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Universal scaling for recovery of Fourier’s law in low-dimensional
solids under momentum conservation
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Dynamic renormalization group (RG) of fluctuating viscoelastic equations is investigated to clarify the
cause for numerically reported disappearance of anomalous heat conduction (recovery of Fourier’s law) in
low-dimensional momentum-conserving systems. RG flow is obtained explicitly for simplified two model cases:
a one-dimensional continuous medium under low pressure and incompressible viscoelastic medium of arbitrary
dimensions. Analyses of these clarify that the inviscid fixed point of contributing the anomalous heat conduction
becomes unstable under the RG flow of nonzero elastic-wave speeds. The dynamic RG analysis further predicts
a universal scaling of describing the crossover between the growth and saturation of observed heat conductivity,
which is confirmed through the numerical experiments of Fermi-Pasta-Ulam β (FPU-β) lattices.
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I. INTRODUCTION

Heat conduction has attracted wide attention with vari-
ous motivations, such as testing irreversible thermodynam-
ics [1–4], exploring the innovative nano- and microscale
materials [5,6], and ultimately establishing a general theory
of nonequilibrium statistical mechanics [7–10]. In ordinary
three-dimensional many-particle systems, the heat conduction
is governed by a linear relation called Fourier’s law between
energy current (J) and the spatial gradient of temperature (T ),

J = −κ∇T, κ ∝ N0, (1)

where κ , called heat conductivity, is an intensive variable
independent of the number N of particles.

Meanwhile, the long-range correlation of thermal fluctu-
ations emerges due to the momentum-conservation in low-
dimensional systems of dimension d � 2, and transport
coefficients are there generally not intensive [7,9,11,12]. The
heat conductivity can increase for such cases in proportion to
the power of N with a positive fractional exponent α,

κ ∝ Nα, 0 < α < 1. (2)

This intriguing breakdown of Fourier’s law, called anomalous
heat conduction, has been investigated over recent decades
[13–15]. This scaling suggests the absence of macroscopic
descriptions of heat conduction in low-dimensional systems
in the thermodynamic limit (N → ∞). The nano- and mi-
croscale experiments using carbon-nanotubes and graphene
sheets have verified such scaling of the anomalous heat con-
duction as the natures of low-dimensional materials [5,14].
With semimacroscopic descriptions, called the fluctuating hy-
drodynamic equations [16], theoretical studies have connected
the anomalous heat conduction to the Kardar-Parisi-Zhang
(KPZ) universality class [9,17,18].
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However, recent numerical studies have been posing a
considerable number of counterexamples to this anoma-
lous heat conduction in the low-dimensional momentum-
conserving systems [19–23]. Reference [19] first indicated
from a molecular-dynamic simulation that the heat con-
ductivity can be intensive in a momentum-conserving one-
dimensional model. Some studies of the molecular dynamics
[22,23] confirmed Fourier’s law in other one-dimensional
momentum-conserving systems, although it was later criti-
cized that the model size N in their investigation was not
large enough to study the asymptotic semimacroscopic heat
conduction [24], and thus these following reports can be
apparent, occurring due to the crossover between the ballistic
transport α = 1 and the anomalous transport α = 1/3 [25].
The asymptotic behavior is further investigated by quite recent
studies [20,21] with paradigmatic models of the anomalous
heat conduction, such as FPU-β lattices. From the direct
measurement of the size-dependent heat conductivity κ (N )
with different model sizes N , Ref. [21] reported that the
asymptotic anomalous growth Eq. (2) of the heat conductivity
plateaus within larger sizes N than a characteristic scale N∗,

κ (N ) ∼ κ (N∗)[min(N/N∗, 1)]α, (3)

which is, so to speak, recovery of Fourier’s law. In the case
of FPU-β lattices in Ref. [21], the growth in κ (N ) plateaued
around N∗ = 106; the scaling exponent α in Eq. (3) is mea-
sured at an intermediate size scale N < N∗ and is met to
the theoretically predicted value, α = 1/3 of the KPZ class
[17,18]. Reference [21] also confirmed around N = 102 ∼
103 that the Green-Kubo formula [26] can give system-size
independent heat conductivity κGK to the FPU-β lattices under
the periodic boundary conditions,

∂

∂N
κGK = 0. (4)

Interestingly, despite their difference in sizes, measurements,
and boundary conditions, κGK meets the asymptotic value

2470-0045/2020/102(1)/012111(14) 012111-1 ©2020 American Physical Society

https://orcid.org/0000-0001-8809-9268
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.012111&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevE.102.012111


DYE SK SATO PHYSICAL REVIEW E 102, 012111 (2020)

κ (N∗) of the directly measured heat conductivity, i.e.,

κ (N∗) ∼ κGK, (5)

under the same thermodynamic (pressure and temperature)
conditions. This coincidence, unexpected from the anomalous
heat conduction yet satisfied in the case of the normal heat
conduction [21,27], consistently indicates the recovery of
Fourier’s law at larger N than the intermediate size of the
anomalous heat conduction.

While these numerical reports systematically suggest the
recovery of Fourier’s law can add a surprising counterex-
ample to the KPZ class, the conflict remains between these
molecular-dynamic studies and previously proposed semi-
macroscopic theoretical studies. The recovery of Fourier’s law
concerns the thermodynamic limit, so the numerical approach
is not enough to remove the suspicion [28] of finite-size
effects. Thermally activated dissociation is pointed out to be
a possible origin of the recovery of Fourier’s law in some
model cases [21,29] by inhibiting many-particle systems from
obeying the continuum semimacroscopic dynamics. However,
that explanation is found to be not enough to describe all the
recovery of Fourier’s law, as its prediction of N∗ can be incon-
sistent with observations for some cases [21]. Another study
reinvestigated the dynamic RG flow of the fluctuating hydro-
dynamic equation [21]. It showed that a fixed point (called the
inviscid fixed point) of contributing anomalous heat conduc-
tion becomes unstable when the pressure term is added to the
noisy Burgers’ equation of zero-pressure, and another fixed
point (called the ballistic fixed point) emerges to characterize
the recovery of Fourier’s law as another universality class.
This RG analysis may complement the previous theory of
anomalous heat conduction, given that the previous studies
are discussing or utilizing the existence of the (inviscid) fixed
point of the anomalous heat conduction [17,30] and are not
studying its stability. In other words, as long as the cause for
the recovery of Fourier’s law is expressed as the instability
of the inviscid fixed point, the recovery of Fourier’s law can
be compatible with the previous theories of the anomalous
heat conduction. Consistently, as the RG analysis of Ref. [21]
predicts, other recent molecular-dynamic studies reported the
recovery of Fourier’s law under nonzero-pressure conditions,
such as nonzero strain and anti-symmetric inter-particle po-
tential [20,31]. Nevertheless, some previous semimacroscopic
theories already studied the stability of another anomalous
transport (growing viscosity) against the pressure and strains
by using the incompressible hydrodynamic equation [7], so
the conflict remains even between the suggestions of the RG
analyses of Refs. [7,21].

In this paper, we aim to provide a semimacroscopic de-
scription for the recovery of Fourier’s law in a manner com-
patible with the previous theoretical studies of the fluctuating
hydrodynamic equations. The analysis focuses on generaliz-
ing the previous RG analysis of Refs. [7,21] to the RG analysis
of fluctuating viscoelastic (viscoelastodynamic) equations.
We will find that the existence of volumetric and solenoidal
elastic waves is a key factor to relate previous theoretical
RG analysis with the universal scaling for the recovery of
Fourier’s law.

This paper is organized as follows. The set of the fluctu-
ating viscoelastic equations [30] is introduced as an extension

of a suite of the fluctuating hydrodynamic equations in Sec. II.
Dynamic RG analyses are executed in Sec. III. After the
explicit development of the RG flow, the theoretical prediction
of the RG flow is tested by numerical experiments with the
FPU-β lattices. The relationship between presented results
and previous ones is explored in Sec. IV. Conclusions are
presented in Sec. V.

II. SETTING

Formulation of the fluctuating hydrodynamic and vis-
coelastic equations is mentioned first. The models addressed
in this paper are then introduced in an ordinary theoretical
framework.

A. Fluctuating hydrodynamic equations

Suppose mass ρ, momentum ρv, and energy e are con-
served in microscopic scales, where v denotes the velocity.
Continuity equations there hold for their densities as

∂tρ + ∂a(ρva) = 0,

∂t (ρva) + ∂b(ρvavb) = ∂bσ
′
ab, (6)

∂t e + ∂aJ ′
a = 0,

where va denotes the a component of the velocity v, and σab

and J ′
a, respectively, the a, b component of the stress tensor

and a component of the energy current in the fluctuating
hydrodynamic equations; ∂t and ∂a, respectively, represent
partial derivatives in terms of time t and the a component of
the location x.

In the semimacroscopic scales, the macroscopic equations
are considered to dominate the collective average motions
of many particles while being disturbed by nonnegligible
thermal fluctuations [32]. The stress and energy currents are
then given as sums of deterministic parts and stochastic parts,

σ ′
ab = −Pδab + Cvis

abmn∂mvn + sab,

J ′
a = eva − σ ′

abvb − κ∂aT − ga, (7)

where P and T , respectively, denote the pressure and tem-
perature, and κ and Cvis

abmn, respectively, the heat conductivity
and the a, b, m, n component of viscosity tensor Cvis; s and
g denote the random stress and random heat current, respec-
tively. The mass-density current include no dissipation, so no
stochastic thermal effect arises there [32]. Note that P and
T are functions of mass density and internal energy density
(ρ, e − ρv2/2).

Thermal fluctuations (s, g) are written by white noises as a
consequence of the central limit theorem, and are governed by
the fluctuation-dissipation relations (FDR) [26],

〈sab(x, t )smn(x′, t ′)〉 = 2Cvis
abmnT δ(x − x′)δ(t − t ′),

〈ga(x, t )gb(x′, t ′)〉 = 2κT 2δabδ(x − x′)δ(t − t ′), (8)

〈sab(x, t )gc(x′, t ′)〉 = 0,

where 〈〉 denotes the noise average, and δ(t ) and δ(x) denote
the Dirac δ functions of one- and d-dimensional spaces,
respectively; δab = 1 (when a = b) = 0 (otherwise) is the
Kronecker δ.
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Besides, the high wave-number cutoff 	 is assumed to
express the noncontinuum range of short-wavelength [32].
The value of 	 can change in the renormalization process [7],
as detailed later.

The following analysis follows the above theoretical
framework of the semimacroscopic motions, and the verifi-
cation of it is out of the scope in this study. Please refer to
Refs. [33,34] for the molecular-dynamic verification of this
framework.

B. Fluctuating viscoelastic equations

Shear strain becomes an additional conserved order pa-
rameter in the viscoelastic materials that respond to shear
deformation elastically [16,30]. We here derive the fluctuating
viscoelastic equations by focusing on a parameter range where
such shear elastic response of media is relatively small.

The strain accumulates in an infinitesimal element of conti-
nuity due to relative velocity difference from the surrounding
other elements. It is written in the Lagrangian description as

Dεab

Dt
= 1

2
(∂avb + ∂bva), (9)

where D/Dt := ∂t + va∂a is the Lagrangian differentiation
operator, and εab denotes the a, b component of the strain ten-
sor. Elastic order yields the shear components of the Hookean
elastic stress σ el responding to the strain,

σ el
ab = Cel

abmnεmn, (10)

where Cel
abmn is the a, b, m, n component of stiffness tensor.

The shear strain and stress are given by the traceless parts of
the strain and stress tensors, respectively [1].

In the viscoelastic material, the elastic shear response
perturbs the aforementioned stress σ ′ of obeying the viscous
constitutive law. Such a perturbation can be additive, as long
as the shear elastic response is small enough to be linearized.
Then adding the traceless part of the Hookean response to
σ ′, we obtain the viscoelastic constitutive law of small elastic
shear stress,

σab = σ ′
ab + (

σ el
ab − δabσ

el
cc/d

)
, (11)

where σab denotes the a, b component of viscoelastic stress
σ . In terms of the volumetric part, Eq. (11) subtracting the
volumetric part of σ el is consistent with the thermodynamic
definition of the pressure, that is the adiabatic response to the
(reversible) volumetric change [16,32].

After the replacement of σ ′ with σ , the fluctuating vis-
coelastic equations are obtained from the fluctuating hydro-
dynamic equations as

∂tρ + ∂a(ρva) = 0,

∂t (ρva) + ∂b(ρvavb) = ∂bσab, (12)

∂t e + ∂aJa = 0,

(∂t + vc∂c)εab = (∂avb + ∂bva)/2,

with

σab = −Pδab + (Cabmn − δabCccmn/d )εmn

+Cvis
abmn∂mvn + sab,

Ja : = eva − σabvb − κ∂aT − ga. (13)

Equations (12) and (13) are consistent with the one-
dimensional viscoelastic equations derived from the ther-
modynamic discussions [30], after neglecting their vacancy
diffusion terms. In the following analysis, we do not consider
the vacancy diffusion despite that it is a possible cause of
the recovery of Fourier’s law in some cases [21,29]. This is
to focus on the effect of the elastic order in the fluctuating
viscoelastic equations being our main concern.

It is noteworthy that there is no distinction between the vis-
coelastic and fluid bodies in one-dimensional systems where
only the volumetric deformation exists. The traceless elastic
stress σ el

ab − δabσ
el
cc/d indeed becomes zero exactly at d = 1,

and elastic interactions are fully included in the pressure
there. The strict distinction is then unnecessary between the
viscoelastic and fluid media, or more widely between the
solid and liquid or gas, in one-dimensional systems in that
sense. These hold for one-dimensional systems and quasi-
one-dimensional systems such as carbon nanotubes becoming
one-dimensional in a coarse-grained view.

Note that the change in volumetric strain εaa and the
logarithmic change in the mass density ρ are connected by
the following relation:

D

Dt
[log ρ + εaa] = 0. (14)

This can be obtained from Eqs. (6) and (9). Therefore, there
can be indefiniteness in the formalism with respect to the
volumetric changes. Nevertheless, newly imposed reversible
stress σ el

ab − δabσ
el
cc/d in σ does not contain εaa terms at least

in the following analysis of isotropic homogeneous materials.
Hence, this study does not require any additional rules to avoid
such indefiniteness.

C. Two simplified models

The anomalous transport is caused by the coupling of
the thermal fluctuations incurred by the nonlinearity of the
governing equations [7,12]. Such growth of the transport
coefficients is estimated from the analysis of the fluctuating
motions of conserved quantities near an equilibrium state
[7,17,26] under the semimacroscopic theoretical framework.
Two famous models, a noisy Burgers fluid and a stirred incom-
pressible fluid, have been well studied near the equilibrium
states in the context of anomalous transport [7]. I introduce
modified models of these two representative models by adding
the small perturbation of pressure and elastic shear stress,
respectively, to study the lowest-order effect of the elasticity
in the RG flow.

A static thermodynamic state of zero-momentum
(ρ, v, e, ε) = (ρ0, 0, e0, ε0) is considered as a reference
state below, where A0 := 〈A〉 represents the original reference
value of a given variable A. The reference equilibrium state of
zero-momentum is consistent with the starting point equation
of the previous study [7].

1. Model simplification

Analyzed models follow widely adopted approximations
of (1) the constancy of the transport coefficients and (2)
decoupling hypothesis [7,18]. Regarding the constancy of
the transport coefficients, although the transport coefficients

012111-3



DYE SK SATO PHYSICAL REVIEW E 102, 012111 (2020)

(Cvis, κ) are thermodynamic quantities, previous studies have
ordinarily neglected their variations caused by the fluctuations
of the thermodynamic state (described by the thermodynamic
state quantities such as temperature and pressure),

(Cvis, κ ) 
 (
Cvis

0 , κ0
)
. (15)

This approximation is verified by that the nonlinearity of
the transport coefficients is irrelevant for analyzing the self-
similar scaling (related to the fixed points of the RG flows)
of the anomalous heat conduction [18]. Regarding the de-
coupling hypothesis, the nonlinear contributions of the heat
mode of linearized hydrodynamic equations are assumed to
be irrelevant for the sound modes [18]. The verification of
the decoupling hypothesis is well summarized in Ref. [18].
In the RG analysis near a zero-momentum reference state, as
far as we study the linearized hydrodynamic equations with
the streaming terms of the momentum- and energy-density
currents, the diagram expansion for the renormalized transport
coefficients under this decoupling hypothesis requires the
energy-density current to behave just like a passive scalar [21],

∂b(vaσab) → 0,

(
∂P

∂δe

)
δρ

→ 0. (16)

The current of the passive scalar has been investigated as a
model system of the anomalous transport for decades [7,35].
Although Ref. [21] pointed this reduced form of the decou-
pling hypothesis for one-dimensional fluids (including one-
dimensional Burgers’ one), this holds for the incompressible
and Burgers’ fluids of arbitrary dimensions given that their
diagram expansions are dimension-independent except pref-
actors [7]. The models investigated in this study have the same
diagram expansions as these fluidic models, so Eq. (16) is the
reduced form of the decoupling hypothesis there as well.

Besides, the cubic- or higher-order fluctuations are dropped
in the presented RG analysis, as in the previous study [7].
This is a working hypothesis to obtain the differential RG flow
(even in the previous analysis [7]), so this is mentioned later at
the beginnings of the RG analyses. Note that this hypothesis
has been examined theoretically [36] and is widely accepted
in the theoretical studies of the anomalous transport as it is
adopted even in the mode-coupling analysis [18].

Homogeneity and isotropy of the medium are adopted
widely in the anomalous-transport studies [7]. The viscosity
tensor is there parametrized as

Cvis
abmn = ηδabδmn + ζ (δamδbn + δanδbm), (17)

with shear viscosity ζ and volume viscosity η + 2d−1ζ . The
stiffness tensor becomes

Cel
abmn = λ̃δabδmn + μ(δamδbn + δanδbm), (18)

where λ̃ and μ, respectively, denote Lame’s first and second
parameters, and μ corresponds to the rigidity of the medium.
Note that the assumption of the isotropy is unnecessary for
studying one-dimensional cases [17,18] where any tensors
reduce to a scalar.

To get results comparable with those previous studies, I
here focus on the minimum changes of these fluidic models
occurring due to the elasticity of the media. First, I drop the

nonlinear terms multiplied by the stiffness tensor, e.g.,

Cel 
 Cel
0 . (19)

Second, I adopt the zero shear strain or negligibly small shear
strain for the reference equilibrium state,

ε0,ab − δabε0,cc/d → 0. (20)

Near the zero-shear-strain states, the dependence of the tem-
perature and pressure on traceless strain starts from the second
order of fluctuations with the stiffness tensor. This is because
traceless-strain dependencies of them come from the internal
strain energy (contributed from the square of the strain) or the
second and third invariants of stress (on the square order of
the strain), due to the requirement of the coordinate-rotation
invariance of the governing equations. Second-order fluctua-
tions multiplied by the stiffness tensor are further dropped in
the following analysis as the nonlinearity related to the elastic
shear stress. These linearizations regarding the shear elastic
motions are to investigate the lowest-order effect associated
with the shear elastic response.

As above, the assumptions adopted in the model equations
of this study are the assumptions inherited from the previous
theoretical studies and the linearization of the elastic effects.
Given that the assumptions of previous studies are well in-
vestigated by the previous studies themselves over decades
(as summarized in Ref. [18]), the crucial assumption of this
study will be the linearization concerning the elastic response
that drops the nonlinear terms proportional to the stiffness
tensor. The aim of this paper is to study how the RG flow
of the previous studies is perturbed by the elastic effect they
did not consider. The linearized elastic effect represents the
most dominant part of such perturbation. I focus on it, and
the limitation of this study due to the neglected higher-order
elastic perturbation will be examined in the discussion section.

For later analytical simplicity, I introduce the displacement
ψ with setting its reference value at 0 without loss of general-
ity. The Hookean response is then expressed as

Cel
abmnεmn = Cel

abmn∂mψn. (21)

2. Incompressible viscoelastic materials

After these simplifications, a simple model is obtained with
the approximation of incompressibility,

δρ = 0, (22)

where δ represents the index of the fluctuations giving δA :=
A − 〈A〉 to a variable A. This condition is equivalent with

∂aψa = εaa = 0, (23)

given Eq. (14). Under such a condition of incompressibil-
ity, with aforementioned model simplification and near the
aforementioned equilibrium states, original Eqs. (12) and (13)
reduce to

∂tψa = va, ∂ava = 0,

∂tva + ∂b(vavb) = −∂aδp + Y0�ψa + ν0�va + ∂bs′
0ab,

∂tδe + ∂a(δeva) = D�δe + ∂ag0a, (24)

up to the second-order fluctuations, where D := κ (∂T/∂e)ρ
and ν0 := ζ0/ρ0 denote thermal diffusivity and kinetic
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viscosity, respectively; variables p := P/ρ,Y := μ/ρ, s′ :=
s/ρ0 are introduced for brevity. Y represents the square of the
transverse wave speed. The functional form of δp is given by
a rewritten incompressible condition:

∂ava = 0. (25)

The difference of this set of model equations from that for the
incompressible fluids in Ref. [7] fully comes from the elastic
shear response Y0�ψa and the energy current fluctuations
g0a. Whereas g0a is neglected in the previous study [7] for
technical simplicity, the following results of the RG flows
are independent from the presence or absence of g0a. The
difference in ga is thus irrelevant to compare the following
analysis and that in Ref. [7]. The intrinsic difference between
the previous and following RG analyses is the elastic shear
contribution Y0�ψa only.

This fluctuating incompressible viscoelastic equation rep-
resents the minimum change of the fluctuating incompressible
fluids induced by the elastic shear response. The following
analysis is based on this fluctuating incompressible viscoelas-
tic equation near d = 2, where the heat conductivity is shown
to diverge for the case of the stirred incompressible fluids
(corresponding to Y0 = 0) [7]. At d = 1, incompressible ap-
proximation only gives a linear heat diffusion equation with
a trivial rigid-body solution v = 0 and fails to capture the
anomalous heat conduction even in the previous study [7]. So
we consider another model next below.

3. One-dimensional materials under low pressure

To study one-dimensional cases, a useful set of model
equations is the tandem of the diffusion equation of a passive
scalar and the noisy Burgers’ equation [7,21,37].

By adding an energy-density-independent small pressure
perturbation to the noisy Burgers’ equation, a minimal model
is obtained to study the effect of pressure in the RG flow of
one-dimensional fluctuating hydrodynamic equation,

∂tδρ + ∂xu = 0,

∂t u + ρ−1
0 ∂xu2 = −Y0∂xδρ + ν0�u + ∂xs, (26)

∂tδe + ρ−1
0 ∂xuδe = D�δe + ∂xg,

where u := ρv denotes the momentum. This set of equations
is obtained from a one-dimensional hydrodynamic equations
in a similar manner to the incompressible cases. Please refer
to Ref. [21] for details. The variable ν := (η0 + 2d−1ζ0)/ρ0

represents the volumetric kinetic viscosity as in the Burgers
fluids and is not the kinetic shear viscosity appearing in the
incompressible fluids. Then ν consistently represents the char-
acteristic viscosity in both of the presented model equations.
Similarly, the definition of Y := (∂P)/(∂ρ)e is here the square
of the longitudinal wave speed (sound speed), and is different
from the case of the incompressible fluids where Y represents
the square of the transverse wave speed. In both models, Y
represents the square of the characteristic wave speed. As in
the incompressible cases, the difference from the previous
study of the noisy Burgers equation (associated with Y0 = 0)
is only Y0 in the following RG analysis.

III. RESULTS

The RG flows of the semimacroscopic model equations
are presented in this section. The prediction of RG flows is
tested subsequently by the microscopic molecular-dynamic
simulations of the FPU-β lattices.

A. Dynamic renormalization-group analysis

The RG flow of the fluctuating incompressible viscoelastic
equations is studied particularly near d = 2. At d = 1, that of
Eq. (26) is investigated.

1. Dynamic renormalization-group analysis of incompressible
viscoelastic materials

We begin the calculation of the dynamic RG flow with
erasing the pressure and displacement from the governing
equations in a nonperturbative manner. The following analysis
is executed in the Fourier domain with the Fourier transform
f (k, ω) = ∫

dxdt exp[i(k · x + ωt )] f (x, t ), where k and ω

denote the wave-number vector and angular frequency, re-
spectively. The strain is expressed by using the velocity,
and the functional form of the pressure is determined from
an incompressible condition (∂ava = 0). Consequently, the
original equations reduce to

va = G f̂a − iλGPabc(vb ∗ vc), (27)

δe = gf ′ − iλgka[va ∗ (δe + ρ0δp)], (28)

in the Fourier space with

G := [iω + (ν0 − iY0/ω)k2]−1,

g := (iω + D0k2)−1, (29)

δp = −k−2[ikc fc + kbkcλ(vb ∗ vc)],

where fa := ∂bs0ab/ρ0, f̂a := Pab fb, f ′ := ∂aga express
noises, Pabc := (Pabkc + Packb)/2 is defined according
to the convention [7] with Pab(k) := δab − kakb/k2, and
λ is a nonlinear intensity factor as in previous studies
[7], which expresses the smallness of the fluctuations;
(a ∗ b)(k, ω) := ∫

dqd�a(k − q, ω − �)b(q,�) expresses
the convolution of the arbitrary functions a and b in the
Fourier space.

Among the three noise terms, f̂a only contributes to the
renormalizations in the following analysis and has the follow-
ing properties for the isotropic viscous tensor Eq. (17),

〈 f̂a(k, t ) f̂b(k′, t ′)〉 = �0k2Pab(k)

(2π )d+1
δ(k + k′)δ(t + t ′),

� := 2ρ−1νT . (30)

Pab projects fb to the incompressible solenoidal motions of f̂a.
We next calculate the RG flow in a differential manner. The

following two procedures repeat alternately in the dynamic
renormalization group.

One is eliminating short-wavelength fluctuations within the
spherical shell 	e−l < k < 	 in the wave-number domain.
Their contributions to the longer-wavelength motions can be
calculated from averages taken over short-wavelength fluctu-
ations in the shell. Such contributions are renormalized to the
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phenomenological constants in the above set of the governing
equations as

(ν0, �0, D0) → (νR, �R, DR), (31)

where the subscript R is an index to represent a renormalized
value. Shifts from the original values to the renormalized
values are on the order of the thickness of the shell, that
is, of O(	l ). The lowest order O(	l ) contribution to the
renormalized phenomenological constants is calculated from
one-loop solutions [7] as n-loop contribution is of O[(	l )n].

The other cubic or higher orders (such as v3) appearing
in the renormalized governing equation are eliminated for
the case of the incompressible hydrodynamic fluctuations [7].
Its validity is investigated in Ref. [36] in a nonperturbative
manner with the help of the dimensional analysis. Reference
[36] showed that these higher orders become marginal at
d < 2, and irrelevant at d � 2, for the stirred incompressible
fluids (called Model A of Ref. [7] in Ref. [36]). The physical
applicability of the incompressible fluid model is strictly for
d � 2 giving well-defined solenoidal fields, so the RG flow
of the stirred incompressible fluids give the exact results even
with dropping the higher orders, as far as within its applicable
dimensions [36]. The model investigated in this subsubsection
has the same diagrams as the stirred incompressible fluids,
except the difference in the functional form of the Green’s
function G for the momentum fields, so the dimensional
analysis provided by Ref. [36] holds for this model as well.
We thus drop the third- and higher-order terms in the incom-
pressible viscoelastic equations below as in Ref. [7].

The other procedure is rescaling. The wave number is there
rescaled as

k → k′ := kel , (32)

so to keep the total spherical diameter at 	 in the wave-
number domain. The angular frequency is also scaled as

ω → ω′ := ωe
∫

dlz(l ). (33)

For obtaining the scaling for the leading-order term of the
governing equations, z is determined so as to keep the di-
vergent coefficient finite. In the dynamic RG flow of the
fluctuating hydrodynamic equation [7], z is chosen to rescale
νR to ν0 so as to keep the substantial kinetic viscosity constant.
I follow this definition of z tentatively, and the validity of
this choice is considered later. Last, the variables (v, δe)
are also rescaled to keep the characteristic intensity of the
fluctuations (temperature) constant as (v, δe) → (v′, δe′) :=
(v, δe) exp[− ∫

dl (z + d/2)]. These rescalings modify the
values of renormalized coefficients in the renormalized and
rescaled governing equations as

(νR, �R, DR) → (νR, �R, DR)e
∫

dl (z−2). (34)

Their alternate repetitions regarding respective shells of
the infinitesimal thicknesses (	l → 	dl) determine the flow
of the dynamic renormalization-group of the phenomenolog-
ical coefficients (ν,�, D) in the renormalized and rescaled
equations. The flow is given by the differential form of the

renormalization group:

dν

dl
= ν(z − 2 + Ad λ̄

2),

d�

dl
= �(z − 2 + Ad λ̄

2),

dλ

dl
= λ(z − 1 − d/2), (35)

dY

dl
= Y (2z − 2),

dD

dl
= D

(
z − 2 + (d − 1)K̃d

κ̄ (1 + κ̄ ) + Ȳ
λ̄2

)
,

where λ̄:=λ
√

�	d−2/ν3, Ȳ := Y/(ν	)2, κ̄:=κ (∂P/∂e)ρ/ν
are nondimensionalized coefficients introduced for brevity,
and l in this set of differential equations parametrizes
the accumulations of eliminated (and rescaled) shells
of the infinitesimal thickness; two dimension-dependent
nondimensional constants Ad and Kd are introduced as in
Ref. [7] as

Ad := d2 − 2

(d2 + 2d )(2
√

π )d�(d/2)
, (36)

K̃d := [2(2
√

π )d�(d/2 + 1)]−1, (37)

where �(·) denotes the Gamma function. Note that K̃d cor-
responds to Kd/d in Ref. [7]; although the specific form of
K̃d (Kd/d) is different by factor 2 between Eq. (37) and that
of Ref. [7], it is not relevant for the following discussions,
and so I do not discuss it here. The parts proportional to λ2

(λ̄2) in Eq. (35) correspond to the renormalization contributed
from the short-wavelength fluctuations, and the others are
associated with the rescaling.

The value of z is chosen to keep ν invariant as z = 2 −
Ad λ̄

2, and the flow reduces to

dλ̄

dl
= λ̄(1 − d/2 − Ad λ̄

2),

dȲ

dl
= Ȳ (2 − 2Ad λ̄

2),

d κ̄

dl
= κ̄ λ̄2

(
−Ad + (d − 1)K̃d

κ̄ (1 + κ̄ ) + Ȳ

)
. (38)

This is the RG flow for the incompressible viscoelastic equa-
tions Eqs. (24) and (25) of keeping the kinetic viscosity
constant. The value of κ̄ [= κ (∂P/∂e)ρ/ν] expresses the size-
dependence of the ratio between κ and ν, because the heat
capacity (∂T/∂e)ρ (of constant mass density) is an intensive
thermodynamic quantity and thus size-independent.

In d <
√

2, this flow does not have any nontrivial fixed
points with a real λ̄ value, and thus cannot predict anomalous
transports seen in the simulations at d = 1. It would reflect
the rigid body behavior v = 0 in one-dimensional incom-
pressible systems. In the case of d = 1, nonlinear couplings
(vavb = 0, δeva = 0) cancel in the governing equations, and
the energy density obeys the normal diffusion equation, as
noticed from Eqs. (24) and (25). This is the same problem
as for the stirred incompressible fluids and should be regarded
as the limitation of the incompressible models. The following
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analysis of the RG flow Eq. (38) focuses on
√

2 < d � 2,
where the fluctuating incompressible hydrodynamic equations
predict the anomalous heat conduction.

In d < 2, the trivial fixed point λ̄ = 0 of Eq. (38) is unsta-
ble when the flow is perturbed to the λ̄ direction. Therefore,
the value of λ̄ is noticed to converge to λ̄∗ := √

(1 − d/2)/Ad ,
being a unique linearly stable fixed point for the differential
RG flow of λ̄, at l � 1, given that the renormalization starts
with λ > 0. This convergence exponentially progresses as l
accumulates. At λ = λ∗, the flow has two fixed points. One is
the fixed point for zero rigidity limit Ȳ → 0,

[μ/(ζ	)2, κcT /ν] = [0,CId (> 0)], (39)

where the heat capacity (∂T/∂e)ρ of the constant mass density
is rewritten as cT , and nondimensional constants Ȳ and κ̄

are rewritten as μ/(ζ	)2 and κcT /ν with dimensional con-
stants for an explanatory purpose; the positive constant CId is
estimated as

CId ∼
√

(d − 1)K̃d/Ad (40)

by using (d − 1)K̃d/Ad � 1. This fixed point is the previously
known fixed point of the anomalous heat conduction [7]. The
flow reaches to this fixed point Eq. (39) if Ȳ0 = 0, but it is
generally unstable against the perturbation of the imposed
rigidity. For the case of the nonzero rigidity, Ȳ grows expo-
nentially,

Ȳ ∼ Ȳ0eld , (41)

at l � 1. Note 2 − 2Ad λ̄
2 ∼ d . By using this exponential

growth of Ȳ , the following exponential decay of κ̄ is obtained
as a solution for κ̄ at l � 1 in the case of Ȳ0 > 0:

κ̄ ∼ exp(−Ad λ̄
2l ). (42)

The linearly stable fixed point for Ȳ0 � 0 is then found to be

(μ/(ζ	)2, κcT /ν) = (∞, 0). (43)

The relation κcT /ν = 0 means the breakdown of the hyper-
scaling between the kinetic viscosity and the heat conductiv-
ity, and is clearly corresponding to the recovery of Fourier’s
law.

The case of d = 2 is delicate because the nontrivial fixed
point of λ̄ degenerates to the trivial one in Eq. (38) as λ̄∗ → 0.
For d = 2, the l-dependence of λ̄ is there obtained as

λ̄ = 1/
√

2Ad l + 1, (44)

with using λ0 = 1. Its converging rate to the fixed point is
much slower than the exponential speed in d < 2. This slow
inverse-square-root decay yields the necessity to consider the
transient behavior of λ̄ in the following analysis for κ̄ . The
previous work [7] revealed a nontrivial fixed point in d = 2
with Ȳ = 0,

(μ/(ζ	)2, κcT /ν) = (0,CI2). (45)

In our analysis, CI2 is given as

CI2 := (1 +
√

17)/2. (46)

Note that because the coefficient K̃d of ours is slightly differ-
ent (by factor 2) from that of Ref. [7], the value of CI2 in the

above estimate deviates from that of Ref. [7], yet discussing
such a subtle factor is out of the scope in this study, as
mentioned earlier. Meanwhile, the exponential growth of Ȳ
occurs even at d = 2 for the initial condition Ȳ0 = 0,

Ȳ ∼ Ȳ0e2l . (47)

In this case of Ȳ0 = 0, the evolution of κ̄ transitions around a
particular value l∗ of l (l ∼ l∗) such that

κ̄ (κ̄ + 1) ∼
√

Ȳ .

The terms in both hands are in the denominator of the third
term in the flow for κ̄ in Eq. (38). At l � l∗, Ȳ is negligible
there, and κ̄ converges to CI2 as in the case of Ȳ = 0,

κ̄ ∼ CI2. (48)

Related convergence is nonasymptotic, so we cannot find
simple expression to describe κ̄ approaching CI2. In contrast
to l � l∗, the third term in Eq. (38) vanishes when l is large
enough to give l � l∗, i.e., Ȳ � κ̄ (κ̄ + 1) ∼ CI2(CI2 + 1).
The corresponding asymptote of κ̄ at l � l∗ is estimated as

κ̄ ∼ κ̄∗/
√

l/l∗, (49)

with a constant κ̄∗, by using λ̄ ∼ 1/
√

2Ad l obtained from
Eq. (44) at l � 1/(2Ad ). The value of κ̄∗ is expected to be
near CI2 given the converging nature of κ̄ to CI2 at l � l∗.
Equations (47) and (49) indicate that the flow converges to
the fixed point

(μ/(ζ	)2, κcT /ν) = (∞, 0) (50)

at l � l∗. The recovery of Fourier’s law thus remains even in
d = 2 as long as Ȳ > 0, meaning the nonzero elastic shear
resistance (nonzero rigidity).

The following is convenient for expressing two asymptotes
of Eq. (48) for l � l∗ and Eq. (49) for l � l∗:

κ̄ ∼ κ̄∗/(1 +
√

l/l∗). (51)

The factor 1 in the denominator is to regularize this expression
around l � l∗, and Eq. (51) reduces to Eq. (48) at l � l∗ and
Eq. (48) at l � l∗.

The above analysis of the RG flow for the rescaled coor-
dinates can describe the growth of the transport coefficients
in the original scale [7]. Since it requires a transformation
rule between the original and rescaled coordinates, I first
describe that rule by following the formalism developed by
the previous studies [7,17]. After deriving the related simple
asymptotes analytically, we see the exact scaling of transport
coefficients in a numerical way [Fig. 1(a)]. I here focus on
d = 2 of interest.

Variables in the original coordinate are obtained as prod-
ucts of the scaled variables and scaling factors. For example,
a given wave number k(l ) at finite l is scaled as k(l ) =
k(0) exp(−l ) from the original wave number k(0). The cutoff
wave number is also as 	(l ) = 	0 exp(−l ). The angular
frequency is scaled as ω(l ) = ω(0) exp[− ∫

dlz(l )].
The kinetic viscosity ν(l ) at given l in the RG flow is the

transport coefficient renormalizing the eliminated fluctuations
that have belonged to the shorter wavelength k > 	(=	0)
in the rescaled coordinate. Therefore, with rescaling, ν(l ) be-
comes the renormalized kinetic viscosity at the wave number
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FIG. 1. Predicted ratios (νR/ν0 and κR/κ0) of the renormalized transport coefficients (νR and κR) to the bare transport coefficients (ν0 and κ0)
in the angular-frequency scale ω, indicating the breakdown of the hyperscaling between the kinetic viscosity and the heat conductivity; ω/ω0 =
exp(− ∫

dlz), νR/ν0 = exp[− ∫
dl (z − 2)], κR/κ0 = (κ̄/κ̄0)νR/ν0 are given by the flows of the dynamic renormalization group as the functions

of l and the selected initial conditions (λ̄0, κ̄0, Ȳ0). (a) Frequency-dependence of the renormalized transport coefficients in two-dimensional
incompressible viscoelastic materials, predicted by the RG flow Eq. (38) of d = 2, for the case of an initial condition (λ̄0, κ̄0, Ȳ0 ) = (1, 1, 10−4).
(b) Frequency-dependence of the renormalized transport coefficients in one-dimensional materials subjected to a small pressure perturbation,
predicted by the RG flow Eq. (66), for the case of an initial condition (λ̄0, κ̄0, Ȳ0 ) = (1, 1, 10−3).

	(l ) in the original scale. The renormalized kinetic viscosity
νR(	(l )) of the original coordinate is then given from ν(l )
with its scaling factor,

νR(	e−l ) = ν(l )e− ∫
dl[z(l )−2]. (52)

Note 	(l ) = 	e−l . Further considering that ν(l ) is unchanged
from ν0 in the investigated RG flow [Eq. (38)], we obtain

νR(	e−l ) = ν0e− ∫
dl[z(l )−2]. (53)

Besides, κRcT is given as the product of κ̄ and νR. By con-
sidering the constancy of cT mentioned earlier, and that the
rescaling factors of ν and D(= κcT ) are the same in the RG
flow [Eq. (34)], we obtain

κR(	e−l )cT = κ̄ (l )νR(	e−l ). (54)

It gives

κR(	e−l )/κ0 = [κ̄ (l )/κ̄0]νR(	e−l )/ν0. (55)

Let us obtain the asymptotes for νR and κR. Because
z = 2 − Ad λ̄

2 asymptotically reaches to 2 − 1/(2l ) due to
λ̄ ∼ 1/

√
2Ad l [Eq. (44) at l � 1], the renormalized kinetic

viscosity at l � 1 is given as

νR(	e−l ) ∼ ν0

√
l, (56)

or equivalently,

νR(k) ∼ ν0

√
ln(	0/k). (57)

It is consistent with the result of Ref. [7] for the stirred incom-
pressible fluids. Substituting Eqs. (51) and (56) to Eq. (55)
and using κ̄0 ∼ κ̄∗ [l → 0 of Eq. (51)], the heat conductivity
is shown to satisfy

κR(	e−l ) ∼ κ0

√
l/(1 +

√
l/l∗), (58)

or equivalently,

κR(k) ∼ κ0

√
ln(	0/k)

1 + √
ln(	0/k)/

√
ln(	0/k∗)

, (59)

where k∗ := 	0 exp(−l∗). It is the same as

κR(k) ∼ κ0

√
ln[	0/ max(k, k∗)] (60)

for describing the asymptotic behaviors at k∗ � k � 	0 and
k � k∗. Equation (60) shows that the growth of the renormal-
ized heat conductivity begins to stop around the wave number
k∗ characterizing the breakdown of the hyperscaling between
the heat conductivity and kinetic viscosity in the RG flow.

The size dependencies of the renormalized transport co-
efficients are satisfactorily given in the angular-frequency
(ω) domain as νR(ω), κR(ω) rather than in the wave-number
domain, as previously known for the anomalous heat con-
duction [17]. By using the asymptotic scaling exponent z = 2
for d = 2, the angular frequency is found to be proportional
to the squared wave number asymptotically (ω ∝ k2). This
asymptotic dispersion relation rewrites the aforementioned
results Eqs. (57) and (59) in the wave-number domain as

νR(ω) ∼ ν0

√
ln(ω0/ω), (61)

κR(ω) ∼ κ0

√
ln[ω0/ max(ω,ω∗)], (62)

where ω∗ := ω0(k/	0)z [∼ω0(k/	0)2] is the cutoff angular
frequency scale, and ω0 is a value of the angular frequency
giving κR(ω0) = κ0. Given the kinetic theory of gases [11], ω0

will be given as ω0 = √
Y0	0. The same logarithmic depen-

dencies arise in the frequency domain as in the wave-number
domain.

The size-dependent values of observed transport coeffi-
cients νR(L) and κR(L) at the length L are given by νR(ω)
and κR(ω) with using the characteristic time scale L/c
(ω = 2πc/L in the angular-frequency scale) for given wave
speed c [17],

νR(L) ∼ ν0

√
ln(Lω0/2πc), (63)

κR(L) ∼ κ0

√
ln[min(L, L∗)ω0/(2πc)], (64)
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where L∗ := 2πc/ω∗ denotes the characteristic scale of the
cutoff.

Figure 1(a) shows an example of the numerically computed
renormalized variables in the original coordinate. The RG
flow Eq. (38) is numerically computed, and νR is calculated
from Eq. (53) with z(l ) giving Eq. (38); κR/κ0 is given as
the product of κ̄/κ̄0 and νR/ν0 through Eq. (55). These are
parametrized as functions ω(l ) given by the scaling relation
Eq. (33). Figure 1(a) indicates the breakdown mentioned
above of the hyperscaling in the angular-frequency scale. The
early divergence is shown to be slightly faster than the square-
root logarithm predicted in the above asymptotic analysis
and Ref. [7] because of O(l−1) terms neglected in these
asymptotic analyses. Except for such a subtle difference in
terms of the functional forms of divergence, the exact flow of
the renormalization group is met to the above analytically ob-
tained asymptotic behaviors of the transport coefficients. The
growth of the heat conductivity is saturated, and it indicates
the recovery of Fourier’s law.

2. Dynamic renormalization-group analysis of one-dimensional
materials under low pressure

With the same procedure as in the incompressible cases,
the following is obtained in the case of Eq. (26):

dν

dl
= ν[z − 2 + λ̄2/(2π )],

d�

dl
= �[z − 2 + λ̄2/(2π )],

dλ

dl
= λ(z − 3/2),

dY

dl
= Y (2z − 2),

dD

dl
= D

[
z−2+ λ̄2

2π

1

κ̄ (1 + κ̄ ) + Ȳ

(
5

2
− κ̄ (1 + 3κ̄ )

κ̄ (1 + κ̄ ) + Ȳ

)]
.

(65)

The results other than that for � are the same as Ref. [21]. I
here corrected a mistake of Ref. [21] in terms of renormalized
�, which has faultily induced the breakdown of FDR in the
RG flow in the previous study. After such correction, FDR
is consequently kept naturally [�(l )/ν(l ) = �0/ν0] under the
RG flow of Eq. (65) for an arbitrary choice of z.

The value of z is set at z = 2 − λ̄2/(2π ) in order for
ν to be fixed at the initial value as in the above analysis
of the incompressible viscoelastic materials. The flow then
reduces to

dλ̄

dl
= λ̄

(
1

2
− λ̄2

2π

)
,

dȲ

dl
= Ȳ (2 − λ̄2/π ),

d κ̄

dl
= κ̄ λ̄2

2π

[
−1+ 1

κ̄ (1 + κ̄ ) + Ȳ

(
5

2
− κ̄ (1 + 3κ̄ )

κ̄ (1 + κ̄ ) + Ȳ

)]
.

(66)

The reduced flow Eq. (66) has the following two nontrivial
fixed points of giving λ̄ = √

π (z = 3/2):[
1

(ν	)2

(
∂P

∂ρ

)
e

,
κcT

ν

]
= [0,C1(>0)], (67)

with

C1 = −2

3
+ 1

3
√

2

×
[

3
√

103 + 9
√

131

21/6
− 21/6

3
√

103 + 9
√

131

]
(68)

and [
1

(ν	)2

(
∂P

∂ρ

)
e

,
κcT

ν

]
= (∞, 0). (69)

As for the case of the aforementioned incompressible vis-
coelastic material, the former is achievable only when Ȳ0 = 0,
and the latter is unconditionally linearly stable. Note that
trivial Gaussian fixed points of λ̄ = 0, z = 2 are unstable.
Given that the unconditionally linearly stable fixed point is
uniquely that of κ̄ = 0, as long as the system has the nonzero
longitudinal wave speed

√
Y 0 > 0 in the original scale, the

recovery of Fourier’s law is noticed to occur unavoidably in
this one-dimensional model setting.

In a similar way to that of the incompressible viscoelastic
case shown earlier, the kinetic viscosity and heat conductivity
are given as

νR(ω) ∼ ν0(ω/ω0)−1/3, (70)

κR(ω) ∼ κ0(max(ω,ω∗)/ω0)−1/3, (71)

in the angular-frequency domain of the original (un-rescaled)
coordinate. The value of ω∗ is given asymptotically as
ω∗ ∼ ω0(k∗/	0)3/2 at l � 1, which is different from ω∗ ∼
ω0(k∗/	0)2 for the cases of the two-dimensional incom-
pressible viscoelastic materials, due to the difference in the
asymptotic values of the scaling exponent z (z = 2 for the case
of the two-dimensional incompressible viscoelastic materials,
z = 3/2 for this case).

The size-dependent values of observed transport coeffi-
cients νR(L) and κR(L) at length L are given as

νR(L) ∼ ν0[Lω0/(2πc)]1/3, (72)

κR(L) ∼ κ0[min(L, L∗)ω0/(2πc)]1/3, (73)

in the same way as in the two-dimensional incompressible
cases.

Figure 1(b) shows an example of the renormalized trans-
port coefficients in the original scale predicted from the RG
flow Eq. (66). After certain overhangs, the kinetic viscosity
and heat conductivity diverge in proportion to the power of
ω (ω−1/3) at the initial stage of the renormalization within a
high angular-frequency range ω � ω∗. At the later stage ω �
ω∗, the hyperscaling becomes noticeably broken between the
kinetic viscosity and the heat conductivity. It provides the
saturation of the increase of the heat conductivity, the recovery
of Fourier’s law.
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Concerning the validity of the RG flow, Ref. [36] reported
that the cubic- or higher-order terms such as v3 are marginal
for the renormalized governing equation in the case of the
KPZ equation (or equivalently of the noisy Burgers equation)
at d < 2. The model investigated in this subsection has the
same diagram expansion as that of the noisy Burgers equa-
tion at d = 1, so the dimensional analysis provided to the
KPZ equation by Ref. [36] holds for this model as well.
Therefore, if the fluctuations are small enough at the ini-
tial condition, then we can drop the third- or higher-order
fluctuations throughout the calculation of the RG flow. Now
the problem is concerning the semimacroscopic fluctuations,
and then the smallness of the fluctuation in the starting-
point equation is the requirement of the equilibrium statistical
mechanics. Given these, we are allowed to drop the third- and
higher-order terms in the presented modified noisy Burgers
equations. Note that Ref. [38] claimed that these higher orders
are irrelevant, so there may be the debate whether these
higher-order terms are irrelevant or marginal for the equations
belonging to the KPZ class. Nonetheless, when these terms
are irrelevant, we can drop them more safely, so such debates
do not matter to the validity of the presented RG analysis.

B. Comparison of semimacroscopic theory
and microscopic numerics

1. Ballistic scaling and scaling crossover in low-dimensional
momentum-conserving viscoelastic materials

Only the nonzero Ȳ (corresponding to the square of the
phase velocities) diverged under the RG flows of keeping the
kinetic viscosity at a constant value. This divergence indicates
that the elastic forces parametrized by Ȳ dominate the long-
wavelength motions of the viscoelastic materials and make the
anomalous transport secondary there.

The scaling of z is thus of interest under the flow of
keeping Ȳ —the unique divergent term in the investigated RG
flows—at a constant value, because such a scaling exponent
z is providing the scaling of the leading terms governing the
macroscopic motions. Such a value of the scaling exponent z,
setting Ȳ constant, is found to be

z = 1 (74)

from RG flows Eqs. (35) and (65) for both of the investigated
two models. The scaling given by z = 1 (called the ballistic
scaling hereafter) provides the ballistic dispersion relation

k ∼ ω. (75)

When z = 1, the other coefficients ν,�, λ, D being finite
or zero at z = 2, 3/2 converge to 0 exponentially as l ac-
cumulates. It indicates that the nonlinear streaming terms
and the thermal fluctuations become irrelevant for the long-
wavelength motions the elastic motion dominates.

It may be worth emphasizing that the ballistic fixed point
does not mean the ballistic heat transport, which makes the
energy current proportional to the temperature difference be-
tween thermal reservoirs attached to the edges of the material
(not proportional to the temperature gradient within the bulk)
resulting in the exponent α = 1 [39] apparently. Such behav-
ior is particularly seen in the integrable systems such as the
homogeneous harmonic chains [40]. As shown in the RG flow

of the one-dimensional model with z = 3/2 in Eq. (65) (and
z = 2 in Eq. (35) for d = 2), the heat conductivity is kept fi-
nite and α = 1 is not achieved. The name of the ballistic fixed
point is just for expressing the dispersion relation realized at
that fixed point.

Rather than α = 1, this ballistic scaling z = 1 of the RG
flows is related to the breakdown of the hyperscaling between
the kinetic viscosity and the heat conductivity [Eqs. (50) and
(69)], and thus to the recovery of Fourier’s law,

α = 0. (76)

Indeed, in Eq. (65) and Eq. (35) for d = 2, κ̄ represent-
ing the ratio of κ to ν starts decreasing at Ȳ � κ̄ (1 + κ̄ )
accompanying with the explosion of Ȳ . It means that the
hyperscaling is broken when the leading term becomes related
to Ȳ . Then we notice that the scaling crossover from the
inviscid scaling to the ballistic scaling induces the break-
down of the hypescaling, and consequently, the recovery of
Fourier’s law. This causal relationship between the ballistic
scaling and recovery of Fourier’s law is consistent with the
one-dimensional molecular-dynamic study of Ref. [21] that
observes z = 1 in the spatiotemporal autocorrelation functions
of diagonalized currents of mass, momentum, and energy
under the thermodynamic conditions that can indicate the
recovery of Fourier’s law.

2. Characteristic length-scale of the scaling crossover and the
recovery of Fourier’s law

The above analyses suggested that the recovery of Fourier’s
law can be the scaling crossover between the two nontrivial
fixed points of the RG flows: the inviscid and ballistic fixed
points. It is thus interesting to infer the characteristic length-
scale L∗, or equivalently the size-scale N∗ of the recovery
of Fourier’s law from these RG flows to verify this picture.
The following is to obtain such a relation from the RG flows
to predict L∗ (or N∗), which allows us to test the developed
RG analysis from the microscopic molecular-dynamic simu-
lations.

The anomalous heat conduction is related to the inviscid
fixed point in the presented RG flows. Around that point, the
value of Ȳ is negligible, and the value of κ̄ is given by some
constant, namely,

κ̄ ∼ Cd . (77)

The constant Cd is given by CId in the flow Eq. (38) of the
incompressible viscoelastic equations, and by C1 for Eq. (66)
of the modified noisy Burgers equation of including the small
pressure perturbation.

The scaling crossover has been quantified by the detach-
ment of the flow from the inviscid fixed point. Such detach-
ment has attended the growth of Ȳ . The following balance
condition gives the characteristic scale of starting this detach-
ment in the investigated RG flows:

Ȳ ∼ κ̄ (1 + κ̄ ). (78)

This condition is satisfied at the characteristic wave number
k∗. With dimensional variables, it is rewritten as

vacoustic/k∗ ∼
√

κ∗cT (κ∗cT + ν∗), (79)
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where κ∗ and ν∗ are the renormalized values of heat conduc-
tivity and kinetic viscosity, respectively, at the wave number
k∗; vacoustic := √

Y represents the longitudinal wave speed
(that is the sound speed c) in one-dimensional cases, and the
transverse wave speed in two-dimensional cases. Before the
detachment is done, the flow stagnates around the inviscid
fixed point, and thus κ̄ at l∗ (κ∗cT /ν∗) is near Cd of O(1)
as Eq. (77). By using it, we can rewrite the flow separation
condition Eq. (79) as

vacoustic/k∗ ∼ κ∗cT (80)

with neglecting a prefactor
√

1 + 1/Cd of O(1). The charac-
teristic length L∗ = 2π/k∗ is then given as

L∗ ∼ 2πκ∗cT /vacoustic. (81)

It gives the scaling of the recovery of Fourier’s law with the
rewritten form of Eqs. (64) and (73):

κ (L) ∼ κ∗[min(L/L∗, 1)]α. (82)

These relations Eqs. (81) and (82) hold for both the one- and
two-dimensional cases studied in this paper.

Besides, Eq. (5) shows that the converged heat conductiv-
ity is evaluable by κGK estimated through the Green-Kubo
formula under the same (T, P) condition with the periodic
boundary (corresponding to sufficiently large samples) [21].
Equation (5) reduces Eqs. (81) and (82) to

L∗ ∼ 2πκGKcT /vacoustic, (83)

κ (L) ∼ κGK[min(L/L∗, 1)]α. (84)

Interestingly, the variables contained in the right-hand sides
of Eqs. (83) and (84) are fully evaluable in the equilibrium
settings. Values of cT and vacoustic are obtained from the
equilibrium statistical mechanics; the evaluation of them for
the lattice systems is detailed in Ref. [41]. The Green-Kubo
formula gives κGK from the energy-current fluctuations in
the equilibrium states. Equations (83) and (84) express a
relation that relates κ (N∗) of governing the nonequilibrium
heat transport and the equilibrium fluctuations and namely
relates equilibrium and nonequilibrium states.

The prediction of Eqs. (83) and (84) is tested by the
molecular-dynamic data of the one-dimensional FPU-β lat-
tices [Fig. 2(a)], where α = 1/3 has been theoretically
predicted previously in the context of the anomalous heat con-
duction [17]. In the previous work [21], the thermodynamic-
state-dependent [(T, P)-dependent] heat conductivity was
measured in the FPU-β lattices of various sizes N under the
nonequilibrium steady states of the heat conduction. These
size-dependent values of the heat conductivity are compared
with the estimate of the heat conductivity given through the
Green-Kubo formula under the periodic equilibrium condi-
tions, which is found to be size-independent even at N � N∗.
The results of two parameter sets T = 40, P = 23 (22.5) and
T = 40, P = 78 (77.6) are shown in the figure, where the unit
system (m, K, β ) = (1, 1, 1) is given by the mass m of parti-
cles and the coefficients (K, β ) of the nearest-neighbor inter-
particle potential V (�x) = K�x2/2 + β�x4/4 depending on
the relative displacement �x of particles. Temperature and
pressure are calculated from mean kinetic energy and virial
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10-2 10-1 100 101 102

(b)

κ/
κ G

K

N/(2πκGKcT/c)

FPU-β, T=40, P=23
P=78

[min(N/N*,1)]1/3 (N*:=(2πκGKcT /c))

102

103

104

102 103 104 105

(a)

κ(
T

, P
)

N

FPU-β, κ, T=40,P=23
P=78

κGK, T=40, P=23
P=78

FIG. 2. Theoretical prediction of Eqs. (83) and (84) compared
with numerical experiments of one-dimensional FPU-β lattices.
(a) Numerical data of the heat conductivity of the FPU-β lattices
measured under nonequilibrium and equilibrium settings with given
T and P values, after Ref. [21]. Variable κ shows the (T, P)-
dependent heat conductivity directly measured under steady heat
conduction. The values of κGK express those of the heat conductivity
given by the Green-Kubo formula at N ∼ 103 under the isolated
periodic boundary condition. Temperature and pressure values are
shown in legends. (b) The scaled values of the data contained in
Fig. 2(a), compared with the theoretical scaling predicted from
Eqs. (83) and (84) under conversions of L to N and of vacoustic to c
(the sound speed).

theorem, respectively. Please refer to Ref. [21] for numerical
details.

Figure 2(b) compares these numerical results with the
theoretical prediction of Eqs. (83) and (84). Note that L
is converted to N in the figure. The data points collapse
to the predicted master curve given by Eqs. (83) and (84)
without any fitting parameters. This scaling crossover, oc-
curring within longer wavelength regimes than that of the
anomalous transport giving α = 1/3 theoretically predicted,
is in contrast to the previously known apparent recovery
of Fourier’s law occurring in the short-wavelength regime
of the ballistic one α = 1 and the anomalous one α = 1/3
[25]. Beyond the previous theories predicting the anomalous
heat conduction, the semimacroscopic theory and microscopic
numerics consistently suggest the new class providing the
recovery of Fourier’s law emerging in the low-dimensional
momentum-conserving systems of the thermodynamic limit.
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IV. DISCUSSION

The analyses of this paper have clarified that the recovery
of Fourier’s law can be caused by the semimacroscopic scal-
ing crossover in the fluctuating hydrodynamic and viscoelastic
equations. There the recovery is understood as the breakdown
of the hyperscaling between the viscosity and heat conductiv-
ity. The numerical results supported this picture through its
good agreement with the predicted curve for the system-size-
dependent heat conductivity, the scaling law of the recovery
of Fourier’s law.

Two model equations Eqs. (38) and (66) have demon-
strated the possible universality of the recovery of Fourier’s
law in low-dimensional momentum-conserving viscoelastic
systems. The intrinsic feature involved in the presented
calculation is associated with the dimension-independent
change G0 = iω + ν0k2 → iω + [ν0 + Y0/(iω)]k2 of the ve-
locity field Green’s function in both models. The pole (ω =
iν0k2) of that Green’s function for the fluids deviates from
the imaginary axis in the frequency space due to the nonzero
wave-propagation speeds (

√
Y 0 > 0) in the viscoelastic mate-

rials. It consequently kept the renormalized heat conductivity
finite in the presented analysis. In the sense that the long-
range interactions truncate the massless behavior of systems,
we may speculate that this mechanism of the recovery of
Fourier’s law has a somewhat similar mathematical structure
to the Anderson-Higgs mechanisms of the superconductivity
in electromagnetism [42]. A quite recent report [43] of the re-
covery of Fourier’s law in many-particle systems of assuming
long-range microscopic interactions may be supportive about
this speculation.

The presented one- and two-dimensional analyses will
consistently explain the apparently conflicting relationship
between the two-dimensional incompressible fluids showing
the anomaly [7] and one-dimensional fluids with pressure
showing the recovery [21]. In one-dimensional cases, the
anomalous heat conduction seems unstable against the per-
turbation of the thermal pressure fluctuations, occurring in
both fluids and viscoelastic materials (or rather, there is no
distinction between them). The two-dimensional case is in
contrast to it because the recovery of Fourier’s law requires
the nonzero elastic shear stress to inhibit the anomalous heat
conduction. Namely, the existence of the pressure is not a
sufficient condition to yield the recovery of Fourier’s law in
d > 1. These suggest that the recovery of Fourier’s law is a
universal phenomenon for low-dimensional solid systems.

Experimentally available low-dimensional systems are fre-
quently the solid materials, such as the carbon nanotube and
graphene sheets, so this recovery of Fourier’s law will be an
experimentally accessible phenomenon. These novel materi-
als accelerate the recent experimental research of the low-
dimensional transports [5,14]. In that context, the experimen-
tal test for the recovery of Fourier’s law would be intriguing
as it is related to a sort of the nonequilibrium universal scaling
Eq. (84). It would also be of interest to verify whether such
a nonequilibrium scaling links to the equilibrium fluctuations
as predicted by Eq. (83).

There had been at least two distinct origins of the re-
covery of Fourier’s law [Eq. (3)] in the low-dimensional
momentum-conserving many-particle systems [21]. One is the

thermally activated dissociation [29]. Another has now been
clarified to be the scaling crossover in the semimacroscopic
viscoelastic materials. We can distinguish them through
the temperature-dependence of the heat conductivity [21].
Dissociation-induced recovery gives the heat conductivity
the temperature dependence of which is consistent with the
Arrhenius equation [29], and the scaling-crossover-induced
one shows another form of the temperature dependence [21].
One-dimensional soft-core systems are the typical examples
of the dissociation-induced recovery [21,29]; please refer to
Ref. [21] for the estimate of L∗ (N∗) in the cases of the
dissociation-induced recovery. The heat conductivity of the
FPU-β model shows a power-law dependence on the tem-
perature [21,44], and as seen in Fig. 2, the FPU-β model is
a typical example for the scaling-crossover-induced recovery
of Fourier’s law obeying Eq. (83). Meanwhile, the require-
ments to cause these two routes of the recovery of Fourier’s
law are still uncertain. The dissociation is for inhibiting the
semimacroscopic collective motions, so the semimacroscopic
analysis (assuming such collective motions) cannot predict the
rate-theoretic dissociation. Further simulations will be needed
to overcome this difficulty and to clarify the conditions for
involving these two kinds of the recovery of Fourier’s law. Al-
though the above classifications have been investigated mostly
in one-dimensional systems, the two-dimensional systems,
being recently reported to show the recovery of Fourier’s law
[45], will also have such systematics.

The presented explicit forms of the RG flows allow us
to locate the recovery of Fourier’s law in the context of the
anomalous heat conduction. References [17,30] provided the
general proof for the existence of the nontrivial fixed point
showing the anomalous heat conduction in one-dimensional
fluctuating hydrodynamic and viscoelastic equations. Such a
fixed point is indeed observed in the RG flows investigated in
this study as well. However, to conclude the anomalous heat
conduction from the existence of that fixed point, we need the
stability of it in the RG flows. The scope of Refs. [17,30]
was to show the persistent existence of the fixed point of
the anomalous heat conduction, and they did not mention
its stability. Note that the Galilean invariance of the model
equation (corresponding to λ = 1), used to obtain the inviscid
fixed point [17], is not the necessary condition in the RG
flow [36]; its obvious example is the Gaussian fixed point
at which λ̄ is zero [36]. As shown in this study, the fixed
point of the anomalous heat conduction can be unstable
due to the elastic response of the materials, and thus the
recovery of Fourier’s law can emerge without any conflict
with the properties of the RG flows proved by Refs. [17,30].
Another study [18] obtained the asymptotic autocorrelation
functions of the currents in the fluctuating hydrodynamic
equations, with assuming the self-similar scaling of z = 3/2
of the anomalous heat conduction. As shown in this study,
however, the scaling of leading-order motions can deviate
from z = 3/2 to z = 1 when the recovery of Fourier’s law
emerges. Such scaling crossover has been indeed numerically
detected with the FPU-β lattices in Ref. [21], where the
scaling crossover from z = 3/2 to z = 1 was observed in the
current autocorrelation functions as the volumetric strain (and
pressure) increased to certain values resulting in the recovery
of Fourier’s law. Reference [18] is as above the theory for
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the anomalous heat conduction utilizing the scaling exponent
z = 3/2, and so the existence of the recovery of Fourier’s law,
characterized by the exponent z = 1, is not conflicting with it.

It may be interesting that the renormalization group
[Fig. 1(b)] captures an apparent recovery of Fourier’s law at
quite high angular frequencies ω ∼ ω0, as well as the true
recovery of Fourier’s law at ω < ω∗ involving the thermody-
namic limit. The apparent plateau κ ∼ κ0 at ω ∼ ω0 perhaps
corresponds to the numerically detected transient recovery
of Fourier’s law [25] occurring within the intermediate scale
between the size scales of the ballistic transport α = 1 and
anomalous transport α = 1/3; such a transient plateau is
observed in the molecular-dynamic simulations even after
carefully considering the interfacial thermal resistance [21].
Numerically measurable apparently convergent heat conduc-
tivity may be indicating the bare parameter κ0 of the heat
conduction. The data of the FPU-β lattices in Fig. 2 at
P = 78, N ∼ 102 is suggestive. The investigation of the bare
parameter will be of interest in the fundamental studies of the
nonequilibrium statistical mechanics.

Under the linearization of the elastic forces, this study clar-
ified that the semimacroscopic RG flow changes even around
the inviscid fixed point (of negligible elastic effects) due to the
elastic effects. The assumptions and approximations of this
study are, as mentioned earlier, those of previous studies and
such linearization dropping the square-orders proportional
to the elastic coefficients. The approximations of the pre-
vious studies have been verified and examined theoretically
[7,36,38,41], so the fundamental assumption of this study
will be the phenomenologically introduced linearization of
the elastic effects; the verification on the governing equation
is detailed in Ref. [41] (also please refer to Sec. II C), and
the irrelevance or marginal property of the cubic orders in
the RG flows around the inviscid point has been shown in
Refs. [7,36,38]. Indeed, for example, even if we keep the
nonlinear terms Pva of the nondissipative momentum cur-
rents without using the decoupling hypothesis, we can obtain
the same diagram calculation for the renormalized transport
coefficients [21]. Regarding the linearlized elastic effects,
the elastic terms are infinitesimal around the previously ob-
tained inviscid fixed point of the anomalous heat conduc-
tion, so the linearization of the elastic forces becomes exact
there. Given these, the elasticity-induced instability (pressure-
induced in one-dimensional cases and rigidity-induced in two-
dimensional cases) of that fixed point will be a very robust
result of this study. The elasticity yields a relevant parameter
of the RG flow, the longitudinal- or transverse-wave speed,
not discussed in the previous studies as above.

Compared to the clarification of the relevance of the elastic
effects in the RG flows, the presented RG flows far from
the inviscid fixed point are phenomenological. They will
be modified when we investigate the full hydrodynamic or
viscoelastic equations. Indeed, the RG analyses of the ad-
dressed one-dimensional model in this study cannot explain
why the anomalous heat conduction is sustained under zero-
pressure while the recovery of Fourier’s law occurs at finite
pressure in the previous simulations of FPU-β lattices [21].
Regrettably, the inviscid fixed point of the anomalous heat
conduction is always unconditionally unstable in the model
equations of this study assuming linearizable small elastic

properties. The full-analysis of considering nonlinear elastic
effects will clarify the correct phase transition point between
the anomalous heat conduction and the recovery of Fourier’s
law. Nevertheless, like the previous models [7] give the exact
renormalized equations for the small thermal fluctuations
around the fixed points (the linear diffusion equation around
z = 2 and the diffusion equation with streaming terms around
z = 1 + d/2 [17]), the presented models provide the exact
renormalized equations around z = 1 (the wave equation) as
well as around z = 2 and z = 1 + d/2. The presented models
then successfully capture the minimal governing equations
dominating these fixed points. Given that point, although
the presented model equations cannot predict the accurate
transition point, the recovery of Fourier’s law will exist in
the full-analysis, as far as it can be interpreted from the
scaling crossover between the inviscid fixed point and ballistic
fixed point. Such a transition is thus currently a conjecture,
yet being strongly supported from the molecular-dynamic
viewpoint indicated in Fig. 2.

Most of the validity of the theoretical prediction of this
study far from the inviscid fixed point is as above currently
based on the numerical supports shown in Fig. 2 and in
Ref. [21]. Although we can obtain the ballistic scaling from
the full fluctuating viscoelastic/hydrodynamic equations with
requiring the balance between the mass and momentum den-
sity fluctuations under the invariance of the mass-conservation
law [21] as we do the inviscid fixed point with requiring
the balance between the energy density and velocity fluctu-
ations under the Galilean invariance [17], such discussion is
just to show the existence of the fixed points as mentioned
earlier. Obtaining the RG flow of the full-order viscoelastic
equations, which will give the decisive conclusion, is a hard
task, so the molecular-dynamic study will play an essential
role to access this dynamic nonequilibrium phase transition.
Given the transition in the RG flows is based on the semi-
macroscopic thermodynamics, the associated transition point
should be written by the thermodynamic quantities, involving
the semimacroscopic order parameters and transport coeffi-
cients perhaps. In the case of FPU-β lattices, the transition
is observed near the conditions of unit inter-particle strain
l ∼ 1 (P ∼ 101) in the temperature range T ∈ [1, 50] (under
the same normalization as in Fig. 2) [21]. Moderately high
temperature is required at least to get the nonintegrable na-
tures of the microscopic particle motions (corresponding to
the phonon scattering); that makes the temperature gradient
be the dominant thermodynamic force [3,25] whereas the
interfacial temperature gap is dominant in integrable systems
[40]. The monatomic lattices of nearest-neighbor potentials
will be the closest systems in accessing this issue since the
other particle systems (nonmonaotmic, non-nearest-neighbor-
potential, or non-momentum-conserving systems) are some-
how related to other issues as below. The pinning potential
should be zero to obtain the momentum-conservation; if not,
the hydrodynamic anomaly is originally not existing in the
many-particle systems, and there will be the normal heat con-
duction under sufficient nonlinearity [3]. Regularly ordered
particle mass is required to avoid the insulator phase realized
in the random-mass systems [46,47]. Besides, diatomic and
multiatomic systems may have another order as the mul-
tiphase fluids [21]. The long-range inter-particle potential
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[43] will produce another order like electromagnetic fields.
It is also of interest whether these systems still show the
phase-transition treated in this study, yet these systems may
lead to more comprehensive taxonomy of the heat conduction
in the low-dimensional lattices.

V. CONCLUSION

To clarify the mechanism of the recovery of Fourier’s
law in the low-dimensional momentum-conserving systems
reported by previous molecular-dynamic simulations, the dy-
namic renormalization-group analyses are presented for two
simplified model cases of the fluctuating viscoelastic equa-
tions. One model is incompressible one widely known to
show the divergence of the transport coefficients for fluidic
cases. The other is a modified noisy Burgers fluid contain-

ing small pressure perturbation, known originally to show
the anomalous transport at zero pressure. The recovery of
Fourier’s law is shown to emerge as a scaling crossover in the
investigated RG flows. The predicted scaling coincided with
the heat conductivity observed in the molecular dynamics of
the FPU-β lattices. These results consistently suggested that
the recovery of Fourier’s law can provide a universality class
to the low-dimensional momentum-conserving solid systems.
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