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Fluctuation relations for adiabatic pumping
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We derive an extended fluctuation relation for an open system coupled with two reservoirs under adiabatic one-
cycle modulation. We confirm that the geometrical phase caused by the Berry-Sinitsyn-Nemenman curvature in
the parameter space generates non-Gaussian fluctuations. This non-Gaussianity is enhanced for the instantaneous
fluctuation relation when the bias between the two reservoirs disappears.
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I. INTRODUCTION

Adiabatic pumping is a process where an average current
is generated even in the absence of an average bias under
slow and periodic modulation of multiple parameters of the
system. The theory of adiabatic pumping was first proposed
by Thouless in isolated quantum systems [1,2]. He showed
that charges can be transported by applying a time-periodic
potential to one-dimensional isolated quantum systems under
a periodic boundary condition. He also clarified that the
charge transportation in this system is essentially induced by a
Berry-phase-like quantity in the parameter space [2–4] before
Berry proposed the Berry phase [3]. This phenomenon has
been observed experimentally in various processes such as
charge transport [5–12] and spin pumping [13].

Later, Brouwer extended the Thouless pumping to open
quantum systems [14]. It was then recognized that the essence
of Thouless pumping or geometrical pumping can be de-
scribed by a classical master equation in which the Berry-
Sinitsyn-Nemenman (BSN) phase is the generator of the
pumping current [15,16]. There are various papers on geomet-
rical pumping processes in terms of scattering theory [14,17–
23], classical master equations [15,16,24–31], and quantum
master equations [32–37]. Nonadiabatic pumping processes
have also been studied because the pumping current becomes
zero in the adiabatic (i.e., zero-frequency) limit [38,39].

We discovered the existence of path-dependent excess
entropy production induced by the BSN curvature [40–42].
The existence of the path-dependent entropy in systems under
cyclic modulation implies that the direct extension of equi-
librium thermodynamics to nonequilibrium processes is not
possible, at least for such systems. Similarly, the geometrical
phase effect plays an important role even in heat engines [43].
Thus, understanding geometrical pumping is important for
both applied and fundamental physics.

In nonequilibrium processes, in addition to the expectation
values of physical quantities such as electric and heat currents,
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their fluctuations are also important. Historically, the relation-
ship between fluctuations and responses from base states has
been extensively studied, resulting in the Green-Kubo formula
for the linear response, the fluctuation-dissipation relation
(FDR), Onsager’s reciprocity relation, etc. [44]. Furthermore,
the fluctuation theorem (FT) [45–53] was discovered as a
relation which holds even in far-from-equilibrium situations.
The FT expresses the relative probabilities of typical and rare
events such as positive and negative entropy production.

Let us consider an open system in contact with multiple
external reservoirs, which is in a nonequilibrium steady state.
In this situation, the probability distribution Pτ (Ĵ ) of the
current Ĵ in time interval τ satisfies the steady fluctuation
theorem [53–56]

lim
τ→∞

1

τ
ln

Pτ (Ĵ )

Pτ (−Ĵ )
= AstĴ, (1)

where Ast is a steady affinity. For example, when we consider
a heat flow, the affinity is given by Ast = βR − βL, where βL

and βR are the inverse temperatures of the left and the right
reservoirs, respectively. Moreover, the FT recovers the Green-
Kubo formula, the FDR, Onsager’s reciprocity relation, and
the other nonlinear relations [54]. The FT in Eq. (1) is a direct
consequence of Gaussian fluctuations, since the Gaussian
form Pτ (Ĵ ) ∼ exp[− τAst

4〈Ĵ〉 (Ĵ − 〈Ĵ〉)2] with the average current

〈Ĵ〉 satisfies Eq. (1).
Therefore, systems by non-Gaussian noises do not satisfy

the conventional fluctuation theorem [57,58]. Similarly, Ren
et al. indicated that the fluctuation theorem is violated in
adiabatic pumping because of the existence of the geometrical
phase [59]. Watanabe and Hayakawa [60] analyzed the spin-
boson model and verified the violation of the FT in the
pumped system. Nevertheless, they could not get a concise
form of an extended fluctuation theorem for geometric pump-
ing processes. We also need to know relations among the
cumulants of the current. If we can construct the extended
fluctuation relation between Pτ (Ĵ ) and Pτ (−Ĵ ), we can derive
the explicit expressions for all cumulants.

In this paper we derive two types of fluctuation relations for
adiabatic pumping processes by using the generalized master
equation with the aid of the full counting statistics (FCS) [51].
By using these expressions, we also derive nonequilibrium
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FIG. 1. Schematic of the total system which consists of the target
system S and the left (L) and right (R) reservoirs. We measure the
current J from S to R by the counting field χ .

relations corresponding to the FDR and other key results.
We have confirmed that the geometrical phase generates non-
Gaussian fluctuations [57,58], and thus systems under cyclic
modulation do not satisfy the fluctuation theorem.

The organization of this paper is as follows. In Sec. II
we explain the method used in this paper, the FCS, and the
generalized master equation. In Sec. III we introduce the
adiabatic approximation and show the general form of the
cumulants for the pumping current. Section IV is the main part
of this paper. We calculate the approximate form of the current
distribution and derive two types of fluctuation relation. In
Sec. V we apply our formalism to the spin-boson model to
illustrate the role of the non-Gaussian noise in the fluctuation
of the pumping current. Finally, we discuss and summarize
our results in Sec. VI. In the Appendixes we present some
detailed calculations to support the description in the main
text.

II. GENERAL FRAMEWORK

A. Dynamics

In this paper we consider a total system in which the target
system S interacts with two reservoirs L and R (Fig. 1). We
assume that the target system S takes discrete n states. Let
us introduce the vector |p(t )〉 := (p1(t ), . . . , pn(t ))T , where
pi(t ) (1 � i � n) is the probability that the system takes the
state i at time t ; |p(t )〉 satisfies the normalization condition
〈1|p(t )〉 = 1, where 〈1| := (1, . . . , 1). We assume that the
time evolution of |p(t )〉 is given by the master equation

d

dt
|p(t )〉 = K (α(t ))|p(t )〉, (2)

where K (α(t )) is an n × n matrix characterizing the transition
rate of the dynamics with external control parameters α(t ).
The (i, j) component of K (α(t )) is given as ki j (α(t )) :=∑

ν=L,R[kν
i j (α(t ))], where kν

i j (α(t )) (i �= j) is the rate of tran-
sition j → i due to interaction with the reservoir ν at t and
kν

ii(α(t )) := −∑
j, j �=i kν

ji(α(t )). In this paper we consider the
periodic modulation of the parameters: α(t ) = α(t + τ ) with
period τ .

Now let us introduce the angular frequency � := 2π/τ

and the phase θ := �(t − t0) of parameter modulation, where
t0 is a time after which the effect of the initial conditions
has become negligible and |p(t )〉 becomes periodic. Then we
rewrite Eq. (2) as

d

dθ
|p(θ )〉 = ε−1K̂ (α(θ ))|p(θ )〉, (3)

where ε := �/
, K̂ (α(t )) := 
−1K (α(t )), and 
 character-
izes a typical transition rate between the system and one of the
reservoirs. Because we are interested in adiabatic modulation,
the parameter ε is assumed to satisfy ε � 1.

B. Full counting statistics

Let us adopt the FCS method [51]. The FCS enables us
to obtain the probability distribution P(q) of the transfer q
(e.g., heat transfer and particle transfer) from the system to a
reservoir during one period. The scaled cumulant-generating
function Gε (χ ) for the transfer q is given by

Gε (χ ) = ε

2π
ln

∫ ∞

−∞
dq Pτ (q)eiχq, (4)

where χ is the counting field. We introduce the counting field
only between the system and the right reservoir as shown in
Fig. 1. To calculate the cumulant-generating function Gε (χ ),
we introduce the matrix K̂ (α(θ ), χ ) whose (i, j) component is
given as ki j (α(θ ), χ ) := kL

i j (α(θ )) + kR
i j (α(θ ))eiχqi j (θ ), where

qi j (θ ) is the transfer from the system S to the right reservoir R
with the transition j → i at θ [15,16]. We assume qi j (θ ) =
−q ji(θ ). Let us consider the time evolution of the vector
|p(θ, χ )〉 described by the generalized master equation

∂θ |p(θ, χ )〉 = ε−1K̂ (α(θ ), χ )|p(θ, χ )〉, (5)

with the initial condition |p(0, χ )〉 = |p(0)〉. By using the
solution of Eq. (5), the scaled cumulant-generating function
can be written as

Gε (χ ) = ε

2π
ln〈1|p(θ, χ )〉. (6)

The nth cumulant for the transfer q can be calculated by the
nth derivative of Gε (χ ) as

ε

2π
〈qn〉c = ∂n

∂ (iχ )n
Gε (χ )

∣∣∣∣
iχ=0

. (7)

Note that the average of the current J := �q/2π
 = εq/2π

can be written as

〈J〉 = ε

2π
〈q〉c = ∂iχ Gε (χ )

∣∣∣∣
χ=0

. (8)

III. ADIABATIC PUMPING

In this section we briefly review the method to obtain
the cumulant-generating function for the transfer q under
the adiabatic process [59–61]. First, we adopt the adiabatic
approximation

|p(θ, χ )〉 	
{

1

ε

∫ θ

0
dθ ′[λ(θ ′, χ ) − εv(θ ′, χ )]

}

× |r(θ, χ )〉〈1|r(0, χ )〉−1, (9)

where λ(θ, χ ) is the eigenvalue of K̂ (α(θ ), χ ), which re-
duces to zero in the limit χ → 0. Here we define v(θ, χ ) :=
〈l (θ, χ )|∂θ |r(θ, χ )〉, where 〈l (θ, χ )| and |r(θ, χ )〉 are the left
and right eigenvectors corresponding to λ(θ, χ ), respectively.
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FIG. 2. Schematic of a contour C and the surface enclosed by C
in the parameter space spanned by (αm, αn).

The scaled cumulant-generating function for the transfer q
is given by

Gε (χ ) = ε

2π
ln〈1|p(2π, χ )〉. (10)

By using the adiabatic solution (9), we obtain

Gε (χ ) = �(χ ) − εV (χ ), (11)

where

�(χ ) := 1

2π

∫ 2π

0
dθ λ(θ, χ ) (12)

is the dynamical part and

V (χ ) := 1

2π

∫ 2π

0
dθ v(θ, χ )

= 1

2π

∫∫
S

dαmdαnF (α, χ ) (13)

is the geometrical part. Here we define Fmn(α, χ ) :=
∂αm〈l0(α, χ )| ∧ ∂αn |r0(α, χ )〉 and S is the open surface en-
closed by the contour C of parameter control (see Fig. 2). The
derivation of Eq. (9) is given in Appendix A. Note that λ(θ, χ )
satisfies the Levitov-Lesovik-Gallavotti-Cohen (LLGC) sym-
metry λ(θ, χ ) = λ(θ,−χ + iA(θ )) with the instantaneous
bias A(θ ) [e.g., inverse temperature difference βR(θ ) − βR(θ )
in the case of heat current], while v(θ, χ ) does not satisfy such
a symmetry, i.e., v(θ, χ ) �= v(θ,−χ + iA(θ )) [59–61].

IV. FLUCTUATION RELATIONS

This section is the main part of this paper. In this section
we present the general expressions for two types of fluctuation
relations for adiabatic pumping processes. In Sec. IV A we
discuss the cyclic fluctuation relation and in Sec. IV B we
give the general expression for the instantaneous fluctuation
relation.

A. Cyclic fluctuation relation

Because of Eqs. (4) and (11) the probability distribution
function Pε (J ) of the current J = εq/2π under one-cycle
modulation with the parameter ε is given by

Pε (J ) = 2π

ε
Pτ (q)

= 2π

ε

∫ ∞

−∞

dχ

2π
e−(2π/ε)[iχJ−Gε (χ )]

= 1

ε

∫ ∞

−∞
dχ e−(2π/ε)[iχJ−�(χ )]−V (χ ). (14)

When we consider an adiabatic pumping process (ε � 1),
the contribution of V (χ ) is small. By using the saddle-point
approximation, Pε (J ) can be evaluated as

Pε (J ) 	 1√
ε�(2)(χc(J ))

e−(2π/ε)[I (J )+εV (χc (J ))], (15)

where we have introduced the large deviation function (LDF)

I (J ) := iχc(J )J − �(χc(J )), (16)

where χc(J ) is the saddle point which satisfies
∂iχ�(χ )|χ=χc (J ) = J and �(2)(χc(J )) := ∂2

iχ�(χ )|χ=χc (J ).
It is expected that I (J ) satisfies the symmetry relation

I (J ) − I (−J ) = −AJ, (17)

where A is the dynamical affinity, which is determined by
quantities of the left and the right reservoir. In fact, it was
confirmed numerically that A is given as

A = ln

∫ 2π

0 dθ n±
R (θ )[1 ± n±

L (θ )]∫ 2π

0 dθ n±
L (θ )[1 ± n±

R (θ )]
(18)

in two-level systems of fermions [61] and bosons (see Ap-
pendix F). Here n±

ν (θ ) is the Bose (+) and Fermi (−) distribu-
tion of the νth reservoir, respectively. Because of the absence
of the LLGC symmetry for v(θ, χ ), it is obvious that V (χ )
does not have the corresponding symmetry. By using Eqs. (15)
and (17), we obtain the cyclic fluctuation relation

ε

2π
ln

Pε (J )

Pε (−J )
= AJ − ε[V (χc(J )) − V (χc(−J ))]

− ε

4π
ln

�(2)(χc(J ))
�(2)(χc(−J ))

. (19)

This is one of our main results. The second term on the
right-hand side of Eq. (19) stands for the geometrical phase
contribution, which is much smaller than the first term. When
V (χc(J )) = 0, Eq. (19) reduces to the steady fluctuation the-
orem in driven systems [61]. Thus, Eq. (19) can be regarded
as an extension of the fluctuation theorem for the adiabatic
pumping process. If the trajectory C of the parameter modu-
lation is symmetric with respect to the parameters αm and αn,
the average bias is zero, i.e., A = 0, and V (−χ ) = −V (χ )
and �(χ ) = �(−χ ). In this case, Eq. (19) is reduced to

ln
Pε (J )

Pε (−J )
= −4πV (χc(J )), (20)

which can be expressed only by the geometrical phase. As will
be shown in Sec. V, Eq. (20) contains contributions nonlinear
in J .

B. Instantaneous fluctuation relation

In this section we consider the instantaneous fluctuation
relation of our system. If the master equation (5) does not
contain any singularities, the cumulant generating function
can be written as

Gε (χ ) = 1

2π

∫ 2π

0
dθ g(θ, χ ) = lim

N→∞
1

N

N∑
n=1

gn(χ ), (21)

where g(θ, χ ) := λ(θ, χ ) − εv(θ, χ ) is the instantaneous
cumulant-generating function. Here we discretize θ in the

012115-3



YUKI HINO AND HISAO HAYAKAWA PHYSICAL REVIEW E 102, 012115 (2020)

interval [0, 2π ] as in the last expression of Eq. (21), where we
have introduced θn := n�θ , �θ := 2π/N , gn(χ ) := g(θn, χ ),
λn(χ ) := λ(θn, χ ), and vn(χ ) := v(θn, χ ). From Eq. (21), the
distribution of the current during one cycle can be decom-
posed into

Pε (J ) = lim
N→∞

N
∫ ∞

−∞

N∏
n=1

dJnδ

(
J − 1

N

N∑
n=1

Jn

)
N∏

n=1

pn(Jn),

(22)

where

pn(Jn) :=
∫ ∞

−∞

dχ

εN
e−(2π/εN )[iχJn−gn (χ )] (23)

is the instantaneous distribution at of the current Jn at θ =
θn. [The derivation of Eqs. (22) and (23) is explained in
Appendix D.] Here we assume that (εN )−1 � 1. This means
that (εN )−1 is enough large to relax the system to the instan-
taneous steady state.

By an argument parallel to that used in the preceding
section, the instantaneous distribution for the current Jn is
given as

pn(Jn) 	 1√
εNλ

(2)
n (χc(Jn))

e− 2π
εN [In(Jn )+vn (χc (Jn ))], (24)

where λ(2)
n (χc(Jn)) := ∂2

iχλn(χ )|χ=χc (J ) and we have intro-
duced the instantaneous LDF

In(Jn) := iχc(Jn)Jn − λn(χc(J )), (25)

where χc(Jn) satisfies ∂iχλn(χ )|χ=χc (Jn ) = Jn. Because the in-
stantaneous eigenvalue λn(χ ) satisfies the LLGC symmetry
[46–48] λn(χ ) = λn(−χ + iAn), In(J ) satisfies the symmetry
relation

In(Jn) − In(−Jn) = −AnJn, (26)

where An is the instantaneous affinity, which is given by, for
example, An = βR(θn) − βL(θn) when we control the inverse
temperatures βL and βR of the left and right reservoirs.

From Eqs. (24) and (26), we obtain the instantaneous
fluctuation relation

lim
εN→0

εN

2π
ln

pn(Jn)

pn(−Jn)
= AnJn − ε[vn(χc(Jn)) − vn(χc(−Jn))]

− εN

4π
ln

λ(2)(χc(J ))
λ(2)(χc(−J ))

. (27)

The second term on the right-hand side of Eq. (27) expresses
the geometrical phase effect at θ = θn, which is much smaller
than the first term. If An = 0, the first and third terms vanish
and then the geometrical contribution becomes dominant. As
will be shown in Sec. V, the geometric contribution of Eq. (27)
is a nonlinear function of Jn.

V. APPLICATION TO THE SPIN-BOSON SYSTEM

The results presented in the preceding section can be used
for an arbitrary adiabatic pumping process if the process can
be described by the master equation (5). To know the explicit
contribution of the geometric phase in the extended fluctuation
relations such as Eqs. (19), (20), and (27), we need to know the

FIG. 3. Schematic of the spin-boson model.

details of the eigenstates and the eigenvalues of the operator
K̂ (α(θ ), χ ). Here we apply the general results of Sec. IV to
the spin-boson model [62].

A. Spin-boson model

In this section we consider a single spin coupled to two
bosonic reservoirs with inverse temperature βν (ν = L, R) (see
Fig. 3). We note the vector |p(t )〉 = (p0(t ), p1(t )), where p0

and p1 are the probabilities to take the down and the up
state, respectively. In this model, the transition matrix K (t )
in Eq. (2) is a 2 × 2 matrix and its component is given as

kν
01(α(t )) := 
ν (t )[nν (ω0(t ), βν (t )) + 1], (28)

kν
10(α(t )) := 
ν (t )nν (ω0(t ), βν (t )), (29)

where nν (ω0(t ), βν (t )) := (eβ(t )h̄ω0(t ) − 1)−1 is the Bose dis-
tribution function in the νth reservoir, h̄ω0 is the energy
difference between up and down states, and 
ν is the transition
rate between the system and the νth reservoir.

Now the dimensionless forms of Eqs. (28) and (29) are
written as

k̂ν
01(α(θ )) := γν (θ )[nν (ω0(θ ), βν (θ )) + 1], (30)

k̂ν
10(α(θ )) := γν (θ )nν (ω0(θ ), βν (θ )), (31)

where γν (θ ) := 
ν (θ )/
, with 
 := ∑
ν

∫ 2π

0 dθ 
ν (θ ). Note
that ε := �/
 is held in this case. The transfer correspond-
ing the transition 1 → 0 is given as q01 = h̄ω0 = −q10. We
consider the set of parameters α = {ω0, γν, βν}ν=L,R.

B. Cyclic fluctuation relation for the spin-boson model

Let us calculate the right-hand side of Eq. (19) for two
types of modulations. In the first case, we control the tem-
perature of the left and right reservoirs as

T̂L(θ ) := [h̄ω0βL(θ )]−1 = T̂0 + T̂A cos(θ + π/4), (32)

T̂R(θ ) := [h̄ω0βR(θ )]−1 = T̂0 + T̂A sin(θ + π/4), (33)

where T̂0 and T̂A are the center and the amplitude of the dimen-
sionless temperatures T̂L and T̂R, respectively.1 For simplicity,

1Of course, the continuous control of the temperatures is not easy
but is possible as follows. (i) For example, an effective temperature
is continuously changed in Ref. [63]. (ii) Since we consider an
adiabatic process, it is possible to replace a reservoir by another
reservoir having a different temperature and wait for the system to
relax to a steady state. If we can repeat this process, we can change
the temperatures at the reservoirs as in Eqs. (32) and (33).
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we assume 
L = 
R = 
. In the second case, we control the
dimensionless linewidth between the target system and the
left reservoir and the energy level in the target system such
that

γL(θ ) = γR + γA cos(θ ), (34)

ω̂0(θ ) := β h̄ω0(θ ) = ω̂C + ω̂A sin(θ ), (35)

where γA is the amplitude of the dimensionless linewidth γL

and ω̂C and ω̂A are, respectively, the center and the ampli-
tude of the dimensionless energy gap between two levels in
the target system.2 For simplicity, we assume βL = βR = β.
The BSN curvature Fmn(α) introduced in Eq. (B2) of the first
case in Sec.V is given as

F (T̂L, T̂R) = 1

8

n2
Ln2

R

T̂ 2
L T̂ 2

R (1 + nL + nR)3
, (36)

where nν (ν = L or R) is nν := (eβν h̄ω0 − 1)−1. Similarly, the
BSN curvature of the second case in Sec. V is given as

F (γL, ω̂0) = (γL + 1 − ω̂0)nL(1 + nL )

(γL + 1)(1 + 2nL )2
. (37)

Their plots are given in Fig. 4. In both cases, because the
affinity satisfies A = 0, the geometrical phase effect V (χc(J ))
plays an important role as in Eq. (20).

By expanding the right-hand side of Eq. (20) with respect
to J , we obtain

ln
Pε (J )

Pε (−J )
	 AC[J + BCJ3 + O(J5)], (38)

where AC := −4π∂JV (χc(J ))|J=0 and BC :=
−2π∂3

J V (χc(J ))|J=0/3AC , which depend on the contour
C of the parameter control. Now C is determined by the set of
parameters α = (T̂0, T̂A) or (ω̂C, ω̂A, γR, γA). With the aid of
a numerical calculation for both cases, we obtain Figs. 5 and
6, which show that BC is not negligibly small. This implies
that the geometrical current or the BSN curvature generates
non-Gaussian fluctuations. Our result is consistent with the
previous results of Ref. [60].

C. Relations among cumulants

Let us discuss the relations among cumulants. The cyclic
fluctuation relation (38) can be rewritten in the integral form

〈e−AC (J+BC J3 )〉 	 1. (39)

We expand the nth cumulant with AC in Eq. (38) as

〈Jn〉c =
∑

m

LnmAm
C /m!. (40)

From Eqs. (39) and (40) we obtain the violation of the FDR
as

2L11 − L20 + 2BC (L31 + 3L11L20 − L40) = 0 (41)

2It is easy to control γL (θ ) and ω0(θ ) in experiments [5–10].

(a)

(b)

−

−

FIG. 4. Plots of the BSN curvatures Fmn(α) in Eq. (B2) in the
parameter space in (a) the first case and (b) the second case. The
cyan circle represents the trajectory of the parameter modulation. The
geometrical current is determined by the integral of Fmn(α) in the area
surrounded by this circle.

as the balance of terms of O(A2
C ). Similarly, we also obtain the

violation of the nonlinear relation

L12 − L21 + BC (L32 + 3L12L20 + 6L11L21 − 2L41) = 0 (42)

as the balance of terms of O(A3
C ). Note that we can obtain

more relations as the balance of terms of any O(An
C ). The

derivations of Eqs. (41) and (42) are given in Appendix G.
The violations of the conventional relations in Eqs. (41) and
(42) are caused by the non-Gaussianity BC which originates
from the BSN curvature.

D. Instantaneous fluctuation relation

In this section we discuss the instantaneous fluctuation
relation. Here we control temperatures in the right and the
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(a)

(b)

FIG. 5. Cyclic fluctuation relation under the control of the reser-
voir temperatures (the first case in the main text). (a) Plot of the lines
at T̂0 = 0.5, T̂A = 0.1, 0.2, 0.3, 0.4 (colors are blue, yellow, green,
and red, respectively), and ε = 0.001 as an example of the first
case. (b) Plot of the T̂A dependence of the cubic contribution BC at
T̂0 = 0.5.

reservoirs as in Eqs. (32) and (33). At θn = πn and An = 0 the
geometrical contribution [the second term on the right-hand
side of Eq. (27)] is dominant. Its explicit behavior is plotted as
in Fig. 7. This result implies that the fluctuation is highly non-
Gaussian, in contrast to the conventional fluctuation theorem.

VI. CONCLUSION

In this paper we derived the cyclic and the instantaneous
fluctuation relations given in Eqs. (19) and (27), respec-
tively, for adiabatic pumping processes. We applied these
results to the spin-boson model and clarified the existence of
non-Gaussianity as the geometric phase contribution in the
fluctuation relations as in Eq. (38) (Fig. 5). We confirmed
that the non-Gaussianity V̂3(α) in Eq. (38) is not small.
From the cyclic fluctuation relation, we obtained the relations
among cumulants (41) and (42), which show the violation of
the FDR and other conventional relations among cumulants.
Our results indicate that the conventional fluctuation theorem
should be extended to include non-Gaussian fluctuations if
the geometric phase effect exists under cyclic modulation of
parameters.

Our future tasks are as follows. (i) Because our analysis is
restricted to the adiabatic case, we will have to try to extend
our analysis to the nonadiabatic case. If we restrict our interest
to a two-level system like the spin-boson system, we can

(a)

(b)

FIG. 6. (a) Cyclic fluctuation relation under the control of the
energy level and left linewidth for ω̂C = 1, ω̂A = 0.2, 0.4, 0.6, 0.8
(blue, yellow, green, and red, respectively), γR = 1, γA =
0.2, 0.4, 0.6, 0.8 (blue, yellow, green, and red, respectively), and
ε = 0.001 as an example of the second case. (b) Plot of the ω̂A (=γA)
dependence of the cubic contribution BC at ω̂C = γR = 1.

use the analytic solution of the generalized master equation
(5) [64]. (ii) Shortcuts to adiabaticity can be used for the
nonadiabatic pumping in which a finite pumping current can
be realized under finite speed modulation [64]. Therefore, we
expect that the universal work-fluctuation relation discussed
by Funo et al. [65] can be generalized to include non-Gaussian
fluctuations as mentioned in this paper. (iii) We can analyze

FIG. 7. Plot of the instantaneous fluctuation relation at θn = π

with An = 0. Here T̂0 = 0.5 and T̂A = 0.1, 0.2, 0.3, 0.4 (blue, yellow,
green, and red, respectively).
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the entropy production by a parallel method reported in
Refs. [40–42] in which the excess entropy production can be
expressed by the geometric phase. (iv) We will have to discuss
the linear response around a cyclic adiabatic state obtained
in this paper by changing the modulation perturbatively. This
linear response theory is expected to be different from that
obtained from the Green-Kubo formula [66]. (v) We have
shown that Eqs. (17) and (18) for the dynamical part are held
at least for the two-level spin-boson model, but we still do
not have rigorous proof for the symmetry relation for general
cases. Therefore, we need further investigation of this prob-
lem. (vi) In this paper we have analyzed a classical system.
To know quantum coherence effects, we need to analyze the
Lindblad equation, which has off-diagonal elements, which
might induce a nontrivial effect [67].
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APPENDIX A: ADIABATIC APPROXIMATION

Let us assume that the solution |p(θ, χ )〉 of the general-
ized master equation (5) is parallel to the right eigenvector
|r(θ, χ )〉 as

|p(θ, χ )〉 = C(θ, χ )|r(θ, χ )〉, (A1)

where the function C(θ, χ ) will be determined later. By using
the generalized master equation (5) and the normalization
condition 〈l (θ, χ )|r(θ, χ )〉 = 1, we get

∂θC(θ, χ ) = C(θ, χ )[ε−1λ(θ, χ ) − v(θ, χ )], (A2)

where v(θ, χ ) = 〈l (θ, χ )|∂θ |r(θ, χ )〉. Equation (A2) can be
solved as

C(θ, χ ) = C(0, χ ) exp

[∫ θ

0
dθ ′[ε−1λ(θ ′, χ ) − v(θ ′, χ )]

]
.

(A3)

From the normalization condition 〈1|p(0, χ )〉 = 〈1|p(0)〉 =
1, we get C(0, χ ) = 〈1|r(0, χ )〉−1. Therefore, we obtain
Eq. (9).

APPENDIX B: PUMPING CURRENT

Although we are not interested in the average current
for the adiabatic pumping process, it is useful to write its
explicit form for the convenience of comparing our results
with the results in the literature. The average current can be
decomposed into two parts as 〈J〉 = 〈J〉dyn + 〈J〉geo. The first
part is the dynamic current expressed as

〈J〉dyn = 1

2π

∫ 2π

0
dθ Jst (θ ), (B1)

where Jst (θ ) := ∂iχλ(θ, χ )|χ=0 is the instantaneous steady
current. The second part is the geometrical current expressed

as

〈J〉geo = − ε

2π

∫∫
S

dαmdαnFmn(α), (B2)

where Fmn(α) := ∂iχF (α, χ )|χ=0 is the BSN curvature
[15,16] in the parameter space. Note that even if the average
bias is zero such that 〈J〉dyn = 0, 〈J〉geo is generally not zero.

APPENDIX C: DERIVATION OF EQ. (15)

The current distribution is given in Eq. (15). The LDF is
given in (16). We expand �(χ ) with respect to iχ around χ =
χc(J ) as

�(χ ) = �(χc) + �(1)(χc)(iχ − iχc)

+ 1
2�(2)(χc)(iχ − iχc)2 + O((iχ − iχc)3), (C1)

where we have introduced �(n)(χc(J )) := ∂n
iχ�(χ )|χ=χc (J ).

Then we get

iχJ − �(χ ) 	 I (J ) + 1
2�(2)(χc(J ))[χ − χc(J )]2. (C2)

Therefore, we obtain Eq. (15) as

Pε (J ) 	 e−(2π/ε)I (J )

×
∫ ∞

−∞

dχ

ε
e−(π/ε)�(2)[χc (J )][χ−χc (J )]2

e−2πV (χ )

	 1√
ε�(2)(χc(J ))

e−(2π/ε)[I (J )+εV (χc (J ))]. (C3)

APPENDIX D: DERIVATION OF EQ. (22)

In this Appendix we explain the details of the derivation of
Eqs. (22) and (24). From the definition of Pε (J ) in Eq. (15) we
can write

Pε (J )= 1

ε

∫ ∞

−∞
dχ e−(2π/ε)[iχJ−Gε (χ )]

= 1

ε

∫ ∞

−∞
dχ exp

[
−2π

ε

{
iχJ− 1

2π

∫ 2π

0
dθ g(χ, θ )

}]
,

(D1)

where g(θ, χ ) := λ(θ, χ ) − εv(θ, χ ). As mentioned in
Sec. IV B, we discretize variables in the interval [0, 2π ] into
N pieces. Then we rewrite Eq. (D1) as

Pε (J ) = 1

ε
lim

N→∞

∫ ∞

−∞
dχ exp

[
−2π

ε

{
iχJ − 1

N

N∑
n=1

gn(χ )

}]

= 1

ε
lim

N→∞

∫ ∞

−∞
dχ e−(2π/ε)iχJ

N∏
n=1

e(2π/εN )gn (χ )

= 1

ε
lim

N→∞

∫ ∞

−∞
dχ e−(2π/ε)iχJ

N∏
n=1

∫ ∞

−∞
dχnδ(χ − χn)

× e(2π/εN )gn(χn ), (D2)

where we have used gn(χ ) = ∫ ∞
−∞ dχnδ(χ − χn)gn(χn). By

using δ(x) = 1
2π

∫ ∞
−∞ dk eikx, Eq. (D2) can be rewritten
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further as

Pε (J ) = 1

ε
lim

N→∞

∫ ∞

−∞
dχ e−(2π/ε)iχJ

N∏
n=1

∫ ∞

−∞
dχn

∫ ∞

−∞

dJn

εN
e(2π/εN )i(χ−χn )Jn e(2π/εN )gn(χn )

= 1

ε
lim

N→∞

N∏
n=1

∫ ∞

−∞

dJn

εN

∫ ∞

−∞
dχ exp

[
−2π

εN
iχ

(
J − 1

N

N∑
n=1

Jn

)]
N∏

n=1

∫ ∞

−∞
dχne−(2π/εN )[iχnJn−gn(χn )]

= 1

ε
lim

N→∞

N∏
n=1

∫ ∞

−∞
dJn

∫ ∞

−∞
dχ exp

[
−2π

εN
iχ

(
J − 1

N

N∑
n=1

Jn

)]
N∏

n=1

∫ ∞

−∞

dχn

εN
e−(2π/εN )[iχnJn−gn(χn )]

= lim
N→∞

N
N∏

n=1

∫ ∞

−∞
dJnδ

(
J − 1

N

N∑
n=1

Jn

)
N∏

n=1

pn(Jn). (D3)

Here we obtain the explicit expression of pn(Jn) as Eq. (24).

APPENDIX E: DETAIL OF THE SPIN-BOSON MODEL

The eigenvalue λ(θ, χ ) of K̂ (α(θ ), χ ) and the correspond-
ing eigenvectors 〈l (θ, χ )| and |r(θ, χ )〉 are given as

λ(θ, χ ) = −k01(θ ) + k10(θ )

2

+
√(

k01(θ ) − k10(θ )

2

)2

+ k01(θ, χ )k10(θ, χ ),

(E1)

〈l (θ, χ )| =
(

1,
λ(θ, χ ) + k10(θ )

k10(θ, χ )

)
, (E2)

|r(θ, χ )〉 = 1

c(θ, χ )

(
1

λ(θ,χ )+k10(θ )
k01(θ,χ )

)
, (E3)

c(θ, χ ) := 1 + [λ(θ, χ ) + k10(θ )]2

k01(θ, χ )k10(θ, χ )
. (E4)

APPENDIX F: NUMERICAL CHECK OF EQ. (17)
FOR THE SPIN-BOSON MODEL

We derive the LLGC symmetry for λ(θ, χ ) in the spin-
boson model. The eigenvalue λ(θ, χ ) depends on χ through
k01(θ, χ )k10(θ, χ ). For any χ , we obtain

0 = k01(θ, χ )k10(θ, χ )

− k01(θ,−χ + iA(θ ))k10(θ,−χ + iA(θ ))

= [
kL

01(θ )kR
10(θ ) − kR

01(θ )kL
10(θ )eA(θ )

]
× (eiχ + e−iχ e−A(θ ) ), (F1)

where

A(θ ) = ln
kR

01(θ )kL
10(θ )

kL
01(θ )kR

10(θ )
= ln

nR(θ )[1 + nL(θ )]

nL(θ )[1 + nR(θ )]
. (F2)

This reduces to A(θ ) = h̄ω0(βR(θ ) − βL(θ )). Therefore, we
obtain the LLGC symmetry λ(θ, χ ) = λ(θ,−χ + iA(θ )).
This leads the symmetry relation (26) for the instantaneous
LDF In(Jn).

When we consider the cyclic modulation in the limit
ε → 0, the rate function I (J ) can be evaluated only from
the dynamical part. We expect that the logarithmic form of

Eq. (F2) satisfies Eq. (18) if we replace the numerator and the
denominator on the right-hand side of Eq. (F2) by its cyclic
average. To confirm its validity, we numerically check the
validity of Eq. (17). We control the temperature of the left
and right reservoirs as

T̂L(θ ) = T̂L0 + T̂LA cos(θ + π/4), (F3)

T̂R(θ ) = T̂R0 + T̂RA sin(θ + π/4). (F4)

From the numerical calculation of the left- and right-hand
sides of Eq. (17) in the spin-boson model, we have confirmed
the symmetry relation (17) numerically (Fig. 8). Note that,
from our numerical calculation, �(χ ) = �(−χ + iA) seems
to hold.

APPENDIX G: DERIVATION OF EQS. (41) AND (42)

Equation (39) can be rewritten as

0 =
∞∑

n=1

(−AC )n〈(J + BCJ3)n〉. (G1)

FIG. 8. Verification of the symmetry relation of the large de-
viation function (16) in the spin-boson model. The points are
the plots of I (J ) − I (−J ) at (T̂R0, T̂RA) = (5, 4) and (T̂L0, T̂LA) =
(10, 9), (6, 5), (5, 4) (red, purple, and blue, respectively). The solid
lines are the plots of −AJ at (T̂R0, T̂RA) = (5, 4) and (T̂L0, T̂LA) =
(10, 9), (6, 5), (5, 4) (orange, magenta, and cyan, respectively).
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Each moment 〈Jn〉 can be rewritten by cumulants 〈Jn〉c as

〈J〉 = 〈J〉c, (G2)

〈J2〉 = 〈J2〉c + 〈J〉2
c, (G3)

〈J3〉 = 〈J3〉c + 3〈J2〉c〈J〉c + 〈J〉3
c . (G4)

By using Eq. (40) we obtain

0 = −ACL10 + A2
C

[
−L11+1

2
L20 − BC (L13+ 3L20L11− L40)

]

+A3
C

[
−L12

2
+L21

2
−BC

(
L32

2
+3L21L11+3

2
L20L12−L41

)]

+ O
(
A4

C

)
. (G5)

Then we obtain Eqs. (41) and (42) as the balance of terms of
O(A2

C ) and O(A3
C ), respectively.
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