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Hitchhiker model for Laplace diffusion processes
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Brownian motion is a Gaussian process describing normal diffusion with a variance increasing linearly
with time. Recently, intracellular single-molecule tracking experiments have recorded exponentially decaying
propagators, a phenomenon called Laplace diffusion. Inspired by these developments we study a many-body
approach, called the Hitchhiker model, providing a microscopic description of the widely observed behavior.
Our model explains how Laplace diffusion is controlled by size fluctuations of single molecules, independently
of the diffusion law which they follow. By means of numerical simulations Laplace diffusion is recovered and we
show how single-molecule tracking and data analysis, in a many-body system, is highly nontrivial as tracking of a
single particle or many in parallel yields vastly different estimates for the diffusivity. We quantify the differences
between these two commonly used approaches, showing how the single-molecule estimate of diffusivity is larger
if compared to the full tagging method.
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I. INTRODUCTION

Einstein’s theory of Brownian motion predicts a Gaus-
sian spreading of packets of particles. Here the bell-shaped
propagator, foreseen by the central limit theorem, represents
an attractor for the particle spreading, and the mean-square
displacement (MSD) behaves normally, i.e.,

〈x2〉 = 2Dt . (1)

However, recently there is a growing interest, both exper-
imentally [1–7] and theoretically [8–18] in a paradigm of
diffusive processes, generally called Laplace diffusion. These
processes are normal in the MSD sense, yet they exhibit an
exponential decay in the tails of the particle spreading. This is
modeled with the Laplace density [exponential decaying PDF;
see Eq. (3) below] [2,3,8,11]. Originally this phenomenon
was observed in glassy systems [1]; however, the field was
promoted extensively by the observation of this behavior in
the cell environment [2–7]. The presence of Laplace diffusion
of molecules within the cell is of crucial importance because
if this is the case, all existing estimates of reaction rates and
particle dynamics must be modified [15,19].

According to the theory of Brownian motion one would
expect that a normal MSD behavior will come hand in hand
with a Gaussian packet of spreading particles

P(x, t ) = 1√
4πDt

e− x2

4Dt . (2)

Instead, Laplace diffusion exhibits

P(x, t ) = 1√
4〈D〉t e− |x|√〈D〉t , (3)
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with 〈D〉 the average diffusivity of the system. On the other
hand, experiments such as Refs. [6,7,20] record the spectrum
of diffusion constants and find the distribution of the diffusiv-
ities, which is broad and peaked close to the minimum of the
recorded diffusivity, for example an exponential distribution

P(D) = e− D
〈D〉

〈D〉 for D > 0. (4)

As shown in Refs. [3,8,11] if we assume locally a Gaussian
diffusive process (2) then averaging over the diffusivities
using Eq. (4) we get the Laplace PDF (3). Alternatively, if
we assume that the distribution of the diffusivities, P(D) can
be represented as a sum of exponentials, we find that P(x, t )
is exponentially decaying but in the large-x regime only; see
Appendix A for details.

Diffusing diffusivity is a popular phenomenological model
for Laplace diffusion [8–18]. It relies on a single-particle
picture where the diffusion constant D(t ) is a stochastic
field, specifically designed to produce Laplace dynamics, thus
doesn’t address the physical mechanism behind this behavior.
Here we show how the phenomenon is deeply routed in
a many-body effect. Our framework, called the Hitchhiker,
is inspired by experimental observations, that have clearly
demonstrated how fluctuations of sizes of molecules con-
tribute significantly to the phenomenon [2,5,7,20–22]. For
example in Ref. [21], mRNPs are tagged, and these comprise
a conglomeration of mRNA molecules, ribosomes, and other
molecules, thus a wide variety of particle sizes and thus a
variety of diffusion coefficients is found. What is far less clear
is how the many-body effect and the dependence of local
diffusivity on the molecule size control the observed behavior.

Imagine diffusive molecules in a medium that can aggre-
gate and break within the observation time of the experiment;
see Fig. 1(a). Tracking these molecules individually will
reveal that their diffusivities fluctuate. As the molecules are
breaking and merging their sizes change, and this naturally
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(a)

(b)

FIG. 1. (a) Representative time series of breaking and aggre-
gation processes generated by the Hitchhiker model. Initially a
dimer, composed by a nontagged monomer (depicted in blue) and
a fluorescent one, diffuses in space (blue curve) then it breaks into
two monomers (one red and one fluorescent) which walk separately
(red curves), there after they merge again (blue curves). We show in
the inset the time-averaged MSD versus the lag time for a monomer
N = 1 (red curves) and a dimer N = 2 (blue curve). The diffusivity
of monomers is visually and trivially larger than the one of a dimer.
For a similar experimental realization comprising the diffusion of
TFAM proteins on stretched DNA chains see Fig. 6 of Heller et al.
in Ref. [20]. Here we used the Rouse approach; see details in the
main text. (b) Dynamics of the Hitchhiker model, at time t we have
certain configuration of molecules with different sizes. Then at time
t + � a breaking event happens in the trimer at cell x, and therefore a
fluorescent monomer adds up to another one in the x − 1 cell forming
a dimer and the remaining two monomers merge with another one
creating a trimer at cell x + 1, leaving the site x empty. At time
t + 2� the dimer at cell x − 1 jumps to the right.

leads to the speed up (small molecules) or slow down (large
molecules) of the stochastic dynamics. These processes are
particularly important in the cell environment [20,21]. Since
the diffusivity or size of tracked molecules is fluctuating
we expect deviations from ordinary Brownian motion. We
address two main problems: How are these deviations induced
and related to the widely reported Laplace packet spreading?
and How can the tagging protocol in single-molecule experi-
ments affect the reported diffusivity? We will show how the

diffusivity reported in current single-molecule experiments
might be biased due to the many-body nature of the process,
and then we give a method to solve this problem.

II. PHENOMENOLOGICAL ARGUMENTS

We assume that a polymer has N basic units, e.g.,
monomers [23]. We have in the system a large ensemble of
these aggregates, so N is random. We first ask what is the
spreading of tracked particles or molecules in this system, and
this is given by

P(x, t ) =
∫ ∞

0

e− x2

4D(N )t

√
4πD(N )t

P(N ) dN. (5)

This approach in its generality is sometimes called superstatis-
tics [11,24]. P(N ) is the distribution of the molecule sizes, and
here D(N ) is the diffusion constant which depends on the size
N . In Eq. (5) it is assumed that P(N ) is a stationary distribution
within the timescale of observation [11]. Our next question is
phenomenological: Given a diffusive law D(N ) what is the
PDF P(N ) that yields the observed Laplace distribution for
P(x, t )?

A key feature of the process is the dependence of the
diffusivity on N . We consider two different laws for D(N ):
the Stokes-Einstein-Flory (SEF) and the Arrhenius one given
by

D(N ) =

⎧⎪⎨
⎪⎩

kBT

6πηbNν
SEF,

D0e−cN ν̃

Arrhenius.

(6)

The SEF model uses a polymer chain size scaling, for which
a macromolecule with a hydrodynamic radius R and N
monomers satisfies R = bNν , where ν is the Flory exponent,
and b the Kuhn length [23]. Typical values are ν = 1 the
Rouse chain [25], while the Zimm chain gives ν = 3/5 [26].

Importantly, there is experimental evidence for the Rouse
dynamics; see single tracking experiments of diffusion of
TFAM proteins along stretched DNA chains [20] and diffu-
sion and aggregation of proteins in E. coli cells [22]. Addi-
tionally, the Arrhenius model has been used for describing
the diffusion of proteins in polymer solutions, where an
Arrhenius activation mechanism is known [27,28]. Here we
have D = D0 exp[−EA/kBT ] where EA is an activation energy.
This activation energy depends on the size N of the complex
like EA = εbN ν̃ , with ν̃ a scaling exponent and c = εb/kBT
in Eq. (6) [27]. As far as we know, the dependence of the
diffusivity on the size of the chain is system dependent. Hence
it is important to consider both the SEF and Arrhenius models.

Using Eq. (5) and the SEF or the Arrhenius law with ν̃ = 1
(6), in order to obtain the Laplace law, we have to employ (see
Appendix B for details)

P(N ) =

⎧⎪⎪⎨
⎪⎪⎩

νkBT

6πηb〈D〉N−ν−1e− kBT
6πηb〈D〉Nν , SEF,

cD0

〈D〉 e−
(

D0
〈D〉 e−cN +cN

)
, Arrhenius.

(7)

(8)
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For the SEF model P(N ) has the form of a generalized inverse
gamma distribution [29]. This means that the distribution of
sizes is fat tailed, in fact, scale free in the sense that the mean
of N diverges when ν < 1. In practice, in the model we study
below, the power-law tail must be cut off due to finite size
effects, but still this law may capture the dynamics on some
timescales, as demonstrated below with the Hitchhiker model.
In Appendix C we show how the exponential tails in P(x, t )
are preserved in the presence of a cutoff size in the large-size
regime.

In single-molecule experiments there is already evidence
that the distribution of fluorescence intensities (which are
proportional to sizes) are far from Gaussian and rather broad
[20,21,30,31]. Following Heller et al. [20] in Fig. 1(a) we
show schematically such a process where two diffusing
monomers merge to create a dimer, thus modifying the dif-
fusivity of the tracked particle. Further, the authors of Ref. [7]
report a correlation plot between the recorded diffusivity D of
individual molecules and the intensity I of the light emitted.
In this experiment, the intensity increases as the number of
light emitters stuck on the molecule is increasing. Showing
that the intensity is a proxy of the size of the molecule. In
the experiments mentioned above, one observes a decrease in
D as I is increased, which implies that (as expected) larger
molecules are moving slower compared to small ones. This
technique could be in principle further developed, such that
the exact relation between D and N may be revealed in the
experiment.

In the Arrhenius model P(N ) is the Gumbel density from
extreme value statistics. Importantly, this type of distribution
is peaked and narrow. However, we do not claim that there
is a direct and deep relation between extreme value theory
and Laplace diffusion, namely, this observation is just a
curiosity. We learn that the Gumbel distribution P(N ), due
to the exponential sensitivity of the diffusivity on N , small
changes in N are sufficient to create a large modification in
D. This phenomenological method shows that we may find a
Laplace distribution when either the distribution of sizes is
narrow or wide, depending on the interrelation between D
and N . These observations can in principle be detected in
the laboratory, as explained already, by measuring the size
dependency of diffusivity, and then estimating P(N ) one may
predict the spreading of the packet of particles, which then can
be measured directly. Our phenomenological theory shows
how to obtain the Laplace distribution from P(N ), and we now
turn to a microscopical approach.

III. THE HITCHHIKER MODEL

We now introduce the Hitchhiker model which later is
used in our numerical simulations. Our approach is inspired
by the experiments of Heller et al. [20] and theoretical
modeling of aggregation processes [32,33]. Noteworthy the
former deal with the diffusion of proteins on stretched DNA
chains in vitro, and they are depicted as a one-dimensional
system. The Hitchhiker model consists of an ensemble of
particles performing random walks on a lattice with size L
and with periodic boundary conditions. We start by plac-
ing a monomer (N = 1) on each lattice site. Given this, at
every time update one nonempty site is chosen randomly, and

then either with probability d (N )/[w + d (N )] we perform
a diffusive step and the corresponding aggregation; or with
probability w/[d (N ) + w] we perform a breaking event and
its corresponding aggregation; see Fig. 1(b) for a schematic
representation and Appendix D for further details.

Here d (N ) and w are, respectively, the rates of diffusion
and breaking. Aggregates of monomers break into two, and
then the remaining clusters are placed randomly at the im-
mediate neighboring sites, leaving empty the site of breaking
[see Fig. 1(b)]. In any case when diffusion or breaking occur,
if a neighboring site is already occupied, then particles meet
and aggregation happens, a detailed description of the model
is given in Appendix E. When particles merge multi-meres
are created, whose size is N (t ) [32–34], then the diffusivity
of the particle D[N (t )] is fluctuating in time. We have chosen
binary breaking for the sake of simplicity, but other breaking
mechanisms like random scission or chipping give similar
results (see Appendix F). Such a model was considered by
Rajesh et al. [33] where the focus was on dense systems, while
here we allow for single-molecule tracking, which means we
work in the low rate of breaking and small density regime
allowing for particles to diffuse freely for some time before
they break or merge.

D and d (N ) are related by D(N ) ≈ d (N )/2�, with � =
ti − ti−1 the time increment (note that here the lattice spacing
is set to one). The rate of diffusion d (N ) comprises the
physical relation between D and N as follows: d (N ) = 1/Nν

for the SEF model and d (N ) = exp[−N ν̃] for the Arrhenius
case. A key question is how will the SEF and Arrhenius
approaches control the distribution P(N ) in equilibrium?

IV. SIMULATIONS RESULTS

Simulating the model, we now check: what is the distribu-
tion of the P(N )? how do the diffusion laws modify P(N )?
and does the model give us the Laplace distribution? In this
case P(N ) is the molecule size distribution for the full tagging
(FT) method (see Appendix E and Sec. V). Figure 2(a) shows
clearly that modifying the diffusion law has a strong impact
on P(N ). For SEF models, i.e., with diffusion rates given by
d (N ) = 1/N for the Rouse model with ν = 1 and d (N ) =
1/N

3
5 for the Zimm model with ν = 3/5, we obtain visually

broad distributions of P(N ) well fitted by Eq. (7), while for
the Arrhenius model, d (N ) = exp[−N] with ν̃ = 1, we find a
very narrow distribution well fitted with Eq. (8).

We have mentioned already that for the SEF model with
ν < 1 (7), it predicts an infinite mean. However, this is not
physical. Namely, since the system is finite, and we work in
the sparse limit of the model after reaching the steady state we
have a finite cutoff. Then the largest particles we find are of
size 32 for the Rouse model and 68 for the Zimm model.

In this way the sample average molecule sizes for the
Zimm, Rouse, and Arrhenius models satisfy the ordering
〈NZ〉 = 9.93 > 〈NR〉 = 5.77 > 〈NA〉 = 2.48. Intuitively, the
Arrhenius law causes large conglomerates to localize, i.e.,
the diffusion rate d (N ) is smaller compared with the SEF
models, and hence this does not favor the creation of even
bigger molecules (narrow distribution). Imagine a molecule
composed of a large number of monomeres and in its vicinity
another large molecule. In the Arrhenius model the diffusivity
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(a)

(b)

FIG. 2. (a) Comparison between P(N ) obtained by simulations
of the Hitchhiker model and analytical PDF. For the Rouse model
(red circles) and fitting of Eq. (7) with ν = 1 (red line), the Zimm
model (blue circles) and with ν = 3/5 (blue line), and the Arrhenius
model (black circles) and theory (8) (black line). (b) P(x, t ) in
semilog scale, obtained from simulations with Rouse dynamics. For
short times we compare with their respective Laplace distribution
(solid lines). P(x, t ) for long times is compared with Gaussian
statistics (dashed lines). The simulations were done for an ensemble
of 10 000 tracked molecules with the FT method, w = 0.005, � = 1
and in the steady-state regime.

of both particles is exponentially small, hence these two large
molecules cannot merge to form a bigger size conglomere.
Then with a given breaking rate w, after some time these
particles will split, and the merging of the two particles is
unlikely. In comparison with the SEF model the diffusivity is
suppressed with increasing N , but only as a power law. Hence
statistically this model favors the merging of large molecules,
thus creating even larger ones, if compared to the Arrhenius
modeling. In that sense we rationalize the narrow distribution
found for Arrhenius law (8) compared to the SEF one (7).

One of our main observations is that for three models
of D(N ), those of Rouse, Zimm, and Arrhenius, the packet
of particles exhibits a transition from Laplace distribution
to a Gaussian behavior, as we increase the measurement
time. In Fig. 2(b) we show P(x, t ) in semilog scale for a

system following the Rouse model of diffusion rates, and in
Appendix G we show the corresponding for the Arrhenius and
Zimm models. In the short-time regime P(x, t ) is fitted with
the Laplace distribution (3) (solid lines) and in the long run it
is compared with the Gaussian statistics (2) (dashed lines).

For short times, relative to the breaking and merging rate,
we observe particles of different sizes, whose distribution is
P(N ). Then to find the displacement we average the Gaus-
sian propagator which depends on D(N ) over the respective
distribution of sizes, which is exactly what we did already
within the phenomenological approach (5). We then get the
Laplace law. However, for longer times each tracked single
molecule will fluctuate among many states, in each it will be
attached to different number of particles. It follows that along
a long trajectory we will average out the effect of fluctuating
diffusivity and get in the long-time limit Gaussian statistics. In
Appendix H we quantify further the transition to Gaussianity
in each case, via the non-Gaussian parameter (NGP).

In an experimental set up, the transition to Gaussian statis-
tics should appear when the diffusivity of the tracked particle
changes significantly, this is achieved for when the measure-
ment time is larger compared with the typical correlation time
of D(t ). The latter is related with the typical breaking and
merging times. In Appendix I we compute the mentioned
correlation time for the Rouse model, showing that it is related
to the timescale where the transition from Laplace to Gaussian
diffusion happens, t ≈ 50 in Fig. 2(b).

Experimentally, and under different microscopical condi-
tions, the transition from Laplace diffusion to Gaussianity
was observed particularly in the diffusion of colloidal beads
on lipid tubes [2]. In the latter case the span of track-
ing time in the experiment is t ∈ (0s, 5.8s). Having that,
Laplace diffusion was found within tracking times of t ∈
(60 ms, 0.6 s). Beyond t ≈ 4 s, the Gaussian PDF is recov-
ered. This transition was also reported in diffusing diffusivity
models [8,11,14].

V. TRACKING IN A MANY-BODY SCENARIO

Next we show the effects of the many-body interaction on
the measurement of diffusivity in single-particle tracking ex-
periments. We consider two protocols of measurements, both
applicable in single-molecule experiments. In the first, once
the system has achieved its stationary distribution P(N ), we
proceed to label and then track all the monomers or molecules
located in the lattice, estimating the distribution of diffusivity,
we call this method full tagging (FT); see the bottom of
Fig. 3. Results of Fig. 2 are based on the FT technique. In the
single-molecule tagging (SMT) we label and follow one and
just one light-emitting unit (see top of Fig. 3). This monomer
attaches and detaches to and from other nontagged molecules
in the environment, which of course are not visualized in
the laboratory. For both mentioned methods we compare the
respective distributions of sizes and the average diffusivities.
Unlike free Brownian motion for identical particles, the two
procedures will give different results. In the second approach,
the single emitter is statistically more likely to be found as
part of a large N-mer. This as mentioned in the introduction,
implies that single-molecule tagging methods, in a many-body
setting, may yield different estimated for the diffusivity fields.

012109-4



HITCHHIKER MODEL FOR LAPLACE DIFFUSION … PHYSICAL REVIEW E 102, 012109 (2020)

N=1 N=4 N=8

SMT

N=2 N=4 N=6

FT

FIG. 3. Tagging methods may modify the estimation of the dif-
fusivity spectrum in the cell. With the FT method all the monomers
are emitting light, the intensity of light from the larger hence slower
objects is brighter. For single-molecule tagging (SMT) there is only
one light-emitting chromophore. This is more likely to be found on
the large complex, hence in the SMT technique we sample slower
dynamics.

To quantify the difference in the diffusivity arising from
the usage of distinct tagging methods we use tools from
renewal theory [35–37]. Typical phenomena described by this
framework are arrival times of particles to a detector or a
bus arriving to a station. It is assumed that the time intervals
between events (called renewals) are mutually independent
and identically distributed random variables. A classical prob-
lem is the calculation of the distribution of the time interval
straddling of a fixed observation time, i.e., the statistics of the
time interval defined by the first event after some observation
time and the one just before it [35–37]. Next we implement
these ideas in space of sizes.

As mentioned in the SMT protocol, at the beginning of the
experiment we pick randomly one and only one monomer,
and this is the tracked particle. At a given moment we have
in the system complexes with different sizes: N1, N2, . . ., etc.
Placing all these complexes on the line (see Fig. 4) we then ask
what is the distribution of the size of the complex on which the
tagged monomer is residing? We call the size of this chosen
macromolecule z, which is a random variable similar to the
mentioned straddling time. Mathematically this is the same
as defining some large Ñ (much larger than the average size)
and asking where this Ñ will fall, then the straddling size z is
defined by the interval around Ñ as in Fig. 4. Repeating this
procedure many times we can obtain the distribution of z. In
Refs. [35–37] it was found that it satisfies

P(z) ∼ NP(N )|N=z

〈N〉 . (9)

Here P(N ) is the distribution of sizes of molecules in our
system, which we have investigated already, i.e., employing
the FT method and shown in Fig. 2(a). Equation (9) shows
how larger molecules are more likely to be sampled, as we
multiply P(N ) with N . To gain insights we now recover

0.04

0.08

0.16

 5  10  20  25  30

P
(N

),
P
(z

)

N,z

P(N) FT
P(z) SMT

(b)

N1 N2 N3

z

∞Ñ
N4 N5

(a)

FIG. 4. (a) For the SMT technique, the number of monomers z
of the complex on which the single light emitter is found is random.
Its distribution is related with the distribution of sizes P(N ) by
an auxiliary technique from renewal theory [35–37]. Placing on a
stretched line all the different size complexes found in the system at
some measurement time, we find the straddling interval around some
auxiliary large size Ñ . This leads to the distribution of z (9). The
straddling size z is statistically larger than the other sizes of com-
plexes in the system, hence SMT samples slower dynamics. Here we
assume all the monomers are statistically identical. (b) Comparison
between the molecule size distribution P(z) for the SMT method
(blue boxes) and P(N ) for the FT protocol (red boxes) obtained
by simulations of the Hitchhiker model with the Rouse approach.
The simulations were done using w = 0.005 and t = 103 with an
ensemble of 10 000.

Eq. (9) using simple arguments. Expressing P(z) as

P(z) = no. of monomers in complexes with size z

total number of monomers in the system
,

	 z × no. of complexes of size z∑
i

no. of complexes of size i × 〈N〉 . (10)

The last line of Eq. (10) is the same as Eq. (9), since by defini-
tion the empirical probability of the number of complexes of
size z divided by the sum of the number of complexes of size
i is simply P(N )N=z.

Using the Rouse model, we proceeded to make simulations
with the Hitchhiker model following a single molecule until
time t . In Fig. 4(b) we present the molecule size distribution in
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the SMT protocol (blue boxes) by acquiring the value of z and
we compare it with P(N ) in the FT approach (red boxes), also
shown in Fig. 2(a). As one can see the PDF of z is shifted to the
right, namely, large particles are sampled in agreement with
Eq. (9). The value of the sample mean of the molecule size
obtained from our simulations was 〈N〉 = 5.77 and its peak
(or the mode) is located at Nmax = 3. In the case of the single
Hitchhiker we have a sample mean 〈z〉 = 7.75 and zmax =
5, so 〈z〉 > 〈N〉 as expected. Another interesting feature of
P(z) is that, in the large-size regime, it has a fatter tail in
comparison with the one of P(N ). In Fig. 11 in Appendix J
we observe that P(z) agrees with the analytical formula (9)
extracted by the simulation data using the FT method.

Equation (9) allows us to go from one measurement pro-
tocol to another and to make predictions of the diffusivity
and the spreading of packets. For example, the diffusivity in
equilibrium, in the single-particle approach is DSMT(z), while
when we follow all the molecules we have DFT(N ). The gen-
eral trend is that in the single-molecule approach we sample
large complexes, and hence the diffusion is slowed down
compared with the full tagging approach since statistically
DSMT(z) < DFT(N ). The difference between the two tagging
methods is quantified using the relation between the two
average diffusivities. As we show in Appendix K, employing
Eq. (9) and the SEF model we find that the ratio of the
diffusivities meets

〈DFT〉
〈DSM〉 = 〈N〉

〈N1−ν〉
〈 1

Nν

〉
� 1. (11)

Here the averages on the right-hand side are with respect to
the distribution of sizes P(N ). This ratio is unity only if P(N )
is very narrow, i.e., it is delta peaked, or if ν = 0, namely, the
diffusivity does not depend on size which is nonphysical.

In Appendix L we show how Eq. (11) is satisfied
for the Rouse dynamics, showing an example where
〈D〉FT/〈D〉SMT = 1.44, i.e., the diffusivity in the SMT proto-
col is diminished by 30%. We have verified that also the SMT
technique yields Laplace diffusion in the short-time regime
and its corresponding transition to Gaussian statistics in the
long run. The only effect in both cases is that the PDF of
the particle spreading becomes narrower, since particles are
slower; see Fig. 12 in Appendix L.

VI. DISCUSSION

To summarize, employing the Hitchhiker model we
showed that the mechanism that triggers the non-Gaussianity
is the aggregation between molecules and their sudden break-
ing. The fluctuations in the molecule size generates a diffusing
diffusivity process, which exhibits non-Gaussian distributions
in P(x, t ), such as single-molecule experiments within the
cell [2–7,20,21]. We showed how the microscopic law of
diffusion, i.e., SEF versus Arrhenius, strongly influences the
distribution of sizes. In the Arrhenius case even a narrow
distribution of molecule sizes can lead to a relatively large
fluctuation in D. In turn diffusion laws yield P(N ) presented
in Fig. 2(a), which remarkably produce broad or narrow dis-
tributions, respectively. In all cases we find in the short-time
regime Laplace spreading for P(x, t ); see Fig. 2(b). In that

sense the phenomenon is universal, as it doesn’t depend on
microscopical details.

The second main result was that the protocol of tagging
molecules matters. Employing the SMT protocol we showed
as an example that its average diffusivity is smaller around
30%, compared with the diffusivity obtained via the FT proto-
col. Equations (9) and (11) allow us to quantify this behavior.
More importantly our results predict that there a is tendency
that a single chromophore is in most situations sticking to
larger size particles. Thus, we may encounter situations where
the tagging protocol employed in single-particle tracking ex-
periments, favors the sampling of large or slow particles. Thus
the estimation of diffusivity in single-molecule experiments,
can be biased. Two protocols of measurements may yield very
different results for the mean diffusivity and the spreading.
In this sense tagging in an interacting environment is very
different if compared to tagging systems with independent
identical particles.

As mentioned a major challenge is to determine the mech-
anism of the widely reported Laplace diffusion? While we
promoted the Hitchhiker approach, what can be said about
other microscopical models? Before answering this we would
like to emphasize that our approach is based on modern
single-molecule experiments, which visualize the merging
or breaking of particles and correlate it with the change of
diffusivity. One can say that the mechanism we studied is
clearly important in some experiments. Representative cases
of such experiments are the diffusion of mRNA on yeast cells
[21] or E. coli cells [7], and of proteins in stretched DNA
chains [20]. Each one reports the respective correlation plot
of the diffusivity and the intensity (which is proportional to
the molecule size) or their distributions. Our microscopical
approach for explaining non-Gaussianity in single-particle
tracking experiments, is testable by using a three-step pro-
tocol: (1) measure the dependence of D on N , (2) find the
distribution of N , and (3) predict the distribution of D, and
P(x, t ).

The microscopic method developed here has the advantage
that it can be adjusted to different dynamics that happen in
the cellular media, i.e., different diffusion laws, mechanisms
of breaking, even active transport. Besides its extension to
higher dimensions like two or three dimensions is plausible.
Nonetheless we believe that the change of dimension in the
system won’t modify the results dramatically, since the fluc-
tuations in sizes still will be within a broad range of values,
inducing a non-Gaussian distribution of displacements. Fur-
ther, the key observation is that the Hitchhiker model in any
dimension will exhibit a normal mean-square displacement,
since the processes are diffusive, and for which any distribu-
tion of sizes obtained will give non-Gaussian diffusion.

However, we do not support the claim that this is the
only approach; indeed, it was shown that heterogeneity in
the environment (without interactions) can lead to exponential
tails; see [1,38,39]. In particular packets of spreading particles
within the continuous time random walk model exhibit univer-
sal exponential tails as shown using large deviation techniques
[38]. In Ref. [40] a model of a diffuser with a fluctuating
size was considered; however, they used a decoupled ap-
proach, particularly the distribution of sizes is not controlled
by diffusion laws, while we showed the opposite trend:
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diffusion laws (SEF or Arrhenius) strongly determine P(N ),
but in both cases yield Laplace spreading. Meanwhile, purely
phenomenological models, e.g., diffusing diffusivity models
[8–18], are clearly powerful as they allow for the estimation of
reaction rates. As mentioned we want to stress that our model
recovers the experimental linking between diffusivity and the
molecule size embodied in the time series, correlation plots,
and histograms reported in Refs. [7,20–22]. This is achieved
via the phenomenological diffusion law D(N ), and with the
coupling of the diffusion rate with the aggregation dynamics.
Furthermore, it gives qualitatively the same distribution of
intensities or sizes as those found in Refs. [20,21,30,31] and
predicts that a Laplace density for P(x, t ) must emerge under
different conditions.
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APPENDIX A: LAPLACE DISTRIBUTION AND
EXPONENTIAL TAILS IN P(x, t )

Within the super-statistics approach the usual way for
recovering Laplace diffusion, represented by Eq. (3), is by
assuming that locally the particles follow a Gaussian process
(2), with a finite diffusivity, and considering that the diffusion
constants are exponentially distributed (4).

However, while some experiments [2] and stochastic
frameworks [11] promote the modeling of data with the
Laplace distribution, at least in the short-time limit of the
diffusive process. Others observe the exponential decay of the
distribution of displacements only in the tails of the packet
[2,4]. To understand this better consider an empirical distri-
bution of diffusivities, fitted with a finite sum of exponentials

P(D) =
k∑

i=1

ai

Di
exp(−D/Di ). (A1)

Using∫ ∞

0

exp(−D/Di )

Di

exp(−x2/4Dit )√
4πDit

dD = exp(−|x|/√Dit )√
4Dit

(A2)
the superstatistics principle gives

P(x, t ) =
k∑

i=1

ai exp(−|x|/√Dit )√
4Dit

. (A3)

Thus the propagator is a weighted sum of Laplace dis-
tributions. If k = 1, namely, an exponential distribution of
diffusivities, we have only one term in the sum. In the general
case we arrange D1 < D2 · · · < Dk so Dk = Dmax. Then we
focus on the large-x tail of the packet of particles and find

P(x, t ) 	 ak√
4Dmaxt

exp

(
− |x|√

Dmaxt

)
. (A4)

As a simple example consider a sum of two exponen-
tials P(D) = N[exp(−D) − exp(−λD)] with λ > 1, so here
P(0) = 0 unlike the case discussed here with a maximum on

FIG. 5. Distribution of displacements (A5) in a semilog scale as
a function of ξ =| x | /

√
tDmax, for a nonzero peaked distribution of

diffusivities P(D) = N[exp(−D) − exp(−λD)]. For λ = 2 we show
Eq. (A5) by a red solid line, λ = 5 by a blue solid line, and λ = 50 by
a green solid line. Clearly for the limit ξ −→ ∞ all the distributions
have exponential tails. In the inset we show the same but within the
range of small ξ , in each case nearby ξ ≈ 0 we can see the parabolic
behavior of a Gaussian distribution.

D = 0; see Eq. (4). In experiments it is common to present
the distribution of displacements on a log-linear scale to
emphasize the exponential decay of the data, hence we do the
same:

ln

[√
4tP(x, t )

λ − 1

λ

]
= −ξ + ln

{
1 − 1√

λ
e−ξ (

√
λ−1)

}
(A5)

where ξ = |x|/√tDmax and now we set Dmax = 1. We see that
when either λ or ξ are large we may neglect the second term
on the right and find a linear function. Large λ means that the
ratio of the two diffusivities in the model, Dmax/Dmin = λ, is
large. Specifically

ln

[√
4tP(x, t )

λ − 1

λ

]
=

{−√
λξ 2/2 if ξ � 1

−ξ if ξ � 1
. (A6)

Hence for small ξ we find a Gaussian behavior. In Fig. 5 we
show Eq. (A5) for different values of λ ∈ {2, 5, 50}. As we can
see in all the cases for large ξ the distribution of displacements
exhibit exponential tails. In the inset of Fig. 5 we show the
small ξ limit, for which the logarithm of P(X, t ) shows a
parabolic decay characteristic of the Gaussian distribution.

The transition between these asymptotic behaviors takes
place when ξ 	 2/

√
λ so as we increase the diffusivity ratio

λ the transition from Gaussian for small ξ to Laplace for
large ξ , is pushed to smaller values of ξ . We note that the
average diffusivity in the model is 〈D〉 = ∑k

i=1 aiDi, and only
when k = 1 do we have 〈D〉 = Dmax and hence in general the
average diffusivity does not give the exponential tail of the
packet of particles, which is determined by Dmax.
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APPENDIX B: DEDUCTION OF THE
DISTRIBUTION OF SIZES

We are searching the distribution of sizes P(N ), which by
means of Eq. (5) satisfies the Laplace distribution (3). By
changing variables as N −→ D, now Eq. (5) is given by

e− |X |√〈D〉t
√

4〈D〉t =
∫ ∞

0

e− X2

4Dt√
4πDt

P(D) dD (B1)

with P(D) = (P(N )| dN
dD |)|N=N (D) and N (D) the inverse of

Eq. (6) in each case. As mentioned in the introduction the
distribution of diffusivities must be exponential in order to
obtain the Laplace law (3). For the specific diffusion model
the change of variables D −→ N defines P(N ). In the SEF
diffusivity model the molecule size distribution is equal to
Eq. (7). In the case of the Arrhenius model, the corresponding
molecule size distribution is defined by Eq. (8).

APPENDIX C: CUTOFF SIZE AND THE
DISTRIBUTION OF DISPLACEMENTS

A power-law distribution for the molecule sizes must have
a cutoff in the large-size regime, we call the cutoff scale N∗.
In this way the PDF of N in Eq. (7) can be modified as

P(N ) = C̃N−ν−1e− c
Nν e− N

N∗ , (C1)

with C̃ the normalization constant, c > 0 and exp(−N/N∗)
a term representing an exponential cutoff in the large-size
regime. Now we can ask ourselves how this cutoff size in-
fluences the distribution of displacements.

Following the super-statistics approach and assuming the
Stokes-Einstein-Flory diffusivity as D(N ) = D0/Nν , with
D0 > 0, then distribution of the displacements is given by

P(x, t ) =
∫ ∞

0
C̃N−ν−1e− c

Nν e− N
N∗ N

ν
2 e− Nν x2

4D0t

√
4πD0t

dN,

√
4πD0t

C̃
P(x, t ) =

∫ ∞

0
e−I (N ) dN, (C2)

with I (N ) = c
Nν + N

N∗ + Nνχ2 − ( ν
2 − ν − 1)lnN and χ2 =

x2/4D0t . Considering the scaling N = χ−2η, taking into ac-
count the leading terms for χ −→ ∞ then P(x, t ) can be
approximated by the steepest descent method as

√
4πD0t

C̃
P(x, t )

	
√

2π

2χ
3
ν − 3

2χ
2
ν

e−(1+c)|χ |− |χ |−
1
ν

N∗ −( ν
2 +1) ln|χ |− 1

ν
. (C3)

This shows that for the large-x regime P(x, t ) exhibits expo-
nential tails even for a power-law distribution with a cutoff
(C1). As an example we work with the Rouse model D(N ) =
D0/N , in Fig. 6 the solution of Eq. (C2) is shown in semilog
scale for different values of N∗ ∈ {10, 30, 100}( red, blue, and
green solid lines, respectively). As we can see for the three
cases, in the large-x regime, P(x, t ) has an exponential decay.
In the inset of Fig. 6 we show the respective molecule size
distribution in log-log scale with the respective exponential

FIG. 6. Distribution of displacements (C2) in semilog scale, for
molecule size distribution with an exponential cutoff (C1) with
c = 1 and for N∗ = 10 red solid line, N∗ = 30 with a blue solid
line and N∗ = 100 with a green solid line. For χ =| x | /

√
4D0t

in the limit χ −→ ∞ all the distributions have exponential tails
collapsing in one straight line. In each case the approximated solution
(C3) is shown with a dashed color line. In the inset we show the
corresponding molecule size distribution (C1) in log-log scale.

cutoff in N −→ ∞. Physically large N implies small diffusiv-
ities, and this influence the statistics of P(x, t ) when x is small
thus the cutoff at N∗ is not important for the large-x regime.
Concretely when P(N ) has a cutoff size the diffusivity has no
values arbitrarily close to zero, hence a Gaussian behavior is
observed in the range of small x values. Contrary with the case
in which it is possible having values of D arbitrarily close to
zero, a peak is present in the small-x regime [16].

APPENDIX D: DYNAMICS OF THE HITCHHIKER MODEL

Diffusion: In the Hitchhiker model depending on their size
the molecules have different probabilities of walking, such
that the probability of hopping decreases with its respective
size. Let {Xt (N )}t∈Z+ be the position of a random walker
with size N at time t . As mentioned in the main text we
employ a size-dependent diffusion rate d (N ), which is related
with the diffusion coefficient D [see Eq. (D3)], defined in
each case by D = kBT/6πηbNν or D = D0 exp[−cN ν̃]. For
the Rouse model we have d (N ) = 1/N , in the Zimm model
d (N ) = 1/N

3
5 and for the Arrhenius case d (N ) = e−N . Thus

the corresponding transition probabilities from site i to site j
in one step of time are given by

P(Xt (N ) = j | Xt−1(N ) = i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d (N )
2 if j = i + 1,

d (N )
2 if j = i − 1,

1 − d (N ) if j = i,

0 otherwise.
(D1)
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For a molecule with size N the first or second row in Eq. (D1)
defines the probability to give a step to the right or left on the
lattice. The third entry represents the probability of remaining
at the same site. Thus the displacement of a random walker
with size N , is defined by �Xt (N ) = Xt (N ) − Xt−1(N ), such
that �Xt (N ) ∈ {−1, 0, 1}. We consider two different sorts of
interactions between particles: breaking and aggregation.

Breaking: We assume a spontaneous binary breaking of
molecules; see Fig. 1. Namely, if a molecule is composed of
an even number of monomers, it breaks into two equal parts of
size Ni/2. When a molecule is composed by an odd number of
monomers, it splits into two parts (Ni − 1)/2 and Ni − Ni−1

2 .
In both cases the remaining clusters are placed randomly at
the immediate neighboring sites, leaving empty the site of
breaking. The rate of breaking is w (see more details below
in simulation methods).

Aggregation: In the two cases of breaking, aggregation
happens when the remaining parts are placed randomly and
add up with the molecules at their respective neighboring sites
j ∈ {i − 1, i + 1}, leaving the site i empty. For the diffusion
of particles at site i, the corresponding aggregation takes place
when the molecule jumps and adds up to the molecule at i + 1
or at i − 1; see trajectories in Fig. 1.

The variance of a single displacement in the Hitchhiker
model, which is defined by the displacements �Xt (N ) ∈
{−1, 0, 1} and the transition probabilities (D1), is equal to

E
[
�X 2

t (N )
] = d (N ). (D2)

Substituting Eq. (D2) in 〈x2〉 = 2Dt , the diffusion coefficient
D and the diffusion rate d (N ) in the Hitchhiker model are
related by

D = E
[
�X 2

t (N )
]

2�
, (D3)

with � = ti − ti−1, here we used lattice spacing equal to one.
The diffusion constant of the particle is given by Eq. (D3)
ties the probability of choosing the molecule at a given Monte
Carlo step. The latter probability is a constant in equilibrium.
Importantly it does not depend on the specific size of the
molecule. Hence we have for a molecule D(N ) ∼ d (N ). In all
of the cases (SEF or Arrhenius) the corresponding parameters
in D are set to one, i.e., kBT/6πηb = 1, D0 = 1 and c = 1.

APPENDIX E: SIMULATIONS

The simulations of the Hitchhiker model were made by
the following algorithm. At the initial time every site in the
lattice is occupied by one monomer (Ni = 1), given this at
every update one nonempty site is chosen randomly, then
either with probability d (N )/[w + d (N )] we do diffusion
following Eq. (D1) and the corresponding aggregation or
with probability w/[d (N ) + w] we perform a breaking event
and its corresponding aggregation. We consider that after M
updates a Monte Carlo step or “time step” is achieved. The
value of M is defined by the average number on nonempty
sites in the lattice, 1000 for the Rouse model, 600 for the
Zimm, and 2000 for the Arrhenius one.

We use a fixed rate of breaking w = 0.005 and a lattice
with 6000 sites. And the rate of diffusion d (N ) depends on
the size of each diffusing molecule via the Rouse, Zimm (SEF

D = kBT/6πηbNν), or Arrhenius D = D0 exp[−cN ν̃]. The
distributions of P(x, t ) for all the cases were obtained within
the steady-state regime for the molecule size distribution.
This means that first we relax the system, letting it reach
equilibrium.

We implemented the tagging protocols as follows: for
the FT method after a relaxation time, when the system
has reached equilibrium, all the different-size molecules are
labeled and then tracked. For the SMT method starting from
the initial configuration, one monomer is marked and then it
is traced. In order to obtain better statistics of P(N ), P(z),
and P(x, t ), we made several runs of simulations using each
different method. For example, for the FT method we made
10 different runs for the Rouse model. Implying comput-
ing P(N ) and P(x, t ) for 10 000 particles (since on average
each run has M = 1000 particles). In the case of the SMT
10 000 independent runs were made, obtaining P(z) or P(x, t ).
The same scheme was applied to the Arrhenius and Zimm
dynamics.

APPENDIX F: OTHER BREAKING MECHANISMS

1. Random scission

Instead of choosing for our model an equal binary breaking
mechanism, here we present the distribution for molecule
sizes P(N ) and displacements P(x, t ) for the Hitchhiker
model, but for a random fission mechanism. For this case a
breaking event happens at a constant rate w, although now the
cluster of particles with size Ni is divided into two random
parts Ni − F and F . With F a discrete uniform random vari-
able, such that F ∈ [1, Ni − 1]. In this way a monomer or a
bigger subaggregate (less than N − 1) can be ripped out from
the cluster. The remaining two parts are placed randomly at
the neighboring sites, leaving empty the site of breaking. The
corresponding aggregation takes place when the mentioned
fractions are add up at the neighboring sites {i − 1, i + 1}.

In Fig. 7(a) we show in purple circles the molecule size dis-
tribution obtained from simulations of the Hitchhiker model
with random binary fragmentation and Rouse dynamics. As
we can see P(N ) qualitatively has the same shape as in the
case of equal binary breaking (red circles), but they differ in
the peak height and the latter is slightly shifted to the right.
Then is reasonable assuming that P(N ) still has the same
functional form but now with different parameters. This is
shown in Fig. 7(a) by the purple solid line, which represents
the corresponding fitting with an inverse gamma distribution
like model given by [29]

P(N ) = CN−βe− A
Nδ . (F1)

The parameters relative to the powers of N in Eq. (F1)
are β = 2.83 and δ = 0.37. In Fig. 7(b) we observe that the
displacements for short times follow a Laplace distribution
Eq. (3), recovering Gaussian statistics Eq. (2) in the long run.
By changing the breaking mechanism for a more general one,
we see that the distribution of sizes qualitatively remains equal
and the displacements still exhibit an exponential decay in the
short run.
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FIG. 7. (a) Comparison between P(N ) obtained by the simula-
tions of the Hitchhiker with Rouse dynamics but with different frag-
mentation mechanisms: equal binary breaking (red circles), random
scission (purple circles), and chipping (black circles). The fitting with
Eq. (7) with α = 1 is shown by a solid red line, the corresponding
with Eq. (F1) by a solid purple line, and P(N ) ∼ N−τ by a black
solid line. In the inset we show the same but in log-log scale, as
we can see the power-law model just explains P(N ) for the range of
small sizes. (b) Distribution of displacements P(x, t ) for simulations
employing random scission. (c) P(x, t ) for simulations of a system
with chipping. In both cases P(x, t ) exhibits an exponential decay
in the short-time limit, recovering Gaussian statistics in the
long run. For both cases the particles were tracked by the SMT
method.

2. Chipping

Finally we implement a single-molecule breaking, also
known as chipping mainly used in aggregation mass models
studied in [32,33]. In this case when a cluster of particles has
a breaking event a monomer is ripped out from the aggregate,
and then it is placed randomly at one of the neighboring
sites. So we have Ni − 1 at the site of chipping and Nj + 1
at j = i + 1 or j = i − 1.

For the sake of comparison with the other cases mentioned
above, we used chipping of particles in the Hitchhiker model
with Rouse dynamics. In Fig. 7(a) we show P(N ) in black
circles, as we can see this mechanism of breaking favors the
existence of monomers, but also the creation of bigger size
clusters. It is known from Ref. [33], that for aggregation mod-
els with chipping, P(N ) follows a transition from exponential
in the low-density regime to a power-law distribution in the
high density limit. In our case, since the density is given
by ρ = Total mass/L = 1, it is not clear which distribution
should follow P(N ). In Fig. 7(a) we show a power-law fitting
(solid black line) with the simulation data of the Hitchhiker
with chipping, as we can see in the inset plot the power law
P(N ) ∼ N−τ with τ = 1.15, fits well just for the range of
small values of N . But in the large-size regime this model does
not describe anymore the behavior of P(N ). More importantly,
the packet P(x, t ) exhibits the now famous exponential decay,
at least in the short-time regime; see Fig. 7(c). As expected
Gaussian statistics are recovered for the long time regime.

APPENDIX G: DISTRIBUTION OF DISPLACEMENTS
FOR THE ARRHENIUS AND ZIMM MODELS

In Figs. 8(a) and 8(b) we show, respectively, as in the
case of Rouse dynamics in the main text, the distribution
of displacements obtained by simulations of the Hitchhiker
model with Arrhenius and Zimm diffusion rates. As we can
see, in both cases for short times the molecule spreading is
well fitted with the Laplace distribution. On the other hand, in
the long-time limit P(x, t ) follows Gaussian statistics.

APPENDIX H: NON-GAUSSIAN PARAMETER

The non-Gaussian parameter (NGP) as a function of time
is defined by [10,14,16]

NGP(t ) = 1

3

〈X 4(t )〉
〈X 2(t )〉2

− 1, (H1)

for which values equal to zero implies that the stochastic
process X (t ) follows a Gaussian distribution. Values such
that NGP > 0 implies an excess of kurtosis and therefore a
departure from the normal distribution, specifically a Laplace
distribution exhibits a value of NGP = 1.

In Fig. 9 we show the NGP as a function of time for
the simulations of the Hitchhiker model employing Rouse
(purple diamonds), Arrhenius (green triangles), and Zimm
(blue squares) dynamics, and using the same set of parameters
as those used for generating P(x, t ) in Fig. 2 and Figs. 8(a)
and 8(b). As expected for short times we see deviations from
Gaussian dynamics and convergence in the long run.
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(a)

(b)

FIG. 8. (a) P(x, t ) in semilog scale, obtained from the Hitchhiker
model with Arrhenius diffusion rates. (b) The same as above but
for Zimm dynamics. For short times we show the comparison with
their respective Laplace distribution (solid lines). P(x, t ) for long
times are well described by Gaussian statistics (dashed lines). The
simulations were done for an ensemble of 10 000 tracked molecules
with w = 0.005, � = 1 and in the steady-state regime. The particles
were tracked by the FT method.

APPENDIX I: AUTOCORRELATION FUNCTION
OF THE DIFFUSIVITY

From the trajectories of the position (see Fig. 1) we can also
obtain the time series for D[N (t )]. For the Hitchhiker model
the diffusivity D is a function of the molecule size and N itself
fluctuates over time due to aggregation and breaking events.
From the time series of D, we compute the autocorrelation
function in this case defined by

ACFD(�) = 〈(Dt − 〈D〉)(Dt+� − 〈D〉)〉
σ 2

D

, (I1)

with � the lag time and σD the standard deviation. In Fig. 10
we show the autocorrelation function of the diffusivity, using
Rouse dynamics, and taking the lag time as one step of
time (� = t). As we can see, before � ≈ 50, the ACFD(�)
decreases with respect to the lag time, until it reaches to
zero. After this point the autocorrelation of the diffusivity
takes negative values until � < 150, and beyond this value

FIG. 9. Non-Gaussian parameter (NGP) versus time in log-log
scale for simulations of the Hitchhiker model. Values for the NGP
parameter Eq. (H1) are extracted for systems with Rouse dynamics
for different times, shown in purple diamonds, those corresponding
with Arrhenius diffusion rates are shown in green triangles, and
Zimm model is shown in blue squares.

it approaches zero again. A further discussion about the pres-
ence of negative values in the ACFD(�) is found in Ref. [7].
The characteristic timescale of the correlation function of
D agrees in magnitude with the timescale for the transition
from Laplace to Gauss see Fig. 2. The observation that the
transition from Laplace to Gaussian packets corresponds to
the timescale of decay of the correlation function appears also
in stochastic approaches [14,16].

APPENDIX J: COMPARISON BETWEEN ANALYTICAL
FORMULA OF P(z) AND SIMULATIONS

In Fig. 11 we observe that P(z) (blue boxes) agrees with
the analytical formula Eq. (5) extracted by the simulation data
using the FT method (green boxes).

 0

 0.5

 1

 0  50  100  150  200

A
C

F
(D

Δ
)

Δ

Rouse model

FIG. 10. Autocorrelation function of the diffusivities versus the
lag time (blue crosses), for the Hitchhiker model with Rouse dynam-
ics and with the same parameters as in Fig. 2.
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FIG. 11. Comparison between P(z) obtained by simulations
(blue boxes) and P(z) given by Eq. (9) (green boxes) employing the
data of the simulations for the FT approach. Clearly Eq. (9) well
describes the data, and with it we may obtain statistical properties
of D(z); see main text. The simulations were done using w =
0.005, � = 1 and t = 103 with an ensemble of 10 000.

APPENDIX K: AVERAGE DIFFUSIVITY IN THE FT
AND SMT TRACKING PROTOCOLS

Following the SEF theory employing the diffusion rate
d (N ) = 1/Nν , by Eq. (D3) the diffusion coefficient is D(N ) ∼
1/(2Nν�). In this way the ratio between average diffusivities
in the FT and SMT methods is given by

〈D〉FT

〈D〉SMT
= 〈d (N )〉FT

〈d (N )〉SMT
(K1)

and hence follows

〈D〉FT

〈D〉SMT
=

∫ ∞

0
d (N )p(N ) dN( ∫ ∞

0

N p(N )

〈N〉 d (N ) dN

)∣∣∣∣
N=z

= 〈DFT〉
〈DSMT〉 = 〈N〉

〈N1−ν〉
〈 1

Nν

〉
. (K2)

APPENDIX L: AVERAGE DIFFUSIVITY
IN THE ROUSE MODEL

We corroborate this difference in the diffusivities for the
Rouse model using simulations of the Hitchhiker model and
within the Laplace regime for P(x, t ); in Fig. 12 we show the
difference in the particle spreading generated by DSMT(z) <

DFT(N ). When the SMT method is used the maximum length
in the displacements (blue circles) reached by the tracked
particles is lower than the one obtained with the FT protocol
(red circles). In each case we show in solid color lines the
corresponding fitting with the Laplace distribution. From the
data of Xt we computed the ratio between diffusivities by the

FIG. 12. P(x, t ) in semilog scale obtained using the Rouse
model: for the short-time regime with the FT method (red circles) and
the one employing the SMT protocol (blue circles). For the long-time
regime P(x, t ) is shown for the FT protocol (orange circles) and for
the SMT method (purple circles). The Laplace distribution is shown
by solid color lines and Gaussian statistics by the corresponding
dashed lines. In each case the measurements were done for t =
5, w = 0.005, � = 1, and we tagged 10 000 molecules. Clearly
the spread of the packet of particles using the SMT approach is
much narrower, since single molecules are statistically favoring large
complexes which are slowed down.

variance of each data set since 〈x2〉FT = 2〈D〉FTt and
〈x2〉SMT = 2〈D〉SMTt , having a value of 〈D〉FT/〈D〉SMT =
1.4550. Also in Fig. 12 we show that the transition to Gaussian
statistics is achieved indistinctly for both tagging protocols,
as expected the propagator associated to the SMT method
(purple circles) has a lower spreading compared with the one
associated to the FT protocol (orange circles).

APPENDIX M: AVERAGE DIFFUSIVITY FOR THE
ROUSE DYNAMICS EXTRACTED FROM THE

FITTING OF P(N) AND P(x, t )

For the Hitchhiker model we have that the diffusion con-
stant and the diffusion rate are related by D(N ) ≈ d (N )/2
[Eq. (D3)], with � = 1. In the case of the Rouse model,
d (N ) = 1/N and we have set the parameters kBT/6πηb =
1/2, such that we recover Eq. (6) SEF for ν = 1. In this case
the fitting of P(N ) with the model P(N ) = ae−b/n/N2 shown
in Fig. 2(a), compared with Eq. (7) gives the values of a =
10.33 = 1/(2〈D〉) and b = 5.77 = 1/(2〈D〉). Which implies
different values for 〈D〉 ∈ {0.048, 0.086}, respectively, with
an average of 〈D〉N = 0.067. In the case of the fitting of
P(x, t ) with the model ln P(x, t ) = c − d|x|, such that c =
ln (1/

√
4〈D〉t ) and d = 1/

√〈D〉t . The values obtained were:
for t = 2.5 ⇒ d = 2.246 and 〈D〉 = 0.079; for t = 5 ⇒ d =
1.684 and 〈D〉 = 0.0705; finally for t = 10 ⇒ d = 1.293 and
〈D〉 = 0.059. This on average gives 〈D〉x = 0.069, being in
the same order of magnitude compared with the value ob-
tained via the fitting of P(N ).
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[28] K. Sozański, A. Wiśniewska, T. Kalwarczyk, and R. Hołyst,

Phys. Rev. Lett. 111, 228301 (2013).
[29] M. E. Mead, Commun. Stat. 44, 1426 (2015).
[30] U. Endesfelder, K. Finan, S. J. Holden, P. R. Cook, A. N.

Kapanidis, and M. Heilemann, Biophys. J. 105, 172 (2013).
[31] M. Stracy, C. Lesterlin, F. Garza de Leon, S. Uphoff, P.

Zawadzki, and A. N. Kapanidis, Proc. Natl. Acad. Sci. USA
112, E4390 (2015).

[32] S. N. Majumdar, S. Krishnamurthy, and M. Barma, Phys. Rev.
Lett. 81, 3691 (1998).

[33] R. Rajesh, D. Das, B. Chakraborty, and M. Barma, Phys. Rev.
E 66, 056104 (2002).

[34] G. Oshanin and M. Moreau, J. Chem. Phys. 102, 2977
(1995).

[35] V. Feller, An Introduction to Probability Theory and Its Appli-
cations, Vol. 1 (John Wiley & Sons, New York, 1960).

[36] D. R. Cox, Renewal Theory (Methuen, London, 1962).
[37] W. Wang, J. H. P. Schulz, W. Deng, and E. Barkai, Phys. Rev. E

98, 042139 (2018).
[38] E. Barkai and S. Burov, Phys. Rev. Lett. 124, 060603 (2020).
[39] Y. Li, F. Marchesoni, D. Debnath, and P. K. Ghosh, Phys. Rev.

Research 1, 033003 (2019).
[40] F. Baldovin, E. Orlandini, and F. Seno, Front. Phys. 7, 124

(2019).

012109-13

https://doi.org/10.1103/PhysRevLett.99.060604
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1098/rsif.2008.0261
https://doi.org/10.1103/PhysRevLett.103.198103
https://doi.org/10.1038/nmat3308
https://doi.org/10.1038/ncomms11701
https://doi.org/10.1016/j.bpj.2016.11.3208
https://doi.org/10.1103/PhysRevLett.113.098302
https://doi.org/10.1021/acs.jpcb.6b06094
https://doi.org/10.1103/PhysRevE.94.012109
https://doi.org/10.1103/PhysRevX.7.021002
https://doi.org/10.1021/acs.jpcb.7b03870
https://doi.org/10.1103/PhysRevE.98.052138
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1038/s41467-018-06610-6
https://doi.org/10.1088/1751-8121/aab15f
https://doi.org/10.1088/1751-8121/ab0dae
https://doi.org/10.1088/1367-2630/ab3366
https://doi.org/10.1088/1751-8121/aaf6ff
https://doi.org/10.1038/nmeth.2599
https://doi.org/10.1073/pnas.1012868107
https://doi.org/10.1371/journal.pcbi.1003038
https://doi.org/10.1007/s00161-003-0145-1
https://doi.org/10.1021/ma60052a011
https://doi.org/10.1021/ma60052a012
https://doi.org/10.1063/1.448969
https://doi.org/10.1103/PhysRevLett.111.228301
https://doi.org/10.1080/03610926.2013.768667
https://doi.org/10.1016/j.bpj.2013.05.048
https://doi.org/10.1073/pnas.1507592112
https://doi.org/10.1103/PhysRevLett.81.3691
https://doi.org/10.1103/PhysRevE.66.056104
https://doi.org/10.1063/1.468606
https://doi.org/10.1103/PhysRevE.98.042139
https://doi.org/10.1103/PhysRevLett.124.060603
https://doi.org/10.1103/physrevresearch.1.033003
https://doi.org/10.3389/fphy.2019.00124

