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Free-energy functional of instantaneous correlation field in liquids:
Field-theoretic derivation of the closures
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This paper presents a unified method for formulating a field-theoretic perturbation theory that encompasses
the conventional liquid state theory. First, the free-energy functional of an instantaneous correlation field is
obtained from the functional-integral representation of the grand potential. Next, we demonstrate that the
instantaneous free-energy functional yields a closure relation between the correlation functions in the mean-field
approximation. Notably, the obtained closure relation covers a variety of approximate closures introduced in the
liquid state theory.
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I. INTRODUCTION

Many powerful approaches to simple liquids have been
developed, such as the Ornstein-Zernike integral equation
theory [1–4] and the density functional [1,5,6] and correlation
functional [7–14] theories that are based on the first and sec-
ond Legendre transforms of the grand potential, respectively.
The primary goal of formulating these kinds of liquid state
theory is to predict the structural and thermodynamic prop-
erties of simple liquids, considering the constituent particle
arrangement or the particle-particle correlations at the atomic
(or molecular) scale.

Our concern here is the closure between correlation func-
tions [1–4],

1 + heq(r) = e−v(r)+heq (r)−ceq (r)+b(r), (1)

where heq(r) and ceq(r) denote the total correlation and direct
correlation functions in equilibrium, respectively; v(r) is the
original interaction potential in the kBT unit, and b(r) is
referred to as the bridge function [1–4]. The Ornstein-Zernike
integral equation must be combined with the relation (1) using
an approximate form of b(r) to obtain the equilibrium density-
density correlation functions.

The approximations of b(r) in the closure relation (1) have
frequently resulted in thermodynamic inconsistencies, thereby
limiting the physical insights and affecting the accuracy of
the Ornstein-Zernike integral equation theory [1–4]. In ad-
dition, we have obtained some closures using uncontrolled
approximations for mathematical convenience. Accordingly,
improved closure relations have been proposed using self-
consistent integral equation theories [2–4]. A number of
closure relations are now available for solving the Ornstein-
Zernike equation, and the obtained results have been com-
pared in detail in terms of both accuracy and thermodynamic
consistency [3,4].
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Meanwhile, the correlation functional theory [7–14] inves-
tigates free energy as a functional of heq(r), which yields
the present closure (1). The correlation functional theory has
thus been considered to be a promising approach to provide
an integrated view on various approximations of b(r) be-
cause it clarifies the relation between approximate closures
[1–4] and perturbative formulations based on the fugacity
expansion using Mayer diagrams [7–12]. Furthermore, a cor-
relation functional theory that considers fluctuations and/or
heterogeneities of correlation field is important, especially for
glass-forming systems where out-of-equilibrium correlation
functionals are to be investigated [15–23].

It is, therefore, necessary to develop a field-theoretic per-
turbation theory that is able to simultaneously and seamlessly
treat the meso-scale fluctuations and inhomogeneities of cor-
relation field and the short-range correlations between parti-
cles. Recently, we adopted the Helmholtz free energy in the
canonical system to obtain the functional-integral form of the
correlation functional, thereby demonstrating that the mean
spherical approximation (MSA) [1–4] can be reproduced in
the mean-field approximation of the correlation field when
using the free-energy functional in the random phase approx-
imation (RPA) [14]. However, it remains to be addressed to
go beyond the MSA. To this end, we first have to establish
the relationship between the liquid state theory [1–14] and a
field-theoretic perturbation theory.

Here we develop a field-theoretic perturbation method in
the grand canonical system that encompasses the fugacity
expansion used in the liquid state theory or the conventional
correlation functional theory [7–14]. In other words, our aim
is twofold: (1) to formulate the free-energy functional of an
instantaneous correlation field and (2) to demonstrate that
a closure relation obtained in the mean-field approximation
of the obtained correlation functional covers a variety of
previous closures [1–4].

The remainder of this paper is organized as follows. In
Sec. II we define the target free-energy functional as well as an
instantaneous correlation field. Section III provides the results
on both the functional form and the obtained closure, which
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will be compared with the previous ones [1–4]. In Sec. IV we
show how the present fugacity expansion is incorporated into
the functional-integral representation of the grand potential as
an extension of the RPA. In Sec. V we outline the derivation
scheme of functional integration over correlation field and its
dual two-body interaction potential field. Section VI provides
concluding remarks.

II. TARGET FUNCTIONAL OF INSTANTANEOUS
CORRELATION FIELD

We consider N particles in liquid state whose positions are
specified by a set of position vectors, {r1, . . . , rN }, thereby
providing the functions, ĥ(r) and ρ̂(r′), defined as follows:

ρ2[1 + ĥ(r)] = ρ̂(r + r′)ρ̂(r′) − ρ̂(r′)δ(r) (2)

and

ρ̂(r′) =
N∑

k=1

δ(r′ − rk ), (3)

where the uniform density ρ is given by ρ = N/V with V
being the system volume. In Eq. (2), ĥ(r) is solely dependent
on the particle-particle separation vector r supposing that
translational symmetry of the present system is maintained at
an instant.

Let �[v, J ≡ 0] denote the grand potential of liquid par-
ticles interacting via a two-body interaction potential v(r) in
the absence of external field J (r). It is noted that not only
v(r) but also the other energies used herein are defined in
the kBT unit. We relate the above function ĥ to an η field via
the constraint δ[η2(r) − 1 − ĥ(r)], so that we may obtain the
functional-integral representation,

e−�[v,0] =
∫

Dη e−F [η], (4)

with the use of the identity that is associated with the follow-
ing constraint (see Sec. IV A and Appendix A for the details
of introducing the functional integral):

1 =
∫

Dη |det η|
∏

r

δ

{
ρ2

2
[η2(r) − 1 − ĥ(r)]

}
, (5)

where the determinant contribution arising from the constant
ρ2 has been absorbed into the integral measure Dη. In Eq. (4),
F [η] denotes the conditional free-energy functional of a given
η field, which is the target free-energy functional.

In what follows, we also rewrite η2 as

η2(r) = 1 + h(r) � 0, (6)

where h(r) will be referred to as an instantaneous correlation
field. Equation (6) reveals that the η field is introduced to
correctly reflect the following positivity by definition of (2)
for ĥ:

1 + ĥ(r) � 0. (7)

This paper focuses on whether to formulate the conditional
free-energy functional of an instantaneous correlation field
h(r) = η2(r) − 1, i.e., F [η = √

1 + h], such that it yields the
closure relation (1) to cover a variety of approximate closures
used in the liquid state theory [1–4].

III. THE RESULTING FUNCTIONAL FORM

Before proceeding to the derivation scheme, the resulting
form of the target functional F [η] is not only presented but is
also assessed in comparison with the liquid state theory.

A. Conditional free-energy functional

The present formulations are based on the premise that
the instantaneous correlation field h(r) preserves translational
invariance as mentioned above, thereby allowing the resulting
form of the target functional F [η] to be expressed as the
free-energy functional per unit volume:

F [η]

V
= u[η] − s[η]

kB
, (8)

where u and s represent the interaction energy and entropy
density per unit volume, respectively.

The interaction energy density u[η] consists of two con-
tributions due to correlations represented by 1 + h(r) and the
chemical potential μ:

u[η] = ρ2

2

∫
dr [1 + h(r)]v(r) − ρβμ, (9)

where μ is multiplied by β = 1/kBT considering that energy
quantities, other than μ, are defined in the kBT unit. Mean-
while, we divide the entropy density s into three parts:

s = s + sRPA + �s, (10)

with s, sRPA, and �s denoting the ideal gas entropy of the
uniform system, the correlation entropy obtained in the RPA,
and the additional contribution to the correlation entropy,
respectively.

As shown below, we have obtained these entropy function-
als of the following forms:

− s[η]

kB
= ρ ln ρ − ρ, (11)

− sRPA[η]

kB
= −1

2

∫
dk

(2π )3
{ln[1 + ρh(k)] − ρh(k)}, (12)

−�s[η]

kB
= ρ2

2

∫
dr [1 + h(r)]{ln{1 + h(r)] − h(r)}

+ ρ2

2

∫
dr

[
eh(r) − 1 − h(r)

]
. (13)

Whereas the MSA can be obtained merely by discarding
the additional contribution �s, the hypernetted-chain (HNC)
approximation is to take the expansion of the last term on
the right-hand side (rhs) of Eq. (13) up to the quadratic term
[7–14]:

ρ2

2

∫
dr

[
eh(r) − 1 − h(r)

] ≈ ρ2

2

∫
dr

h2(r)

2
. (14)

In the next subsection, we also confirm in terms of the bridge
function that the above functionals given by Eqs. (8) to (13)
include the MSA as well as the HNC approximation.
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B. Closure relations in the mean-field approximation

The stationary equation of F [η] with respect to η is written
as

δF [η]

δη

∣∣∣∣
η=ηm

= 2ηm(r)ν(r) = 0,

ν(r) =
(

2

V ρ2

)
δF [η]

δh

∣∣∣∣
h=hm

, (15)

with the relation 1 + hm = η2
m following Eq. (6). Equation

(15) corresponds to the mean-field equation in evaluating the
grand potential �[v, 0]. Separating the RPA contribution νRPA

from the remaining part �ν, ν is written as

ν = νRPA + �ν, (16)

where we have

νRPA(r) =
(

2

ρ2

)
δ

δh

(
u − sRPA

kB

)∣∣∣∣
h=hm

= v(r) + cm(r),

(17)

�ν(r) =
(

2

ρ2

)
δ

δh

(
�s

kB

)∣∣∣∣
h=hm

= ln[1 + hm(r)] − 2hm(r) + ehm (r) − 1. (18)

In Eq. (17), cm(r) can be called the direct correlation function
in relation to hm(r), in that cm(r) is related to hm(r) via the
Ornstein-Zernike equation when cm(r) and hm(r) are regarded
as the direct correlation function and total correlation function
in equilibrium [i.e., ceq(r) and heq(r)], respectively. On the
one hand, Eqs. (15) to (18) read√

1 + hm(r)[v(r) + cm(r)] = 0, (19)

when ignoring �ν. The relation (19) includes the MSA
that 1 + hm(r) = 0 (|r| � σ ) and v(r) + cm(r) = 0 (|r| � σ )
with σ denoting the separation distance for exclusion such as
the sphere diameter. On the other hand, νRPA(r) + �ν(r) = 0
is transformed to the typical form of the conventional closure
relation (1) where the subscript “eq” is replaced by “m” and
the bridge function b(r) reads

b(r) = 1 + hm(r) − ehm (r), (20)

as found from Eqs. (1), (17), and (18).
While Eq. (20) is reduced to the HNC approximation in the

first approximation of ehm ≈ 1 + hm, the next approximation
of ehm ≈ 1 + hm + 0.5h2

m transforms Eq. (20) to

b(r) ≈ −0.5h2
m(r). (21)

The relation (1) with the expression (21) of b(r) covers
various kinds of closures including the soft MSA [3,4] and
the approximations by Percus-Yevick, Verlet, and Martynov-
Sarkisov [1–4].

IV. FUNCTIONAL-INTEGRAL REPRESENTATION
OF THE GRAND POTENTIAL

The starting formula presented in this section is the
functional-integral representation of the grand potential
�[v, 0] using four fields: one-body and two-body potential

fields (ψ and λ) as well as instantaneous density and correla-
tion fields (ρ and η2). As a result of this transformation from
the configurational-integral form to the functional-integral
one, we have the grand potential of a virtual system that
consists of particles interacting via an imaginary two-body
interaction potential with an imaginary one-body external
field applied. Hence, we also provide a field-theoretic formu-
lation that combines the fugacity expansion and the quadratic
approximation of density and one-body potential fields, in
order to create a framework for evaluating the grand potential
of the virtual system.

A. Introduction of functional integrals

Multiplying the identity (5) on the η field by another
identity, 1 = ∫

Dρ
∏

r δ[ρ(r) − ρ̂(r)], on the density field,
we have

1 =
∫

Dρ
∏

r

δ[ρ(r) − ρ̂(r)]

×
∫

Dη |det η|
∏

r

δ

{
ρ2

2
[η2(r) − 1 − ĥ(r)]

}
, (22)

which is incorporated into the configurational-integral repre-
sentation (see Appendix A) of the grand potential �[v, 0]. The
Fourier transform representation (22) generates two additional
fields, ψ and λ, which are conjugate to ρ and η2, respectively.
Furthermore, the functional integration over the λ field is
distorted by setting that

λ = iλref + w, (23)

so that we can investigate fluctuations around a reference
system consisting of liquid particles that interact via a real
part of reference interaction potential λref (r). As detailed in
Appendix A, the starting form of the functional integral with
the integral measure Dλ replaced by Dw reads

e−�[v,0] =
∫

Dη e−F [η]

=
∫∫∫∫

Dη Dw Dψ Dρ |det η| e−F [η,w,ψ,ρ], (24)

using F [η,w, ρ, ψ] as a functional of four fields. We separate
the η-dependent contribution F1[η,w] from F [η,w, ρ, ψ]:

F [η,w, ψ, ρ] = F1[η,w] + F2[w, ψ, ρ], (25)

where

F1[η,w] = ρ2

2

∫∫
dr dr′η2(r)[v(r) − λref (r) + iw(r)],

(26)

F2[w, ψ, ρ]

= 1

2

∫∫
dr dr′λref (r)[ρ(r + r′)ρ(r′) − ρ(r′)δ(r)]

+
∫

driψ (r)ρ(r) + �[−iw,−iψ]. (27)

The last term �[−iw,−iψ] on the rhs of Eq. (27) corresponds
to the grand potential of the above virtual system where
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particles interact via an imaginary two-body interaction poten-
tial −iw(r) under the application of an imaginary one-body
potential −iψ (r).

B. Fugacity expansion with quadratic approximation of density
and one-body potential fields

The fugacity expansion of the grand potential
�[−iw,−iψ] leads to

�[−iw,−iψ]

≈ −
∫

dr eβμ+iψ (r) + e2βμ

2

∫∫
dr1 dr2 f [ψ], (28)

where the Mayer-type function,

f [ψ] = e
∫

dr iψ (r)ρ̂2(r)
[
1 − eiw(r1−r2 )

]
, (29)

has been introduced with the use of two-particle density,
ρ̂2(x) = ∑2

k=1 δ(r − rk ) (see Appendix B for the details).
Next we express the uniform density ρ as

ρ = eβμ−ψ, (30)

using a spatially invariant one-body potential ψ , so that fluc-
tuating fields of not only density but also one-body potential
can be extracted as

n(r) = ρ(r) − ρ,

φ(r) = ψ (r) − iψ. (31)

It is one of the essential approximations in this study to
express Eq. (28) as

�[−iw,−iψ] − �[−iw, ψ]

≈
∫

dr
[
−iρφ(r) + ρ

2
φ2(r)

]
+ ρ2

2

∫∫
dr1dr2 f [φ],

(32)

where use has been made of the following relation:

e2βμ+∫
driψ (r)ρ̂2(r) = ρ2e

∫
driφ(r)ρ̂2(r); (33)

the quadratic expansion around ψ is performed only for the
first term on the rhs of Eq. (28) while leaving the Mayer-type
function f (φ) unexpanded.

We consider the conditional free-energy difference
�F2[w, φ, n] between F2[w, ψ, ρ] and the spatially invariant
contribution F [ρ]:

�F2[w, φ, n] = F2[w, ψ, ρ] − F [ρ], (34)

where F [ρ] is given by

F [ρ]

V
= ρ2

2

∫
drλref (r) − ρ

2
λref (0) − ψρ − ρ

= ρ2

2

∫
drλref (r) − ρ

2
λref (0) − ρβμ + ρ ln ρ − ρ,

(35)

which represents the mean-field free energy of a uniform
system of particles interacting via a reference interaction
potential λref (r). It follows from Eqs. (27), (32), and (35) that

Eq. (34) reads

�F2[w, φ, n] = 1

2

∫∫
dr dr′λref (r)n(r + r′)n(r′)

+
∫

dr
[

iφ(r)n(r) + ρ

2
φ2(r)

]

+ ρ2

2

∫∫
dr1 dr2 f [φ], (36)

without expanding the Mayer-type function f (φ).
We are now ready to evaluate the functional integration

over the three kinds of fluctuating fields: density n(r) and one-
body potential φ(r) as well as two-body interaction potential
w(r). It is found from combining Eqs. (24) to (36) that the
functional-integral representation (24) reads

e−F [η] = e−F
∫∫∫

Dw Dφ Dn |det η| e−F1[η,w]−�F2[w,φ,n],

(37)

which will be evaluated in the next section.

V. FUNCTIONAL INTEGRATION: DERIVATION SCHEME
OF EQS. (8) TO (13)

There are two steps in performing the functional integrals
given by Eq. (37). First, we evaluate the Mayer-type function
f [φ] perturbatively via the functional integrations over fluc-
tuating density and one-body potential fields, i.e., the n and φ

fields. Next, we make use of the saddle-point approximation
of the functional integral over a residual two-body interaction
potential w(r). It follows that the determinant term |det η| in
Eq. (37) will be canceled as seen below.

A. A perturbative treatment of the Mayer-type function

Going back to Eq. (36), it is found that the usual
field-theoretic perturbation method can apply to the Mayer-
type function when performing the functional integrals of
e−�F2[w,φ,n] over n and φ fields in Eq. (37). Accordingly, we
have

e−�F2[w] =
∫∫

Dφ Dn e−�F2[w,φ,n],

�F2[w]

V
= 1

2

∫
dk

(2π )3
ln [1 + ρλref (k)] + ρ2

2

∫
dr〈 f [φ]〉φ,

(38)

where the perturbative treatment of the Mayer-type function
f [φ] yields

〈 f [φ]〉φ =
∫

Dφ f [φ] e− 1
2

∫∫
dr dr′φ(r+r′ )γ −1(r)φ(r′ )∫

Dφ e− 1
2

∫∫
dr dr′φ(r+r′ )γ −1(r)φ(r′ )

= e−γ (r1−r2 ){1 − eiw(r1−r2 )}, (39)

with a reference function defined by

γ −1(r) = λ−1
ref (r) + ρδ(r), (40)

using a shifted potential λref (r) that represents two-body inter-
actions in a reference system [see also Eq. (35)]. Equation (37)
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thus reads

e−F [η] =
∫

Dw |det η| e−F [η,w],

F [η,w] = F + F1[η,w] + �F2[w], (41)

where F , F1[η,w], and �F2[w] have been given by Eqs. (35),
(26), and (38), respectively.

B. Saddle-point approximation of two-body interaction
potential field

The saddle-point approximation further divides the resid-
ual interaction potential field w into two parts:

w = iwm + u, (42)

where u denotes a fluctuating potential around the mean-field
potential iwm that satisfies the following stationary equation:

δF [η,w]

δw

∣∣∣∣
w=iwm

= 0. (43)

We calculate the functional derivative with respect to w in
Eq. (43) using expressions (26) and (39). Equation (43) then
reads

η2 = 1 + h = e−γ−wm . (44)

It follows that the second derivative is simply written as

δ2F [η,w]

δw2

∣∣∣∣
w=iwm

= ρ2

2
η2, (45)

thereby transforming Eq. (41) to

e−F [η] =
∫

Du |det η| e−F [η,iwm]− ρ2

4

∫∫
dr dr′η2(r)u2(r)

= e−F [η,iwm], (46)

F [η] = F [η, iwm] = F + F1[η, iwm] + �F2[iwm]. (47)

In Eq. (46), the u integral on the rhs of the first line cancels
the determinant term |det η| in Eq. (46).

So far, we have not specified the reference potential λref . In
this study, we set that

−λref (r) = c(r). (48)

The benefit of adopting this form (48) is that −γ defined
by Eq. (40) can be identified with the instantaneous total
correlation function:

−γ (r) = η2(r) − 1 = h(r). (49)

Combining Eqs. (47) to (49) as well as Eq. (44), we finally
obtain the results given by Eqs. (8) to (13) (see Appendix C
for the detailed derivation).

VI. CONCLUDING REMARKS

It is noted that the relation (19) of the MSA may not be
derived merely from the RPA because the determinant term
|det η| remains in the RPA. As seen below, the MSA needs to
retain the derivation process of Eqs. (46) and (47) so that the
present determinant term may be canceled. It follows from
Eqs. (44) and (49) that the mean-field interaction potential

wm(r) is expressed as

wm(r) = h(r) − ln[1 + h(r)]. (50)

The MSA can be validated in the approximation that

wm(r) ≈ 0 (51)

or its equivalent,

eh(r) − 1 − h(r) ≈ 0, (52)

while the derivation processes of Eqs. (46) and (47) remain
unchanged. Thus, it is indispensable as the first approximation
to perform the saddle-point approximation of the functional
integral over the w field.

Both the present formulation of the grand potential and
another correlation field theory [14] for the canonical systems
provide the same approximate relation (19) of the MSA.
Nevertheless, there is a gap between the two theories. The dis-
tinction is associated with how we cancel the determinant term
|detη| that necessarily appears as long as the instantaneous
correlation field h is related to the η–field as η2 = 1 + h.
It is noted that the mean-field approximation is unable to
yield Eqs. (1) and (20) without introducing the η field, and
it is indispensable to introduce the η field in both the grand
canonical and canonical theories.

The main differences between the present grand canonical
and previous canonical formulations are as follows:

The Ornstein-Zernike equation: The grand potential �[v, 0]
has been used in this study, so that the Ornstein-Zernike
equation may be satisfied exactly. Conversely, in the
canonical systems, the Ornstein-Zernike equation is valid
approximately, and there actually exist correction terms
[24] that have been dropped in the previous formulation
[14].

Fugacity expansion: The above determinant term in the
canonical systems is naturally canceled without the ne-
cessity of fugacity expansion, which has motivated the
use of the canonical formulation [14]. As shown in
Eq. (46), in contrast, the reduction of the present de-
terminant term in the grand canonical formulation is
not only due to the saddle-point approximation of the
fluctuating two-body interaction term, but also due to the
fugacity expansion term that is evaluated perturbatively
in a field-theoretic manner.

Consistency with previous closure relations: Another benefit
of the fugacity expansion is that it can be used to derive
a kind of closure relation given by Eqs. (1) and (20)
that covers a variety of previous closures in addition to
either the HNC approximation or the MSA [1–4], which
is the central result of the grand canonical formulation.
Conversely, there is no available field-theoretic pertur-
bation method that can reproduce the previous closures
other than the MSA in the canonical systems previously
considered [14].

The above comparison thus summarizes the advantages of
our functional-integral theory in the grand canonical systems
that has provided the free-energy functional F [η] of an instan-
taneous correlation field as given by Eqs. (8) to (13).
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There are two future directions of our correlation func-
tional theory. One direction is to consider either fluctuating
or frozen correlation fields around the mean-field correlation
η2

m = 1 + hm, benefiting from the functional-integral form (4);
this allows us to investigate glass-forming systems in a field-
theoretic manner [15–22]. Another direction is to provide a
more elaborate form of F [η] by incorporating higher-order
terms systematically. Such an advancement allows us not
only to improve the obtained relations (1) and (20), which is
consistent with the conventional closures in the liquid state
theory [1–4], but also to obtain the free-energy functional
including three-body correlations, which have been found to
be significant in glassy systems [15–23].

In particular, it has been one of the most significant issues
in the liquid state theory to improve the representation of the
bridge function b(r). Therefore, we would like to give more
details of the latter perspective in future studies, in terms of
what kinds of improvements on the closure relation (1) are ex-
pected. A variety of advanced evaluations beyond the saddle-
point approximation remain, which open up the possibility
of furthering the liquid state theory either to consider higher-
order terms for the w and η fields or to change the reference
two-body interaction potential λref (r) from the instantaneous
direct correlation function c(r) to another function. As a final
remark, we give instances of modified evaluations for these
fields of w(r), η(r), and λref (r):

Fluctuating two-body potential field w(r): It is straightfor-
ward to evaluate the contribution of higher-order terms
beyond the saddle-point approximation. We can easily
see that the inverse power term of η2 = 1 + h is created,
as an additional contribution to F [η] given by Eqs. (8) to
(13).

Instantaneous correlation field η2(r): We have focused
solely on the mean-field solution ηm instead of taking
into account fluctuations around ηm. Prior to considering
the fluctuating field, however, the solution of the mean-
field equation itself has some potential for development
of the liquid state theory. First, it is interesting to see what
benefits are provided by a new form of the bridge func-
tion b(r) when modifying the target-free energy func-
tional F [η] due to the inclusion of higher-order terms of
the w field. Second, Eq. (15) clarifies that the mean-field
solution of 1 + hm(r) = 0 for |r| � σ is also available
for any approximations, other than the MSA, which can
justify the conventional hybrid approximations such that
the MSA and HNC approximations are applied to the
short- and long-range behaviors, respectively [1,3,4].

Reference two-body potential field λref (r): In this study, the
reference field is identified with the direct correlation
function on an ad hoc basis. Actually, the choice of
λref (r) = −c(r) successfully recovers the conventional
liquid state theory, and yet it is tractable to obtain a new
free-energy functional of F [η] when λref (r) = h(r) is
adopted, for instance; it follows that γ (r) = c(r) as seen
from Appendix C. It remains to be investigated whether
the resulting functional form of F [η] associated with the
change of λref (r) can be of any help to the liquid state
theory.

APPENDIX A: DERIVATION OF EQS. (24) TO (27)

Let �[v, J] be the grand potential of particles interacting
via a two-body interaction potential v(r + r′) in the presence
of external field J (r′). The grand potential is given by

e−�[v,J] = Tr e−H [v,J,ρ̂],

Tr =
∞∑

N=0

eNβμ

N!

∫
dr1 · · ·

∫
drN , (A1)

where H[v, J, ρ̂] is defined by

H[v, J, ρ̂] = 1

2

∫∫
dr dr′ v(r)[ρ̂(r + r′)ρ̂(r′) − ρ̂(r′)δ(r)]

+
∫

drJ (r)ρ̂(r), (A2)

using the Dirac δ density function ρ̂(r) = ∑N
k=1 δ(r − rk ).

The Fourier transform of the identity (22) reads

1 =
∫∫

Dψ Dρ e− ∫
driψ (r)[ρ(r)−ρ̂(r)]

×
∫∫

Dη Dλ |det η|e− ρ2

2

∫∫
dr dr′[η2(r)−1−ĥ(r)]iλ(r). (A3)

It follows from Eqs. (A1) to (A3) that

e−�[v,0] = Tr e−H [v,0,ρ̂]
∫∫

Dψ Dρ e− ∫
driψ (r)[ρ(r)−ρ̂(r)]

×
∫∫

Dη Dλ |det η|e− ρ2

2

∫∫
dr dr′[η2(r)−1−ĥ(r)]iλ(r).

(A4)

The exponent in Eq. (A4) is reexpressed as

H[v, 0, ρ̂] + ρ2

2

∫∫
dr dr′η2(r)iλ(r)

= ρ2

2

∫∫
dr dr′η2(r)[v(r) − λref (r) + iw(r)]

= F1[η,w] (A5)

and∫
driψ (r)[ρ(r) − ρ̂(r)] + ρ2

2

∫∫
dr dr′[−1 − ĥ(r)]iλ(r)

= H[−iw,−iψ, ρ̂] + H[λref , iψ, ρ], (A6)

where use has made of both the replacements associated with
the constraints given by Eq. (22) and the potential division
[λ = iλref + w; see also Eq. (23)].

Combining Eqs. (A4) to (A6), we have

e−�[v,0]

=
∫∫∫∫

Dη Dλ Dψ Dρ |detη| e−F1[η,w]−H [λref ,iψ,ρ]

× Tr e−H [−iw,−iψ,ρ̂]

=
∫∫∫∫

Dη Dw Dψ Dρ |detη| e−F1[η,w]−F2[w,ψ,ρ],

(A7)

012117-6



FREE-ENERGY FUNCTIONAL OF INSTANTANEOUS … PHYSICAL REVIEW E 102, 012117 (2020)

where F1[η,w] has been given by Eq. (A5) and F2[w, ψ, ρ]
consists of two contributions:

F2[w, ψ, ρ] = H[λref , iψ, ρ] + �[−iw,−iψ]. (A8)

APPENDIX B: DERIVATION OF EQS. (28) AND (29)

In terms of the Tr operator defined by Eq. (A1), the fugacity
expansion is represented as

Tr ≈ 1 + eβμ + e2βμ

2
, (B1)

considering the contributions in the range of 0 � N � 2.
The above expansion (B1) is applied to the grand potential
�[−iw,−iψ] in Eq. (A8), yielding

e−�[−iw,−iψ] = 1 + ξ1[ψ] + ξ2[w, ψ] + · · · ,

ξ1[ψ] = eβμ

∫
dr1 eiψ (r1 ),

ξ2[w, ψ] = e2βμ

2

∫∫
dr1 dr2 eiw(|r1−r2|)+iψ (r1 )+iψ (r2 ). (B2)

We further perform the following approximation:

�[−iw,−iψ] = − ln(1 + ξ1[ψ] + ξ2[w, ψ] + · · · )

≈ −ξ1[ψ] − ξ2[w, ψ] + ξ 2
1 [ψ]

2

= −
∫

dr1 eβμ+iψ (r1 )+e2βμ

2

∫∫
dr1 dr2 f [ψ],

f [ψ] = eiψ (r1 )+iψ (r2 )(1 − eiw(r1−r2 )), (B3)

so that the Mayer-type function f [ψ] may appear in evaluat-
ing the interaction energy of �[−iw,−iψ].

APPENDIX C: TRANSFORMING EQS. (46) TO (49) INTO
THE MAIN RESULTS (8) TO (13)

The relation (40) implies that∫∫
dr1 dr2 λref (r0 − r1)γ −1(r1 − r2)γ (r2 − r3)

=
∫∫

dr1 dr2 λref (r0 − r1)λ−1
ref (r1 − r2)γ (r2 − r3)

+
∫∫

dr1 dr2 ρλref (r0 − r1)δ(r1 − r2)γ (r2 − r3),

(C1)

which reads

−γ (r − r′) = − λref (r − r′)

+
∫

dr′′, ρλref (r − r′′)γ (r′′ − r′), (C2)

thereby validating Eq. (49) when λref (r) = −c(r). Consider-
ing that

1 − ρc(k) = 1

1 + ρh(k)
, (C3)

we obtain F [η] = F1[η, iwm] + F2[iwm] where

F1[η, iwm]

V
= ρ2

2

∫
dr[1 + h(r)]{v(r) + c(r)

+ ln[1 + h(r)] − h(r)}, (C4)

F2[iwm]

V
= F

V
− 1

2

∫
dk

(2π )3
ln[1 + ρh(k)]

+ ρ2

2

∫
dr[eh(r) − 1 − h(r)]. (C5)

Furthermore, we have

F

V
+ ρ2

2

∫
dr[1 + h(r)][v(r) + c(r)]

= u[η] − s[η]

kB
+ 1

2

∫
dk

(2π )3
ρh(k) (C6)

because of

ρ

2

[
c(0) + ρ

∫
dr h(r)c(r)

]
= ρ

2
h(0) = 1

2

∫
dk

(2π )3
ρh(k),

(C7)

using the Ornstein-Zernike equation at zero separation. It is
found from Eqs. (C4) to (C7) that Eqs. (46) to (49) can be
transformed to the main results (8) to (13).
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