effects as well as the intrinsic
nonlinearities. It is also observed that the steady state is recov-
ered after the superdiffusivity regime, which is in agreement
with the recovering of the BG distribution in the long-time
scale [25]. A more complete analysis regarding this interesting
model will be reported in a future work.
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j a−

j
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APPENDIX: COEFFICIENTS FOR GENERALIZED
EXPONENTIALS

The generalized exponentials exp±, are indeed stretched
exponentials with no closed form known at present. Instead, a
numerical approximation has to be pursued. In this paper we
have considered the approximation

exp±(−x) ≡ exp(−x)
∞∑
j=0

a±
j x j, a±

j ∈ R, (A1)

the first nine coefficients a±
j of which are given in Table II.
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