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Scaling of local persistence in the disordered contact process
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We study the time dependence of the local persistence probability during a nonstationary time evolution in the
disordered contact process in d = 1, 2, and 3 dimensions. We present a method for calculating the persistence
with the strong-disorder renormalization group (SDRG) technique, which we then apply at the critical point
analytically for d = 1 and numerically for d = 2, 3. According to the results, the average persistence decays
at late times as an inverse power of the logarithm of time, with a universal dimension-dependent generalized
exponent. For d = 1, the distribution of sample-dependent local persistence is shown to be characterized by a
universal limit distribution of effective persistence exponents. Using a phenomenological approach of rare-region
effects in the active phase, we obtain a nonuniversal algebraic decay of the average persistence for d = 1 and
enhanced power laws for d > 1. As an exception, for randomly diluted lattices, the algebraic decay remains valid
for d > 1, which is explained by the contribution of dangling ends. Results on the time dependence of average
persistence are confirmed by Monte Carlo simulations. We also prove the equivalence of the persistence with a
return probability, a valuable tool for the argumentations.
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I. INTRODUCTION

The local persistence in nonequilibrium systems has at-
tracted a great deal of attention, as it reveals deep insights
into the nonequilibrium dynamics and it often shows a non-
trivial behavior [1–3]. Generally, persistence is defined as the
probability that a local field does not cross a given level up to
time t . A simple example is a random walk on a line, where
persistence measures the probability that the walker does not
pass the origin up to time t . In systems with many degrees of
freedom, the persistence probability typically has a power-law
temporal decay

P(t ) ∼ t−�, (1)

where the exponent � is often nontrivial, even in simple
systems such as a diffusive field with a random initial condi-
tion [4–6]. Exact results in interacting systems are scarce; an
exception is the persistence exponent of the one-dimensional
zero-temperature q-state Potts model [7].

Similar power-law behavior can be observed in critical
nonequilibrium models belonging to the directed percolation
(DP) universality class [8,9], such as the contact process
[10–12]. Here the persistence P(t ) can be defined as the
probability that, starting the system in a finite-density (non-
stationary) state, an initially inactive site is not activated until
time t . The persistence exponent can be regarded as a critical
exponent which is independent of the standard critical expo-
nents. According to simulations, � is universal and depends
only on the dimension, up to the upper critical dimension du =
4 for several models in the DP class [13–15] (for exceptions
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see Refs. [16,17]). Above the upper critical dimension, � is
nonuniversal (model dependent) [18,19]. In the interpretation
of the contact process as an epidemic spreading model, P(t )
is nothing but the probability that an individual is not infected
until time t , a natural quantity to study.

The behavior of persistence in systems with quenched
disorder is comparatively less known. One example for which
exact results exist is a one-particle problem, the random walk
in a random environment [20], which, in the case of contin-
uous space and time, is also known as the Sinai model [21].
According to exact results [22,23], the average persistence in
the recurrent (driftless) Sinai model follows the law

P(t ) ∼ (ln t )−� (2)

at late times, with � = 1. The same logarithmic scaling was
found by a strong-disorder renormalization group (SDRG)
method [24,25] and also for the lattice variant of the model
[26]. Thus, in this example, quenched disorder changes the
power law, frequently appearing in homogeneous systems,
to a logarithmic scaling. This type of logarithmic dynamical
scaling is typical in systems where the critical behavior is
controlled by an infinite-disorder fixed point (IDFP) of the
SDRG transformation [27]. Besides the Sinai model, another
example of this class of models is the disordered contact
process (DCP) [28,29]. In this work we aim at studying the
persistence probability in the DCP on one-, two-, and three-
dimensional lattices by means of phenomenological scaling,
the SDRG method, and Monte Carlo (MC) simulations. Re-
cently, a similar one-dimensional model which is a quenched
mixture of sites obeying rules of DP class and compact DP
class was considered in Ref. [30], and an active Griffiths
phase with varying nonuniversal persistence exponents was
observed in MC simulations. We point out similar Griffiths
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effects in the active phase of the DCP, although in dimensions
d > 1 the average persistence is found to decay according to
an enhanced power law in the case of random rates, whereas
on diluted lattices it keeps obeying power laws. In addition
to this, at the critical point, the average persistence is found
to follow a logarithmic decay given in Eq. (2). According to
our results, the generalized persistence exponent �, which is
determined analytically for d = 1 and estimated numerically
for d = 2, 3, is universal, i.e., it is independent of the form of
disorder.

The rest of the paper is organized as follows. The
model and the persistence probability are defined in Sec. II.
Section III is devoted to the phenomenological description of
rare-region effects in the active phase. In Sec. IV the SDRG
approach to the calculation of the persistence is presented and
applied analytically to the one-dimensional DCP and numer-
ically in two and three dimensions. The results are compared
with Monte Carlo simulations in Sec. V and discussed in
Sec. VI. An exact reformulation of the local persistence as
a return probability, which will be used frequently, is derived
in the Appendix.

II. MODEL

The contact process is a continuous-time Markov process
on a set of binary variables ni = 0, 1 sitting at the sites of
a d-dimensional hypercubic lattice [10–12]. Sites with ni =
1 (ni = 0) are called active (inactive). There are two kinds
of transitions which take place independently. First, site i,
provided it is active, becomes spontaneously inactive with a
rate μi. Second, an active site i activates its inactive nearest
neighbors j with a rate λi j . In the disordered contact process,
either the deactivation rates or the activation rates or both
of them are independent and identically distributed random
variables. The model shows a continuous phase transition at
a critical value of the control parameter � = ln(λ/μ), above
which the order parameter, the average density of active sites
in the steady state, is nonzero, and zero otherwise. Here and
in the following, the overbar stands for an average over the
random rates.

The local persistence probability in the homogeneous con-
tact process is usually defined as follows [9]. The system starts
to evolve from an initial state with a density of active sites
ρ0 < 1, and the local persistence P(t ) is the fraction of lattice
sites which are not activated until time t . The initial state can
be either an uncorrelated state or a state evolved from the
fully active state up to some time t0. The basic characteristics
of P(t ) in the homogeneous model are the following. In the
inactive phase it tends to a positive constant; in the active
phase, P(t ) → 0 exponentially, while at the critical point it
vanishes according to a power law as given in Eq. (1).

In the DCP, which is not translationally invariant, it is
reasonable to introduce the persistence probability P0(t ) of a
given site (which we will label by 0) in a given realization of
the random rates. For this we assume that, at t = 0, all sites
but site 0 are active. Then P0(t ) is the probability that site 0
is not activated until time t . Obviously, after some time has
elapsed, the global density declines to some ρ0 < 1, and one is
up against a similar situation as assumed in the usually defined
persistence P(t ). The average of P0(t ) over disorder P0(t ) has

therefore the same late-time behavior as P(t ), apart from the
precise value of the prefactor which is of less importance.

In the DCP, we are mainly interested in how the average
persistence P0(t ) behaves at late times. As the average is in-
dependent of the choice of site 0, we will ignore the label and
simply write P(t ). Here the main features are unaltered, i.e.,
it tends to a positive constant in the inactive phase and zero
otherwise, although, as it will turn out, the functional forms
in the latter case are different compared to the homogeneous
model.

Special care is needed for a particular case of disorder,
namely, the random site dilution. In this case, a randomly
selected fraction c of lattice sites is deleted and thus unavail-
able for the activity. If c is below the percolation threshold,
the diluted lattice consists of a macroscopic component and
a macroscopic number of finite-size fragments. Since the
finite fragments can reach the absorbing (inactive) state in a
finite time even in the active phase of the model, the initially
inactive sites of such fragments can stay inactive forever
with a nonzero probability. Therefore, the average persistence
would tend to a positive constant even in the active phase of
the model. To avoid this trivial behavior in diluted lattices, we
will ignore finite fragments and consider the process on the
macroscopic component only.

III. PHENOMENOLOGY IN THE ACTIVE PHASE

It is well known that, in the inactive phase of the DCP,
locally supercritical regions give rise to an anomalous alge-
braic decay of the density [31], which is analogous to Griffiths
effects in quantum magnets [32]. For similar reasons, the
average persistence will have a slower-than-exponential decay
in the active phase. Here, due to the disorder, even if the
system is locally supercritical almost everywhere, it contains
rare regions which are locally subcritical. Let us assume that
these regions are compact, isotropic, and characterized by
their radius l . The probability of occurrence of such regions
of radius greater than l is, with an exponential precision,
P>(l ) ∼ e−Ald

. The persistence time of such a region, which
is surrounded by an active background, is roughly given by
the time τ the activity needs to penetrate to the center of the
region. Since a rare region is locally subcritical, this time is
exponentially large in the radius: τ ∼ eBl . The distribution
of local persistence times has thus the large-τ tail P>(τ ) ∼
e−C[ln(τ/t0 )]d

, where C = AB−d and t0 are nonuniversal posi-
tive constants. Under the assumptions made above, the aver-
age persistence can be calculated as P(t ) ∼ ∫

e−t/τ ρ(τ )dτ ,
where ρ(τ ) = − dP>(τ )

dτ
is the probability density of τ . Using

the saddle-point approximation to evaluate this integral for
large t , we obtain

P(t ) ∼ e−C[ln(t/t0 )]d
(d > 1),

P(t ) ∼ t−C−1 (d = 1). (3)

Thus the average persistence is expected to decay in the
active phase according to an enhanced power law for d > 1
and to a power law with a nonuniversal exponent for d = 1.
Approaching the critical point, the characteristic linear size of
rare regions diverges and the above theory breaks down.
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IV. PERSISTENCE BY THE SDRG METHOD

An efficient technique for studying the critical behavior
of the DCP is the SDRG method [27,28], which is thus
complementary to the phenomenological scaling presented in
the preceding section. It was first applied to the DCP with
symmetric activation rates λi j = λ ji in Ref. [28]. The SDRG
method is a real-space renormalization procedure by which
fast degrees of freedom are sequentially eliminated, resulting
in a gradual decrease of the rate scale � = max{λi j, μi},
which is set by the maximal transition rate of the process. It
consists of two kinds of local reduction steps. If the largest
rate is an activation rate � = λi j , sites i and j form a cluster
characterized by an effective deactivation rate

ln μ̃i j = ln μi + ln μ j − ln λi j + ln 2. (4)

When the largest rate is a deactivation rate � = μi, site i is
eliminated and new interactions between all pairs ( j, k) of its
neighboring sites are generated with effective activation rates

ln λ̃ jk = ln λi j + ln λik − ln μi. (5)

The critical behavior of the DCP is described by the infinite-
disorder fixed point of the transformation, at which the dis-
tribution of logarithmic rates broadens without limits and the
approximative reduction steps become asymptotically exact
[27]. As a result of this coarsening procedure, the lattice sites
are arranged into a nontrivial set of practically noninteracting
clusters, which are characterized by some effective deactiva-
tion rates and the constituents of which are not necessarily
adjacent on the lattice.

In the following, we describe how the SDRG technique
can be applied for the calculation of persistence in the DCP.
The tractability of persistence relies on the observation that
the SDRG procedure mimics the time evolution of the DCP:
Starting the process from a fully active state, the set of sites
which are active with a high probability at some time t is
given within the SDRG by the set of clusters still active (i.e.,
not eliminated yet) at rate scale � = 1/t . Let us assume that
site 0 was initially inactive while all other sites were active.
Obviously, if site 0 is merged with another cluster in the
course of the SDRG procedure, it loses its intactness with a
high probability. This occurs when any of the activation rates
connected to site 0 are picked for decimation. There is how-
ever a difficulty here. Before this event could happen, site 0
may be decimated and in this case the procedure does not keep
a record of the activation rates connected to site 0 any longer.
This problem can be avoided by the following modification.
The deactivation rate of site 0 is set initially to zero μ0 = 0,
which ensures that site 0 is never decimated. Note that this
can be safely done since the persistence probability of site 0
does not depend on μ0. With this modification, site 0 will lose
its persistence in the course of the SDRG precisely when it is
merged with another cluster.

We can arrive at the same conclusion by the following
argument. Let us consider a fixed realization of the DCP and
a modified one, which differs from the original one in that
the deactivation rate at site 0 is set to zero μ0 = 0. In the latter
case, let P(0)

ret (t ) denote the probability that, starting the process
with all sites but 0 inactive, the state at time t returns to the
initial state. As it is proved in the Appendix by exploiting

the duality property of the contact process [33,34], this return
probability precisely equals the persistence probability P0(t )
of site 0:

P0(t ) = P(0)
ret (t ). (6)

We mention that a similar relationship is valid for another
representant of the DP class, the bond directed percolation
[13], but this has not been proven for the contact process so
far. In the SDRG picture, the condition of finding the modified
process (where μ0 = 0) in the initial state (i.e., only site 0
is active) at time t is that no other clusters are merged to
site 0 down to scale � = 1/t . This is the same condition we
obtained above.

A. Average persistence in one dimension

In one dimension, the calculation of the average persistence
can be carried out analytically by the SDRG method. In fact,
this is equivalent to the calculation of the surface magnetiza-
tion of the random transverse-field Ising chain (RTIC), which
is solved in Ref. [35].

To show this equivalence, we neglect the term ln 2 in
Eq. (4), which can be safely done at the critical point, where
the logarithmic rates increase without limits in the course
of the SDRG [36]. This way, the renormalization scheme
becomes formally identical to that of the RTIC. First, let
us consider a semi-infinite chain and study the persistence
Psurf (t ) of the first (surface) site. At the beginning of the
SDRG procedure, the deactivation rate of this site is set to zero
(and there is nothing to do with this site during the procedure
anymore) and we are interested in the probability Qsurf (�) that
the first activation rate λ01 is not decimated until the scale �.
This probability, when � = 1/t is substituted in it, provides
the time dependence of the average persistence probability (of
the surface site): Psurf (t ) ∼ Qsurf (� = 1/t ).

Due to the λ ↔ μ duality of the SDRG scheme in one
dimension, which is salient comparing Eqs. (4) and (5) (if
the constant term is dropped), the probability Qsurf (�) is
the same as the probability of not decimating the surface
site (or the cluster containing the surface site) of a semi-
infinite system in which the distributions of activation rates
and deactivation rates are interchanged. The evolution of this
probability under the SDRG procedure has been calculated
analytically in Ref. [35] in the context of the RTIC, where it
describes the scaling of the average surface magnetization. It
turned out that critical systems with any initial distribution
of rates flow towards a self-dual universal IDFP, at which
Qsurf (�) ∼ 1/ ln[�0/�] [35]. This yields for the time depen-
dence of the average persistence of the surface site

Psurf (t ) ∼ [ln(t/t0)]−1. (7)

In the case of the persistence of a bulk site of an infinite
chain, there is no further complication. Site 0 is connected to
two semi-infinite chains and we are interested in the probabil-
ity Qbulk (�) that neither of the two activation rates connected
to it are decimated down to scale �. Obviously, until such an
event the two halves of the system do not communicate, so
we have simply Qbulk (�) = [Qsurf (�)]2. Therefore, we obtain
for the average persistence of bulk sites at the critical point at
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late times

P(t ) ∼ [ln(t/t0)]−2. (8)

B. Distribution of persistence in one dimension

In the DCP, the persistence probability of a given site
depends on the realization of disorder, and thus it varies
from sample to sample. Beyond the average over disorder,
a complete characterization of persistence is given by the
distribution S(P0, t ), which depends on the parameter t . In one
dimension, the SDRG scheme is simple enough so that the
limit distribution at late times can be calculated as follows.

To calculate the average it was a good (asymptotically
correct) approximation to take the persistence after site 0
was merged with another cluster as zero. However, to obtain
the distribution, we must go beyond this point and take
into account that, even after such an event, there remains
a small but nonzero persistence probability. Let us consider
the persistence of the first site of a semi-infinite chain and
describe it by a variable p(�) in the course of the SDRG.
Initially, for � = �0, it is set to one p(�0) = 1 and it will
remain unchanged until the activation rate connected to it is
decimated at some rate scale �1. This means that site 0 is
merged with the next cluster having a deactivation rate μ1.
Since typically μ1 � �1, the next cluster is active at time
t1 = 1/�1 with a probability close to one. However, it may
have been deactivated by the time t1, with a small probability
μ1t1 = μ1

�1
. In this case, the newly formed cluster containing

site 0 will be inactive and site 0 remains intact even after such
an event. The variable p(�) is thus renormalized as

p̃ = p
μ1

�1
. (9)

Similarly, a further merging of the surface cluster with the next
one (having some deactivation rate μ2) at a lower renormal-
ization scale �2 will reduce the variable p by a factor μ2

�2
.

We can come to the same conclusion by using the equiv-
alence of persistence with a return probability. In this case,
the variable p(�) is interpreted as the return probability at
time t = 1/�. It remains 1 until the adjacent cluster with
deactivation rate μ1 is merged with the surface site at scale
�1. After this event, we have a new cluster with a simple
internal dynamics. The surface site is always active (since
μ0 = 0), while the other component can be deactivated with
a rate μ1 and activated with a rate �1. The probability that
only the surface site is active, which is nothing but the
return probability to the initial state, is μ1

�1+μ1
≈ μ1

�1
. Thus, the

variable p(�) transforms in the same way as given in Eq. (9).
At the critical point, the transformation of the persistence

probability in Eq. (9) is formally identical to that of the surface
order parameter of the DCP, analyzed in Ref. [37], so we can
make use of the results obtained there. As it is shown there,
the fixed-point distribution of K = ln(1/p) is simply

B� (K ) = 1

�
e−K/�, (10)

where � = ln(�0/�). This yields that the persistence proba-
bility of a surface site has the distribution at late times

Ssurf (Psurf , t ) = [ln(t/t0)]−1e− ln(1/Psurf )/ ln(t/t0 ). (11)

The scaling variable �s = − ln(Psurf )/ ln(t/t0) appearing here
can be interpreted as a sample and time-dependent effec-
tive persistence exponent, which has the limit distribution
S̃surf (�s) = e−�s .

In the case of a bulk site, the persistence probability Pbulk (t )
is a product of two independent surface persistences corre-
sponding to the two sides of site 0. The scaling variable �b =
− ln(Pbulk )/ ln(t/t0) is thus a sum of two independent and
exponentially distributed variables �s, having the distribution

S̃bulk (�b) = �be−�b . (12)

The result we just obtained can be interpreted that, as opposed
to the homogeneous contact process, which is characterized
by a single persistence exponent, the persistence in the critical
DCP is described by an entire distribution of persistence
exponents.

Having the distribution of effective exponents, we can
readily calculate other characteristics, such as the typical
persistence defined as [P0(t )]typ = exp{ln P0(t )}. For this we
obtain power-law decays [Psurf (t )]typ ∼ t−1 for a surface site
and [Pbulk (t )]typ ∼ t−2 for bulk sites.

C. Higher dimensions

In dimensions d > 1, the SDRG method cannot be treated
analytically. Here we apply the numerical SDRG algorithm
developed in Ref. [38], which is very efficient in producing the
final cluster structure of a finite sample at the expense of being
agnostic about the decimation history. However, the method
can be used to determine the time dependence indirectly,
through finite-size scaling, as follows. In an ensemble of finite
samples of linear size L, we calculate the fraction P(L) of
samples in which site 0 (for which μ0 = 0) remains a one-site
cluster in the final set of clusters. On the grounds of the critical
scaling of P(t ) in one dimension, we expect

P(t ) ∼ [ln(t/t0)]−� (13)

to hold with a dimension-dependent universal exponent �(d ),
at least in dimensions d < 4, where the validity of the SDRG
approach is supported by Monte Carlo simulations [39]. Using
the logarithmic dynamical scaling of the form ln(�0/�) ∼
L	 valid at an IDFP [27], we obtain that the probability P(L)
must scale with the system size as

P(L) ∼ L−	�. (14)

By determining the exponent xp = 	� numerically and using
the known estimates 	(d = 2) = 0.48(2) and 	(d = 3) =
0.46(2), obtained in two [38] and three [40] dimensions by
the numerical SDRG method, we can calculate the generalized
persistence exponents.

In our numerical calculations, we have renormalized finite
samples of linear size up to L = 1024 and 128 for d = 2
and 3, respectively, with periodic boundary conditions. The
number of samples was at least 106. To highlight the uni-
versality of the results, we have used two different param-
eter distributions to implement the disorder. The activation
rates were chosen uniformly from the interval λi j ∈ (0, 1] in
both cases, while the deactivation rates were either chosen
from a uniform interval as μi ∈ (0, μ] (box-μ disorder) or
kept constant μi = μ∀ i (fixed-μ disorder) with a control
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FIG. 1. SDRG estimates of the exponent xp = 	� in the (a)
d = 2 and (b) d = 3 critical model. The exponents are the results of
two-point fits for sizes L and L/2, providing consistent extrapolated
values xp(d = 2) = 0.32(1) and xp(d = 3) = 0.15(2) as L → ∞ for
both box-μ [purple (top) line] and fixed-μ [green (bottom) line]
disorder. The straight lines are linear fits to the data.

parameter � = ln(μ). The location of the critical point is
known for both disorder distributions to be at �b

c(d = 2) =
1.6784(1) and �

f
c (d = 2) = −0.17034(2) [38] and �b

c(d =
3) = 2.5305(10) and �

f
c (d = 3) = −0.07627(2) [40]. We

find consistent universal exponents for both disorder distribu-
tions, providing the L → ∞ extrapolated exponents xp(d =
2) = 0.32(1) and xp(d = 3) = 0.15(2) (see Fig. 1), which
yield the following estimates for the generalized persistence
exponents:

�(d = 2) = 0.67(5), �(d = 3) = 0.33(6). (15)

V. MONTE CARLO SIMULATIONS

In order to check the results obtained by the phenomeno-
logical considerations and the SDRG method, we performed
numerical simulations in dimensions d = 1, 2, and 3, using
binary disorder. Here a fraction c of the lattice sites are
randomly labeled as defect sites having a local reduction
factor wn = w < 1 of the activation rate, while for the rest
of the sites wn = 1. The simulation then goes as follows.
Initially, each site is set to be active with a probability 1/2.
An active site n is randomly picked and either it is made
inactive with a probability 1

1+wnλ
or with the complementary

 0

 20

 40

 60

 0  4  8  12

[P
(t

)]
-1

/2

ln t

d=1  c=0.5  w=0.2 λ=7.15
d=1  c=0.3  w=0.2 λ=5.24

FIG. 2. Dependence of the average persistence probability on
time, obtained by numerical simulations in the one-dimensional
critical DCP for two different sets of parameters. According to
Eq. (8), [P(t )]−1/2 must asymptotically increase linearly with ln t .
The straight lines are linear fits to the data.

probability wnλ
1+wnλ

one of its 2d neighbors is randomly selected
and is activated provided it was inactive. Such an update is
coupled with a time increment �t = 1/N (t ), where N (t ) is
the actual number of active sites. A special case of binary
disorder is w = 0, in which the defect sites do not affect
the dynamics on the rest of the sites, and this corresponds
effectively to a diluted lattice. As discussed in Sec. II, we
restrict the process to the giant component in this case. We
considered cubic lattices of typical linear sizes, in order L =
106, 5000, and 500 in dimensions d = 1, 2, and 3. A periodic
boundary condition was applied in all cases. We measured
the fraction of persistent sites as a function of time, which
was also averaged typically over 10–100 different realizations
of disorder. To estimate the critical point, we performed
simulations started from a single active seed for different
values of λ and plotted the average number of active sites
against the survival probability which must show a power-law
dependence at the critical point [41].

For the one-dimensional DCP, we considered two sets of
parameters. For w = 0.2 and c = 0.3 we made use of the
estimate of the critical point λc = 5.24(1) from Ref. [41],
while for w = 0.2 and c = 0.5 we obtained λc = 7.15(5).
As it is shown in Fig. 2, the numerical results on the time
dependence of the average persistence are in accordance with
the SDRG prediction in Eq. (8). In the active phase, the
average persistence displays a power-law asymptotic decay
with exponents varying with the control parameter, as can be
seen in Fig. 3, in agreement with the phenomenological result
in Eq. (3).

For the two-dimensional DCP, we considered again two
sets of parameters. For w = 0.1 and c = 0.7 we determined
the critical point as λc = 5.085(5), while for w = 0 and
c = 0.2, which correspond to a diluted lattice, we used the
estimate λc = 2.1075(1) from Ref. [42]. At the critical point,
we measured the average persistence and fitted the function
in Eq. (13) to the data (excluding the transient ln t < 8). To
estimate the error of �, we plotted [P(t )]−1/� against ln t
and determined the range of � for which the asymptotic
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FIG. 3. Dependence of the average persistence probability on
time, obtained by numerical simulations at different points of the
active phase of the one-dimensional DCP.

dependence is judged to be linear (Fig. 4). This way, we
obtained the estimates � = 0.73(4) for w = 0.1, c = 0.7,
and � = 0.78(5) for the diluted lattice. These are somewhat
higher than those obtained by the SDRG method (see Table I,
in which the estimates obtained by the two methods are
summarized).

However, owing to the uncertainty of the estimation of λc

and corrections to the asymptotic form in Eq. (13), the true
error of � must be larger. This can be made visible in d =
1, where � is available analytically by the SDRG method.
Fitting here the function in Eq. (13) in the same way to the MC
data, the deviation of � from the analytic value can be on the
same order of magnitude as the observed difference between
the MC and SDRG estimates in d = 2. We conclude therefore
that, in spite of the deviations, the MC estimates in d = 2 are
compatible with those of the numerical SDRG method.

The time dependence of the average persistence in different
points of the active phase is shown in Fig. 5 for the case
of w = 0.1 and c = 0.7. As can be seen, the numerical
results support the enhanced-power-law decay obtained by
the phenomenological scaling considerations [see Eq. (3)]. In
contrast, in the diluted lattice, the average persistence follows
an algebraic decay given in Eq. (1) rather than an enhanced
power law, as shown in Fig. 5. Unlike in the one-dimensional
model, which also displays an algebraic decay, the decay
exponents seem to approach a nonzero limit as λ tends to λc.
This phenomenon will be explained in Sec. VI.

For the three-dimensional contact process we consid-
ered the parameter sets w = 0.1 and c = 0.7, and w = 0
and c = 0.5. In the former case, we obtained the estimate

TABLE I. Numerical estimates of the generalized persistence
exponent � obtained by the SDRG method and Monte Carlo sim-
ulations in dimensions d = 2 and 3.

d SDRG MC (w > 0) MC (w = 0)

2 0.67(5) 0.73(4) 0.78(5)
3 0.33(6) 0.34(4) 0.29(4)
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FIG. 4. Dependence of the average persistence probability on
time, obtained by numerical simulations in the two-dimensional
critical DCP for two different sets of parameters. The generalized
persistence exponents used here are (a) � = 0.73 and (b) � = 0.78.
The straight lines are linear fits to the data.

λc = 3.649(3), while in the latter case, which corresponds to
a diluted lattice, we have taken the estimate λc = 2.6906(3)
from Ref. [43]. At the critical point, the average persistence is
found to follow the logarithmic law given in Eq. (13), and
the generalized persistence exponents are estimated in the
two cases to be � = 0.34(4) and � = 0.29(4) (see Fig. 6).
These are again compatible with the estimates obtained by the
numerical SDRG method (see Table I).

The numerical results obtained in the active phase are
similar to those obtained for d = 2. As shown in Fig. 7,
the average persistence in the model with w > 0 follows an
enhanced power law, in accordance with Eq. (3). In the case of
the diluted lattice (w = 0), however, the average persistence
decreases algebraically and the decay exponent seems to tend
to a nonzero limit as λ → λc.

VI. DISCUSSION

In this work we studied the time dependence of the local
persistence in the DCP during the evolution from a nonsta-
tionary initial state. We developed a method for calculating the
average persistence in this system by the SDRG technique. We
have found that the average persistence decays at the critical
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FIG. 5. Dependence of the average persistence probability on
time, obtained by numerical simulations at different points of the
active phase of the two-dimensional DCP with the parameters
(a) w = 0.1 and c = 0.7 and (b) w = 0 and c = 0.2. In (a) the
timescales are, for increasing λ, t0 = 1000, 300, 50, and 10.

point at late times as an inverse power of ln t and determined
the universal dimension-dependent exponent analytically in
one dimension and numerically in two and three dimensions.
In one dimension we went beyond the calculation of the
average and determined the limit distribution of the sample-
dependent local persistence. According to the results, the
persistence at late times can be characterized by a distribution
of effective persistence exponents. In fact, the scheme for
calculating the sample-dependent persistence formulated in
the one-dimensional model can be easily generalized to higher
dimensions. Observing the renormalization rule of persistence
in Eq. (9), it turns out to be similar to the renormalization
of the deactivation rate of a cluster when another cluster
is merged with it [see Eq. (4), ignoring the constant term].
Therefore, the persistence of site 0 in a given random sample
can be calculated generally in the following way. Initially,
the deactivation rate μ0 is set to a very small but nonzero
value, which enables the calculation of persistence until the
cluster containing site 0 is decimated, at least down to a scale
� = μ0. At some rate scale � (with the above restriction),
the effective deactivation rate μ̃0 of the cluster containing
site 0 is thus related to the variable p describing persistence
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FIG. 6. Dependence of the average persistence probability on
time, obtained by numerical simulations in the three-dimensional
critical DCP for two different sets of parameters. The generalized
persistence exponents used here are (a) � = 0.34 and (b) � = 0.29.
The straight lines are linear fits to the data.

as μ̃0(�) = p̃(�)μ0. Therefore, the persistence probability at
time t = 1/� is given by μ̃0(�)/μ0.

In the active phase of the model, the average persistence
decays anomalously due to rare-region effects, which is pre-
dicted to obey an enhanced power law by simple phenomeno-
logical arguments. This behavior was confirmed by Monte
Carlo simulations in nondiluted random systems. However,
on the giant component of a percolating lattice the simula-
tions showed a power-law decay. We attempted to explain
this discrepancy in a phenomenological manner as follows.
Concerning the giant component of a diluted lattice, the av-
erage persistence can be decomposed into two contributions.
One of them comes from the dangling ends (DEs) of the
giant component [44]. These are small parts connected to the
remaining part (backbone) by a single path. Persistent sites
within a DE, once the whole DE got into an inactive state,
are highly protected against activation, which can come from
the backbone only through a single path. This situation is
essentially the same as in one dimension; thus these sites
give an algebraically decaying contribution to the average
persistence. Besides dangling ends, standard rare regions can
also form in the backbone, as regions of high local dilution.
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FIG. 7. Dependence of the average persistence probability on
time, obtained by numerical simulations at different points of the
active phase of the three-dimensional DCP with the parameters
(a) w = 0.1 and c = 0.7 and (b) w = 0 and c = 0.5. In (a) the
timescales are, for increasing λ, t0 = 1000, 300, 150, 100, and 50.

The occurrence of these is exponentially improbable in their
volume, just like in the case of nondiluted random systems;
hence their contribution decays as an enhanced power law in
the active phase. Therefore, this contribution of the backbone
is suppressed by the more slowly decreasing, algebraic contri-
bution of DEs. At the critical point, however, the dominance is
reversed, as the backbone yields a contribution of O((ln t )−�),
suppressing the contribution of DEs. When λ is decreased
in the active phase, the decay exponent in the dominant
contribution of DEs slowly decreases. However, approaching
λc, it will not get arbitrary close to zero since the size of the
rare regions, the DEs, does not diverge as they are determined
by the structure of the giant component, which is fixed.

In summary, we have seen that, unlike the standard order
parameter (density) of the model in the inactive Griffiths
phase, the average persistence in the active phase is sensitive
to the form of disorder. In the inactive phase, the rare regions
are domains in which the interactions are stronger than the
average [31], whereas in the active phase, the anomalous be-
havior is caused by weakly interacting, less accessible regions,
as it was discussed quantitatively in Sec. III. In the case of a di-
lution type of disorder, the accessibility of certain rare regions

can be catastrophically low, altering the standard behavior
of persistence observed in nondiluted random systems: The
appearance of isolated components in diluted systems leads
to a nonzero average persistence even in the active phase and
filtering out this contribution, the dangling ends are still able
to change the standard behavior in the active phase.
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APPENDIX: RELATIONSHIP TO A
RETURN PROBABILITY

From duality of the contact process [33,34], we prove an
exact equivalence between the local persistence and a return
probability in a slightly modified system. In the quantum
Hamiltonian formalism [33], the configurations of a system
with L sites are described by states |η〉 ≡ ⊗L

i=1 |ηi〉, where
ηi = 0, 1 correspond to inactive and active states at site i,
respectively. The state of the system at time t , |ψ (t )〉 =∑

η pη(t )|η〉, evolves according to the master equation

∂t |ψ (t )〉 = −H |ψ (t )〉, (A1)

where the quantum Hamiltonian is given by

H = −
∑

i

μi(s
+
i − ni )

−
∑
〈i j〉

λi j[ni ⊗ (s−
j − v j ) + (s−

i − vi ) ⊗ n j]. (A2)

Here, only the nontrivially acting parts of the operators have
been written out and the summation in the second term
goes over neighboring sites. Using representations (1, 0)T and
(0, 1)T of the states |0〉 and |1〉, respectively, the local opera-
tors appearing in Eq. (A2) are represented by the matrices

v =
(

1 0
0 0

)
, n=1 − v, s− =

(
0 0
1 0

)
, s+ = [s−]T .

(A3)

As the persistence probability on site 0 is independent of μ0,
it can be chosen arbitrarily. Let us set it to zero μ0 = 0 and
denote the Hamiltonian of this modified process by H0. Let
us consider now the evolution of the modified process from
the initial state |N0〉, in which all sites but site 0 are active.
Obviously, the persistence probability P0(t ) of site 0 is related
to the local density ρ0(t ) on site 0 at time t in the modified
process as

P0(t ) = 1 − ρ0(t ). (A4)

The state at time t in the modified process is |ψ0(t )〉 =
e−H0t |N0〉 and the local density at site 0 can be written as

ρ0(t ) = 〈s|n0|ψ0(t )〉 = 〈s|n0e−H0t |N0〉, (A5)
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where |s〉 = ∑
η |η〉. With the Hamiltonian H0, a dual Hamil-

tonian H̃0 can be associated via

H̃T
0 = DH0D−1, (A6)

where D = ⊗L
i=1(vi + s−

i + s+
i ). The dual process differs

from the original one in that λi j and λ ji are inter-
changed [33,45]. For a symmetric process (where λi j =
λ ji), the Hamiltonian is therefore self-dual, H̃0 = H0. In-
serting the identity D−1D in Eq. (A5) and using the
relations dinid

−1
i = vi − s+

i , 〈s|D−1 = 〈∅|, and D|N0〉 =
|∅〉 + |10〉, where |∅〉 and |10〉 denote the fully inactive
state and the state with only site 0 active, respectively,

we obtain

ρ0(t ) = 〈∅|(v0 − s+
0 )e−H̃T

0 t (|∅〉 + |10〉)

= (〈∅| − 〈10|)e−H̃T
0 t (|∅〉 + |10〉)

= 1 − 〈10|e−H̃T
0 t |10〉. (A7)

After transposing it and assuming that the process is self-dual,
we have

P0(t ) = 1 − ρ0(t ) = 〈10|e−H0t |10〉. (A8)

The right-hand side is nothing but the return probability
P(0)

ret (t ) to the state with only site 0 active in the modified
process.
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