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Pinned or moving: States of a single shock in a ring
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Totally asymmetric exclusion processes (TASEPs) with open boundaries are known to exhibit moving shocks
or delocalized domain walls (DDWs) for sufficiently small equal injection and extraction rates. In contrast,
TASEPs in a ring with a single inhomogeneity display pinned shocks or localized domain walls (LDWs) under
equivalent conditions [see, e.g., H. Hinsch and E. Frey, Phys. Rev. Lett. 97, 095701 (2006)]. By studying periodic
exclusion processes composed of a driven (TASEP) and a diffusive segment, we discuss gradual fluctuation-
induced depinning of the LDW, leading to its delocalization and formation of a DDW-like domain wall, similar
to the DDWs in open TASEPs in some limiting cases under long-time averaging. This smooth crossover is
controlled essentially by the fluctuations in the diffusive segment. Our studies provide an explicit route to control
the quantitative extent of domain-wall fluctuations in driven periodic inhomogeneous systems, and should be
relevant in any quasi-one-dimensional transport processes where the availability of carriers is the rate-limiting
constraint.
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I. INTRODUCTION

Correlated fluctuations in statistical mechanics is of great
importance, and can be decisive in controlling the macro-
scopic behavior of systems in many circumstances, especially
in low dimensions. For instance, long-ranged fluctuations near
the critical point in the equilibrium Ising model at three
dimensions can change the universal scaling of the thermody-
namic and correlation functions predicted by the mean-field
theories that ignores the fluctuations [1]. Fluctuations can
altogether destroy the phase transitions at sufficiently low
dimensions, e.g., the one-dimensional (1D) equilibrium Ising
model [1]. Fluctuations can be important in nonequilibrium
systems as well, e.g., in the Kardar-Parisi-Zhang (KPZ) equa-
tion for surface growth phenomena [2], where fluctuations
coupled with nonlinear effects can lead to a nontrivial phase
transition between a (low noise) smooth phase and a (high
noise) rough phase at dimensions greater than two. It is thus
imperative to study the effects of fluctuations in physical
systems. Since out-of-equilibrium systems do not yet have
a general theoretical framework, it is useful to study simple
nonequilibrium models in this context.

The totally asymmetric simple exclusion process (TASEP)
with open boundaries was originally proposed as a simple
model for the motion of molecular motors in eukaryotic
cells [3]. Subsequently, it was reinvented as a paradigmatic
one-dimensional (1D) model for nonequilibrium statistical
mechanics, that shows boundary-induced phase transitions
characterized by α and β, the entry and exit rates [4].
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Extensive Monte Carlo simulations (MCSs) supplemented by
mean-field theories (MFTs) reveal that for α = β < 1/2 with
unit hopping rate in the bulk for the unidirectional movement,
the steady-state density profiles show a moving shock or
delocalized domain wall (DDW) that moves randomly and
unrestrictedly along the whole TASEP [5]. This is usually
explained in terms of completely uncorrelated entry and exit
events.

Studies on various aspects of TASEP and its application
have a long history. For instance, the exact steady states of
TASEP in some cases have been expressed as a matrix product
form [6]. The notable biologically relevant applications of
TASEP include biological transport [7], motor proteins [8],
intracellular transport involving both diffusive and active mo-
tion [9], and cellular automata-based modeling studies [10].
TASEP is also relevant for studies on fast ionic conductors
[11] and traffic movement [12].

There are several related theoretical studies as well, e.g.,
Ref. [13] has studied driven Brownian motion of hard rods
in a given potential and Ref. [14] has studied dynamic pro-
cesses for a driven diffusive two-lane system. TASEP has
been considered in a periodic lattice as well. This could
be of relevance, e.g., in the traffic of molecular motors in
closed compartments [15], where spatially varying steady-
state densities and “traffic jams” of motors have been found,
and colloidal motion along periodic potentials with temporal
oscillations [16], where directed motion could be induced
under certain circumstances. In periodic TASEP (i.e., TASEP
on a ring) macroscopically nonuniform steady-state densities
can emerge when translational invariance is explicitly broken.
This can happen in a variety of ways. For instance, TASEP on
a ring with a single bottleneck or a defect site with a lower
hopping rate than the remaining system can show a pinned
shock or LDW for moderate average densities [17,18]. In
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yet another manifestation of the breakdown of translational
invariance, a closed system composed of two segments of
equal size—a TASEP and a diffusive lane with exclusion,
executing what is known as the symmetric exclusion process
or SEP—also shows an LDW in the steady states for moderate
average densities [19]. Overall, periodic TASEPs with one in-
homogeneity generically display a single LDW for moderate
densities. In contrast, inhomogeneous TASEP on a ring can
display two or more DDWs only when there is more than one
bottleneck of equal strength [17,20].

Focusing particularly on the model in Ref. [19], we note
that by varying the model parameters the model can be in the
low density (LD), high density (HD), and maximal current
(MC) phases, in direct analogy with an open TASEP. This
model also displays a “domain-wall phase” or a coexistence
region, where a single LDW is observed, revealed by both
MCS and MFT studies. That an LDW and not a DDW is
observed is attributed to the overall particle number conser-
vation and the associated correlated particle entry and exit in
the TASEP segment of the ring. Nonetheless, it still begs
the question why it should be so, given that in a periodic
system, the TASEP segment by itself does not conserve
the particle number (although the degree of nonconservation
should depend on the size of the non-TASEP segment), and
hence, at least partly resembles an open TASEP. This in turn
opens the possibility that it may be possible to observe a
single domain wall that may naively resemble a DDW, in
contrast to what has actually been found so far in the studies
of Ref. [19]. While larger particle number fluctuations in
TASEP are generally expected to enhance the fluctuations of
the LDW, systematic results on this phenomenon are lacking.
It is thus pertinent to ask: Can a single LDW observed in
periodic TASEPs with a single inhomogeneity be converted
into a single DDW-like domain wall, resembling DDWs in
open TASEPs? If so, under what situations and how—is it a
smooth or a sudden transition? In particular, how should the
model parameters scale in order for the systems to display this
phenomenon? This forms the basic questions addressed in this
work.

We argue in this work that the particle number fluctuations
in the TASEP segment that controls the LDW fluctuations,
can be controlled by the particle content in the non-TASEP-
diffusive segment via particle number conservation. To test
this proposition, we construct several different but related
conceptual models, each having one TASEP and one diffusive
segment. The diffusive part breaks the translational invariance
and plays the role of an extended inhomogeneity [19]. Each of
these models show an LDW in the TASEP segment for small
average particle content in the diffusive segment in the steady
states; as the latter rises, the LDW gradually delocalizes to
a DDW-like domain wall that spans the whole length of the
TASEP segment. This visually resembles a standard TASEP
and is indistinguishable from a DDW in an open TASEP. This
shows robustness of the mechanism of delocalization. Further-
more, we are able to obtain the necessary relations between
model parameters that define the relative size of the segments
and the number density of particles for observing a single
LDW, whose fluctuations diverge with the size of the TASEP
segment. These results are generic and should apply in any
quasi-1D transport processes with directed single-file motion

where a finite supply of particles is the limiting constraint,
e.g., motors in cells, cyclic translocation of ribosomes along
mRNA loops, and vehicular transport networks in closed
geometries. These results can also be tested in carefully de-
signed in vitro experiments on the collective motion of driven
particles along a closed track that enforces directional motion
only along a segment of the system. Since an LDW implies
a phase-separated state in a closed system, whereas a DDW
may be viewed as “mixing” of the two states (under long-time
averages), the emergence of a DDW-like domain wall due
to enhanced fluctuations could be interpreted as destruction
of phase separation due to large fluctuations. Thus from a
theoretical standpoint, this is like a nonequilibrium analog
of the destruction of the ordered phases in low-dimensional
equilibrium systems by thermal noises.

The remaining part of this article is structured as follows:
In Sec. II we construct our models. In Secs. III A and III B the
nature of the domain walls in the models are discussed. We
summarize our results in Sec. IV. Some calculational details
including the phase diagrams are given in the Appendices at
the end.

II. MODELS FOR PERIODIC EXCLUSION PROCESSES

We study two related conceptual models defined on a ring,
each of which consists of a diffusive part S and a driven
part T joined at junctions A and B. In T , particle hopping
is unidirectional at a unit rate that is subject to exclusion,
whereas in S particles jump independently and randomly to
the neighboring site at rate D with equal probability to the left
and right. Particle dynamics in S may or may not be subject
to exclusion. We consider both the possibilities for S .

The segment T executing asymmetric exclusion processes
has N sites, whereas the diffusive segment S that has Ñ =
rN sites with r can be smaller or larger than unity. In order
to define the models formally, we denote the location of the
lattice sites and occupation numbers by i ∈ [1, N] and ni for
T and ĩ ∈ [1, rN] and ñi for S , respectively. The total number
of particles

Np =
N∑

i=1

ni +
rN∑
ĩ=1

ñi (1)

is conserved.
The segment T is identical in both the models. These

two models are, however, distinguished by their respective
diffusive segments S . The details are as follows:

(i) In model I, unlike in T , we do not impose any condition
of exclusion in S , i.e., a site in S is here allowed to accommo-
date any number of particles without restrictions (see Fig. 1
for a schematic diagram).

As a result, the overall particle density

np = Np

N (1 + r)
(2)

is not restricted to [0,1]. Furthermore, particles can exit T at
a given rate β to enter into S that is completely unaffected
by the occupation of the site ĩ = 1 in S . Thus, β is a tuning
parameter for model I. Hence, the steady states of model I are
parametrized by three parameters: D, np, and β.
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FIG. 1. Schematic diagram for model I. Particles in segment S
diffuse, whereas in T they undergo asymmetric exclusion processes.
Segments T and S are joined at junctions A and B. Sites in S
can accommodate any number of particles. Filled circles represent
occupied sites; empty circles represent vacant sites.

(ii) In contrast, in model II, we impose exclusion in S .
Thus the dynamics in the whole ring in model II is subject
to exclusion; each site in T or S can be occupied by at most
one particle (see Fig. 2 for a schematic diagram).

Hence, the particle density np = Np

N (1+r) ∈ [0, 1] necessar-
ily, since there could be at most one particle per site. Notice
that the rate at which particles can exit T and move to Sdoes
depend on the occupation at ĩ = 1—a direct consequence of
exclusion in S . Thus model II is a two-parameter model: np

and D.
Model II directly generalizes the model studied in

Ref. [19]; several other generalizations of the model in
Ref. [19] have been proposed. For instance, effects of biased
diffusion on the phase diagram [21], two-lane diffusive lanes

FIG. 2. Schematic diagram of model II. Particles in segment S
diffuse subject to exclusion, whereas in T they undergo asymmetric
exclusion processes. Segments T and S are joined at junctions A
and B. Filled circles represent occupied sites; empty circles represent
vacant sites.

with a current splitting parameter [22], asymmetrically cou-
pled three-lane system [23], and the competition between the
topology of the network and Langmuir kinetics [24] have been
studied. In contrast, the dynamics of model I has no simple
direct relation with the model of Ref. [19]. Models I and II
are thus identical in their TASEP segments T , but differ in
not having or having exclusion imposed on the respective
diffusive segments S , as elucidated in the model diagrams
(1) and (2), respectively. These differences are significant:
model I is a three-parameter model, whereas model II is a two-
parameter model. Any general results from two seemingly dif-
ferent models will underscore an underlying common physical
mechanism independent of model details. In fact, we find that
all the models are shown to display similar deconfinement of
LDWs as the total particle content of S rises, a feature that is
attributed to enhanced fluctuations in S (see below).

III. STEADY-STATE DENSITY PROFILES

We use MFT together with extensive (MCS of the models
to obtain the steady-state density profiles. In MFT approaches,
the system is considered as a collection of one TASEP (T )
with open boundaries having effective entry and exit rates and
a diffusive lane (S) again with open boundaries, having its
own effective entry and exit rates [19]. These effective rates
are determined from the condition of particle current conser-
vation in the steady states. We then use them in conjunction
with the known results for the TASEP and diffusive lane with
open boundaries to obtain the density profiles here.

We denote the steady-state density at a particular site m
in T as ρm = 〈nm〉 and in S as ρ̃m = 〈ñm〉, where 〈· · · 〉
represent time averages in the steady states. MF analysis
entails taking the continuum limit with ρ(x) and ρ̃(x̃) as
the densities in T and S , where x = i/N and x̃ = ĩ/N . In
the thermodynamic limit, N � 1 and consequently x and x̃
vary effectively continuously with 0 � x � 1, 0 � x̃ � r. We
further introduce the following notations for the stationary
densities at junctions B and A, respectively: ρ(x = 0) = α and
ρ(x = 1) = (1 − β ) for T according to the standard TASEP
convention and ρ̃(x̃ = 0) = γ and ρ̃(x̃ = r) = δ for S . The
MFT analysis is complemented by extensive MCS studies
using random sequential updates.

A. Domain walls in model I

In model I, multiple occupancy in each site of S is al-
lowed. In steady states, ρ̃(x̃) is given by a linear profile
in MFT:

ρ̃(x̃) = γ − (γ − δ)x̃/r. (3)

The corresponding current in S is given by

JS = (γ − δ)D/Nr. (4)

This must be equal to JT ∼ O(1) in steady states. Now JS ,
as given in (4), can be O(1), e.g., when (i) γ ∼ O(N ), so that
the difference γ − δ ∼ O(N ) together with D ∼ O(1). We call
this model IA or (ii) D ∼ O(N ), but γ , δ ∼ O(1). We call this
model IB [25].

It is instructive to first consider the phases and the ensuing
phase diagrams of models IA and IB in qualitative terms.
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Comparing with an open TASEP, LD and HD phases are to be
found for α < β, α < 1/2 and β < α, β < 1/2, respectively,
whereas, for α, β � 1/2 MC phase ensues. Unlike in an an
open TASEP, where both α and β are free parameters that
can be tuned, in model IA or IB, α is to be determined
from the various conditions available (see below), while β

remains free. Consider the phases for β < 1/2 in model IA.
By tuning np and D, α may be varied, as shown below. Thus
in the np-D plane, regions with α < β < 1/2 correspond to
the LD phase; the remaining regions where α > β < 1/2
correspond to the HD phase. However, there is no MC phase
for β < 1/2. Further, regions corresponding to α = β < 1/2,
which for an open TASEP correspond to a DDW that spans the
entire TASEP, should imply domain walls, the investigation
of whose nature is a primary goal of this work. In contrast
when β > 1/2, in the np-D plane one obtains the LD phase
in the region with α < 1/2. In the remaining region for which
α > 1/2, β > 1/2, the MC phase is found. Thus, there are
LD and MC phase with no HD phase. This physical picture
remains unchanged in Model IB. In the main text, we focus on
the nature of the domain walls and set β < 1/2. The detailed
phase diagrams for models IA and IB obtained from MFT and
MCS studies are given in the Appendices.

To proceed further, we assume a domain wall with a mean
position xw. Thus the steady-state density in T is

ρ(x) = β + �(x − xw )(1 − 2β ), (5)

where we have used α = β; here �(x) is the Heaviside �

function at x. The corresponding steady-state current in T is
given by

JT = α(1 − α) = β(1 − β ). (6)

The incoming current to site x = 0 at T is δD(1 − α). By
using the current conservation in the steady state, we obtain

δD(1 − α) = β(1 − β ). (7)

As long as there is a particle in the last site i = N of
T , it jumps to the first site x̃ = 0 of S with probability β,
independent of how many particles are already there in x̃ = 0,
i.e., independent of γ . Since multiple occupancy is allowed in
S , the mean particle number Ns in S in the steady states can
be both larger or smaller than Ñ = Nr.

1. Domain walls in model IA

Consider a domain wall in model IA. Here, D ∼ O(1).
Domain-wall position xw can be calculated from the conser-
vation of total particle number. This requires solving for ρ̃(x̃),
which in turn requires knowledge of γ and δ in terms of the
model parameters. This can be done by using the conservation
of the current in the system in the steady state, i.e., by equating
JS in (4) with JT given by (6). Straightforward algebra, whose
details interested readers can find in Appendix A, gives for xw,

xw(2β − 1) + (1 − β ) + Nr2

2D

[
β(1 − β ) + β

Nr

]

+ βr

2D
= np(1 + r). (8)

Equation (8) clearly yields xw uniquely in terms of β, np, r, D.
Since 0 < xw < 1, np must be small enough to make Eq. (8)
valid. Since the DW position xw is fixed, this implies an LDW
within our MFT. In Fig. 3 we have plotted the stationary
density for N = 400, r = 1, and np = 0.6 from both MFT
and MCS, both of which clearly show an LDW, in good
agreement with each other. The picture is dramatically dif-
ferent in Fig. 4, where we have plotted the stationary density
in T for N = 1000, r = 2, and np = 50.5, from the MCS
study. The MCS study unexpectedly shows a domain wall that
resembles a DDW in an open TASEP, whereas MFT results
continue to predict an LDW, along with its precise location.
This delocalized nature of the domain wall in the MCS study
can also be seen in the corresponding kymograph (Fig. 15)
in Appendix A that clearly shows that the spatial extent of
the domain-wall movements due to its fluctuations spans the
entire length of T . Notice that between Fig. 3 and Fig. 4, all
that changes is the particle number in S , relative to the same
in T . Thus, an enhanced particle number in S can delocalize
an LDW in T , as mentioned in the beginning of this article.
Before we analyze and explain this behavior, we first consider
the nature of domain walls in model IB below.

2. Domain walls in model IB

Let us now study model IB, for which D scales with the
system size N ; we set D = dN with d ∼ O(1). For a domain
wall at xw, following the logic outlined for model IA above
and using the overall particle number conservation, we obtain
(see Appendix B)

xw(2β − 1) + (1 − β ) + r2

2d
[β(1 − β )] = np(1 + r). (9)

Since β is a fixed model parameter, xw is uniquely determined,
implying an LDW. In Fig. 5, we have plotted ρ(x) versus x for
N = 400, r = 1, and np = 0.4 for different β and d = 0.4,
from both MCS and MFT studies. Unsurprisingly, we find an
LDW; MFT and MCS results agree with each other well.

Consider now Fig. 6, where we have plotted ρ(x) versus x
for N = 1000, r = 2, and np = 10.0 for different d and β =
0.1. Unexpectedly, we obtain a single DDW-like delocalized
LDW from the MCS study, whereas the MFT still predicts a
conventional localized LDW. That ρ(x) in Fig. 6 indeed shows
a delocalized LDW can be confirmed from the corresponding
kymograph in Fig. 17 in Appendix B which clearly shows that
the fluctuation of the domain spans the entire length of T ,
confirming a delocalized LDW. Similar to the change in the
nature of the LDW in model IA with a rise in the particle
number in S , as revealed by Figs. 3 and 4 above, here too all
that changes between Figs. 5 and 6 is the total particle content
in S , relative to the same in T . Therefore, the existence of a
single DDW-like system-spanning LDW, being independent
of the precise dynamics in S , is fairly robust.

3. Pinned or moving shocks?

This conundrum between an LDW and a DDW-like domain
wall can be resolved when fluctuations are taken into account.
Strict particle number conservation in models IA and IB
always ensures unique determination of xw that must imply
a conventional LDW. In contrast, in an open TASEP, total
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FIG. 3. Plots of (a) ρ(x) versus x, and (b) ρ̃(x̃) versus x̃ for model IA for N = 400, r = 1, np = 0.6, and D = 28.8 for three different
values of β. Step functions in red; continuous lines are the MFT predictions for ρ(x); dotted lines correspond to ρ(x) (left) and ρ̃(x̃) from MCS
studies. These show LDWs in T .

particle number in the steady state is conserved only on
“average”; as a result, MFT does not give any unique mean
position for the domain wall.

In the present study, for any xw between 0 and 1, JT is
the same; the domain-wall position can move anywhere in the
system, keeping the current in the TASEP unchanged. Such
a movement is necessarily associated with the fluctuations
in the total number of particles in T . For the domain-wall
position fluctuations covering the entire length N of an open
TASEP, the size of the associated number fluctuations is
O(N ). Thence, in order for a single DDW-like domain wall
to exist in T , fluctuations of xw is to occur over a scale
comparable to N , which in turn means particle fluctuations of
size O(N ) in T . Since the total number of particles is constant,
fluctuations in T are bounded by fluctuations in the mean
particle number Ns in S with Ns given by

Ns =
∫ r

0
ρ̃(x)dx̃ =

∫ r

0
[δ + (γ − δ)x̃/r]dx̃. (10)

With values of γ and δ already obtained in the MFT above, Ns

can be obtained for models IA and IB. For example, in model

IA, Ns is given by

Ns = N

{
Nr2

2D

[
α(1 − α) + α

Nr

]
+ rα

2D

}
. (11)

In model IB, D → ∞ in the thermodynamic limit. The total
particles in S , Ns, is given by

Ns = N

[
Nr2

2D
α(1 − α)

]
= N

[
r2

2d
α(1 − α)

]
. (12)

Thus, for large N and large r, Ns ∼ N2r2 in model IA, and
Ns ∼ Nr2 in model IB. As mentioned above, for a DDW-like
domain wall to exist in T of a span of size O(N ), the typical
particle number fluctuations in T are ∼O(N ). In order to
maintain overall particle number conservation, S must also
have particle number fluctuations of size ∼O(N ). In order to
quantify this, we calculate the variances �T and �S of particle
numbers NT and NS in T and S , respectively, in the steady
states. We define

�T = 〈
N2
T

〉 − (NT )2, �S = 〈
N2
S
〉 − (NS )2, (13)
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FIG. 4. Plots of (a) ρ(x) versus x, and (b) ρ̃(x̃) versus x̃ for model IA for N = 1000, r = 2, and np = 50.5 for different values of D and
β = 0.0522. MCS studies show a DDW-like domain wall, whereas MFT predicts conventional LDWs (not shown).
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FIG. 5. Plot of (a) ρ(x) versus x, and (b) ρ̃(x̃) versus x̃ for model IB with N = 400, r = 1, np = 0.4, and d = 0.4 for different values of β,
from both MCS and MFT studies. Step functions in black; continuous lines in the left figure represent MFT predictions for ρ(x); dotted lines
in both figures are from the MCS studies. Both studies reveal LDWs for ρ(x).

where NT is the instantaneous particle number in T and NT
is its average; NS is the instantaneous particle number in S
and NS is its average; 〈· · · 〉 implies averages in the steady
states. That �T rises monotonically with �S in the steady
states of both model IA and model IB is readily seen in Fig. 7.
In fact, within our numerical accuracy, these two are found to
be equal, in agreement with our arguments above.

We now estimate �S heuristically. The size of typical fluc-
tuations in T is ∼√

�T . In analogy with an ideal gas or with
a collection of noninteracting particles, we expect variance
�S ∼ Ns. Now Ns can be raised by increasing np or r. For a

DDW that spans the entire T ,
√

�T ∼ √
�S ∼

√
Ns ∼ O(N ),

so that the fluctuations in xw relative to N (the size of T )
do not vanish for N → ∞. Clearly, in the limit of np, r 
 1,
�S should be very small (since there are too few particles in
S); fluctuations in xw relative to N are negligible; hence an
LDW is observed. In contrast, for np, r � 1, �S is expected
to be large; hence fluctuations in xw become comparable to N ,
making the LDW visually appearing like a DDW in an open
TASEP. More formally, ignoring the spatial extent of S , and

instead treating it as a bath having NS number of particles
on average, we assume each particle, deemed identical, can
leave S or return to it (due to the exchanges between S and
T ), controlled by an identical probability distribution with a
variance σ . We then estimate

�S ∼
NS∑

m=1

σ 2 ∼ NSσ 2, (14)

giving �S ∼ NS . As argued above, typical particle fluctua-
tions in T are ∼√

�T ∼ O(N ) for a domain wall that resem-
bles a DDW in an open TASEP. Further, �T ∼ �S in the
steady state, giving

√
�S ∼

√
NS ∼ O(N ) as the threshold for

a DDW-like domain wall in T . From (A4), for large N

npr ∼ Nr2 (15)

for model IA. Further, from (11)

NS ∼ N2r2 ∼ Nnpr (16)
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FIG. 6. Plots of (a) ρ(x) versus x and (b) ρ̃(x̃) versus x̃ for model IB with N = 1000, r = 2, and np = 10.0 for different d and β = 0.1.
MCS studies exhibit DDW-like domain walls in T ; in contrast, MFT yields LDWs (not shown).
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FIG. 7. Plot of �S versus �T for (a) model IA and (b) model IB.

in the large N limit for model IA. Using the condition for a
DDW-like domain wall in model IA, we then find√

NS ∼ √
Nnpr ∼ O(N ) ⇒ npr ∼ O(N ) (17)

as the necessary condition for an LDW taking the shape of a
DDW-like domain wall that spans the whole of T in model I.
Similarly, by using (B4) we obtain

npr ∼ r2 (18)

for model IB. Further, using (12) and noting that D ∝ N in
model IB,

NS ∼ Nr2 ∼ Nnpr (19)

in the large N limit for model IB. Now following the logic
outlined for model IA above, we get

npr ∼ O(N ) (20)

as the threshold for a DDW-like domain wall in model IB that
spans the whole of T due to the particle number fluctuations.
Surprisingly, the product npr must scale with N in both model
IA and model IB for a DDW; the prefactors omitted in (17)
and (20) are O(1) constants which depend on the specific
model under consideration (IA or IB). Our MCS results on
DDW are consistent with this. Notice that the boundary line
(17) or (20) in the np-r plane, is not sharp, since the transition

FIG. 8. A schematic state diagram for model IA or IB in the
np-r plane for a fixed N (assumed large) when the conditions of a
domain wall are fulfilled. The broken demarcation line is not a sharp
boundary (see text).

from an LDW to a DDW is gradual. A schematic state diagram
of model IA or IB in the np-r plane for a fixed N (assumed
large) when the conditions of a domain wall are fulfilled,
showing the regions corresponding to a conventional LDW
and an LDW that takes the form of a DDW in an open TASEP,
is given in Fig. 8.

B. Steady density profiles in model II

Unlike models IA and IB, sites in S of model II can
accommodate a maximum one particle per site, i.e., exclusion
is imposed on S as well. Nonetheless, the current JS is still
given by (4). Due to exclusion, densities γ and δ cannot
exceed 1. In the steady state, when JS = JT , in order to have
a finite current in the thermodynamic limit, we must make
D ∝ N . As in model IB, we define D = Nd , so that the current
in S is written as

JS = (γ − δ)d/r, (21)

as in model IB. In steady states, the particle current is constant
throughout the system. Considering this at the two junctions
of T and S , we find the following two conditions:

δD(1 − α) = α(1 − α), (22)

γ (1 − γ ) = (1 − β )(1 − γ ). (23)

The first condition is common with models IA and IB; the
second one appears exclusively here. The latter one, unlike
models IA and IB, fixes β, i.e., relates it with γ . Thus β is no
longer a free parameter. Using these conditions one can arrive
at the following relations:

α = Dδ, γ = (1 − β ), (24)

as found in Ref. [19]. Thus, δ = α/D approaches zero in
the thermodynamic limit, since D scales with N and α ∼
O(1). In the main part of the article, we primarily concern
ourselves with the nature of domain walls. Analyses of the
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other phases including the phase diagrams are made available
in the Appendices.

For a domain wall, we set α = β. This implies JT =
α(1 − α) in the bulk of T . Hence Eq. (21) can be

rewritten as

δ = (1 − α)

(
1 − rα

d

)
→ 0. (25)
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FIG. 9. Delocalization of the domain wall in T in model II. Steady-state plots of ρ(x) versus x (left panel figures) and ρ̃(x̃) versus x̃ (right
panel figures) for N = 100, r = 5 [(a) and (b)]; for N = 100, r = 100 [(c) and (d)] and N = 150, r = 150 [(e) and (f)] for np = 0.48 for
different values of d . Step functions in black in (a) are MFT predictions for ρ(x) (LDWs); dotted lines are MCS results for ρ(x) and ρ̃(x̃); see
also Fig. 19 in Appendix C.
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This then gives α = d
r . For a domain wall at xw in T , ρ(x)

is given by Eq. (5); the steady density in S is still given by
Eq. (3). Now from particle number conservation,

np(1 + r) =
∫ xw

0
α dx +

∫ 1

xw

(1 − β )dx

+
∫ r

0
[δ + (γ − δ)x̃/r]dx̃. (26)

Solving these in the thermodynamic limit the DW position is
given by (see Appendix C)

xw = 2npr(1 + r) − (r − d )(2 + r)

4d − 2r
. (27)

MF solution (27) yields the mean position xw of the domain
wall that is parametrized by d, r, np. This matches with the
result in Ref. [19] for r = 1, for which an LDW is obtained,
as expected. Surprisingly, for r � 1 the nature of the domain
wall changes drastically, as found in the MCS studies (see
Fig. 9 below). Our MF analysis has been complemented by
MCS. We have plotted ρ(x) for N = 100, r = 5, and np =
0.48 for different diffusion coefficient d in Fig. 9 (top). It is
evident from the plot that for small r(=5), the domain wall
is pinned, i.e., an LDW is observed. We have also plotted the
ρ(x) for N = 100, 150 with r = N for np = 0.48 for different
d in Fig. 9 (middle and bottom, respectively). For large values
of r, the LDW is found to take the shape of a DDW in an open
TASEP. We also notice no significant change in the shape of
the LDW as N rises keeping r = N .

Thus, we notice that as r rises for a fixed d and np, the
domain wall gradually delocalizes and we eventually obtain
an LDW that resembles a single DDW for r � 1. For r = 1,
we reproduce the results of Ref. [19]. With a rising r, the
particle content in S increases. We thus find that as the particle
content in S rises (with a corresponding rise in r), the LDW
in T gradually takes the shape of a DDW, a feature common
with models IA and IB.

The explanation for the crossover from an LDW to a single
DDW-like domain wall in model II as r rises to a large value
runs exactly parallel to the analysis in Sec. III A 3. As in mod-
els IA and IB, the existence of a domain wall that spans the
whole of T implies that the particle number fluctuations in T
should scale with N . Conservation of the total particle number
implies equal and opposite particle number fluctuations to
take place in S . Indeed, we find in our MCS studies that �S
and �T are equal (see Fig. 10 for a plot of �S versus �T in
model II).

As for model IA or model IB, in analogy with an ideal
gas or a collection of noninteracting particles, variance �s

in the total number of particles in S should be O(rN ):√
�s ∼ √

rN . Clearly, in the limit r ∼ O(1),
√

�s 
 O(N ),
fluctuations in xw are negligible; hence an LDW is observed.
In contrast for r  N ,

√
�s ∼ O(N ), i.e., the fluctuations in

xw are large; hence the LDW visually resembles a DDW
in an open TASEP. This can be shown more formally for
Ns/(rN ) 
 1 for which exclusion is unimportant. In that
limit the probability that two particles can occupy the same
site is very small. Now define a random variable mĩ for
every site ĩ of S that takes the value 1 if occupied with
probability p, or 0 if unoccupied with probability (1 − p).

 5
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Δ T
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FIG. 10. Plot of �S versus �T in model II.

Further assume that mĩ are uncorrelated for different ĩ.
Therefore,

〈mĩ〉 = p = 〈
m2

ĩ

〉
. (28)

This gives

Ns =
∑

ĩ

mĩ. (29)

This implies

�s = 〈
N2

s

〉 − 〈Ns〉2 =
〈⎛
⎝∑

ĩ

mĩ

⎞
⎠

2〉
−

〈∑
ĩ

mĩ

〉2

=
∑

ĩ

〈
m2

ĩ

〉 − ∑
ĩ

〈mĩ〉2

= rN p(1 − p), (30)

for small Ns. When Ns/(rN ) is not very small, there will
be corrections to it; we ignore that issue. For an LDW that
resembles a DDW in an open TASEP in model II,

√
�s ∼√

Ns ∼ √
rN ∼ O(N ). This gives

r ∼ N (31)

LDW

N

DDW
r

FIG. 11. A schematic state diagram for model II in the N-r plane
when the conditions of a domain wall are fulfilled. The broken
demarcation line is not a sharp boundary (see text).
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as the threshold for a DDW in model II, which, however,
is not a sharp boundary (see Fig. 11 for a schematic state
diagram in the N-r plane, when the conditions of a domain
wall are fulfilled). In the studies of Ref. [19], r = 1, giving
�T ∼ O(1). Thus the relative fluctuation

√
�T /N → 0 in the

thermodynamic limit, in agreement with an LDW obtained
there.

IV. CONCLUSIONS

We have studied the steady states in periodic heteroge-
neous exclusion processes which are composed of one TASEP
(T ) and one diffusive (S) segment. We mainly focus on the
nature of the domain wall in the system. We argue that a suffi-
ciently large particle content in S can delocalize the LDW to a
DDW-like domain wall. In order to establish the robustness of
this delocalization, we have constructed three different models
depending on the choices for the dynamics in S . MCS studies
of all these models reveal a generic depinning of an LDW
yielding a single DDW for sufficiently large Ns, the average
total particle number in S in the steady states. We then argue
that this depinning may be explained in terms of the particle
number fluctuations in S that increases monotonically with r
and also with particle density np. This mechanism should be
generic; a pinned shock in any closed heterogeneous TASEP
is expected to get depinned by this mechanism. For instance,
in the well-known models for TASEPs with finite resources
[26], where reservoirs do not have any internal dynamics of
their own, a single LDW in the TASEP is expected to get
delocalized by the mechanism illustrated here. For a DDW in
an open TASEP, MFT does not yield any mean position, which
is related to the lack of any particle number conservation and
the associated random particle entry or exit events. In contrast,
in the present study, particle number conservation strictly
holds even for large np and/or large r; as a result MFT, which
is argued to be exact in these systems, does predict a mean
position of the LDW; however, it assumes the form of a DDW
by virtue of the large fluctuations of the particle content in T
for large np and/or large r. Nonetheless, from an experimental
point of view, there is no real distinction between a DDW in
an open TASEP, and a DDW-like domain wall in the present
model.

We expect our studies to be potentially relevant to protein
synthesis in a cell. In live eukaryotic cells, the supply of
ribosomes (modeled by particles in TASEP) is finite. For low
resources, a conventional LDW may be observed, whereas
for larger resources, an LDW that resembles a DDW in an
open TASEP may be found. Since such an LDW neces-
sarily implies larger fluctuations, it can be experimentally
detected in standard ribosome density mapping experiments
[27]. The Nagel-Schreckenberg (NaSch) model was originally
introduced as a paradigmatic model for highway traffic [28].
Fluctuations in the NaSch model are shown to belong to the
1D KPZ universality class [29]. It would be interesting to
extend our study to the NaSch model and study the behavior
of shocks and their possible delocalization in this model
and in related complex networks. In addition, the results
obtained here may be verified in model experiments on the
collective motion of driven particles with light-induced ac-
tivity [30] in a closed narrow circular channel [16,31] with

a segment enforcing directional motion, and the remaining
part allowing diffusive motion within it. The ensuing steady-
state densities can be measured by microscopy with image
processing. While this experiment might be technically chal-
lenging, we hope this will be realized in near future. Our
results on large fluctuations in closed TASEPs should make
potential connections with the recently developed fluctuation
theorems for nonequilibrium systems and their applications
in biologically relevant systems [32]. We hope our studies
will provide further impetus to future studies along these
directions.
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APPENDIX A: DOMAIN WALLS IN MODEL IA

We now provide the detailed derivation for the domain-wall
position xw in model IA. Since multiple occupancy in the
diffusive channel is allowed, γ , δ are unrestricted and can
assume any value. Using (4) for JS and equality of JS and
JT at the two junctions of S and T implies

α(1 − α) = (γ − δ)D/Nr, Dδ(1 − α) = α(1 − α). (A1)

Hence δ = α
D ∼ O(1). Since particles from T are free to exit

at a rate β independent of γ at the first site of S , there is
no connection between γ and β. Using δ = α

D we have from
Eq. (A1),

γ =
[
α(1 − α) + α

Nr

]
Nr

D
. (A2)

From particle number conservation one can write for the total
particle number Np,

Np =
∫ 1

0
ρ(x)N dx +

∫ r

0
ρ̃(x̃)N dx̃. (A3)

Let xw be the position of the DW. Then density distribution in
the TASEP channel ρ(x) = α + �(x − xw )(1 − α − β ) and
that in the diffusive channel ρ̃(x̃) = δ + (γ − δ)x̃/r. For a
domain wall to exist α = β. These allow us to write

np(1 + r) =
∫ xw

0
α dx +

∫ 1

xw

(1 − α)dx

+
∫ r

0
[δ + (γ − δ)x̃/r]dx̃

= xw(2α − 1) + (1 − α) + rδ/2 + rγ /2

= xw(2α − 1) + (1 − α)

+ Nr2

2D

[
α(1 − α) + α

Nr

]
+ rα

2D
. (A4)
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Hence,

xw = np(1 + r) − (1 − α) − Nr2

2D [α(1 − α)] − rα
D

(2α − 1)
(A5)

gives the position of the domain wall in MFT. The density
profiles for the different phases from the MCS studies of
Model IA, IB and II have been shown in Figs. 12, 13 and
14, respectively. The kymograph which represents DDW in
Model IA has been shown in Fig. 15.

Phase diagram of model IA

As mentioned earlier, the phase space of model IA is
spanned by three parameters:- np, D, and β. As explained
above, for β < 1/2, LD and HD are the only possible phases,
with the possibilities of an LD-HD coexistence phase in the
form of a domain wall. The phase boundaries between the LD,
LD-HD, and HD phases may be obtained as follows.

The boundary between the LD and the LD-HD coexistence
regions may be obtained by setting xw = 1 in Eq. (A5). This
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FIG. 12. Plots of (a) ρ(x) versus x, and (b) ρ̃(x̃) versus x̃ in model
IA from MCS studies for N = 400, r = 1 for HD (red square), LD
(green circle), and MC (blue triangle) phases. HD phase corresponds
to D = 28.8, np = 0.6, β = 0.02; LD phase corresponds to D =
28.8, np = 0.6, β = 0.2; and MC phase corresponds to D = 172.8,
np = 0.6, β = 0.6.

gives

D = Nr2β(1 − β ) + 2rβ

2[np(1 + r) − β]
. (A6)

Similarly, the phase boundary between the HD and LD-HD
phases is obtained by setting xw = 0 in Eq. (A5), giving

D = Nr2β(1 − β ) + 2rβ

2[np(1 + r) − (1 − β )]
. (A7)

For β > 1/2, it has been argued that only LD and MC
phases are possible with no HD phase. The phase boundary
between the LD and MC phases in the np-D plane for a given
β may be obtained as follows.

In the LD phase bulk density in T is ρ(x) = α and in the
MC phase ρ(x) = 1/2. In S is ρ̃(x̃) = δ + (γ − δ) x̃

r . From
particle number conservation

np(1 + r) = α

∫ 1

0
dx +

∫ r

0
[δ + (γ − δ)x̃/r]dx̃. (A8)
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FIG. 13. Plots of (a) ρ(x) versus x, and (b) ρ̃(x̃) versus x̃ in model
IB from MCS studies for N = 400, r = 1 for HD (red square), LD
(green circle), and MC (blue triangle) phases. HD phase corresponds
to d = 1.6, np = 0.5, β = 0.005; LD phase corresponds to d = 0.1,
np = 0.4, β = 0.7, and MC phase corresponds to d = 0.4, np = 0.4,
β = 0.7.
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FIG. 14. Plots of (a) ρ(x) versus x, and (b) ρ̃(x̃) versus x̃ from MCS studies in model II for N = 100, r = 5 for HD (green circle), LD (red
square), and MC (blue triangle) phases. HD phase corresponds to d = 0.4, np = 0.6; LD phase corresponds to d = 0.4, np = 0.3; and MC
phase corresponds to d = 2.7, np = 0.3.

Current continuity at junction B gives δD(1 − α) = α(1 − α).
Using this condition one can write δ = α

D . The equality of JT
and JS in the steady states implies α(1 − α) = (γ − δ)D/Nr.
Hence, γ = α(1 − α) Nr

D + α
D . Using these equations for γ

and δ one can obtain from Eq. (A8)

np(1 + r) = α + α
r

D
+ α(1 − α)

D

Nr2

2
. (A9)

For β > 1/2, as long as α < 1/2 we satisfy the condition for
the LD phase. As α exceeds 1

2 , we satisfy the condition for
the MC phase. Thus the phase boundary in the np-D plane
between the LD and MC phases is obtained by substituting
α = 1

2 in Eq. (A9) as

np(1 + r) = 1

2
+ r

2D
+ r2N

8D
. (A10)

For β = 1/2, when α < 1/2 the LD phase ensues with a bulk
density ρ(x) = α, whereas for α > 1/2 in a given region of
the phase space in the np-D plane, the bulk density in T is
ρ = 1/2 with a boundary layer at x = 0. This is reminiscent

FIG. 15. Kymograph for ρ(x) in model IA for N = 400, r = 2,
d = 0.715, β = 0.0052, and np = 20.0. This strongly resembles a
DDW (see Fig. 4).

of the density profile in an open TASEP at the boundary of the
MC and HD phases. See phase diagrams in Fig. 16; our MFT
and MCS results agree well.

APPENDIX B: DOMAIN WALLS IN MODEL IB

The detailed derivation for the position of the DW xw in
model IB is given below. When D scales with system size N
we set D = dN with d ∼ O(1). Current continuity at junction
A gives δD(1 − α) = α(1 − α). Using this condition one can
write δ = α

D ∼ O(1/N ). Here δ → 0 in the thermodynamic
limit, which is different from model IA.

We focus on the formation of the DW for which α = β.
The equality of JT and JS in the steady states implies

α(1 − α) = (γ − δ)D/Nr. (B1)

Using δ → 0 in the thermodynamic limit we have from
Eq. (B1),

γ = Nr

D
[α(1 − α)]. (B2)

For a DW to exist, one must have α = β < 1/2.
From particle number conservation one can write

Np =
∫ 1

0
ρ(x)N dx +

∫ r

0
ρ̃(x̃)N dx̃. (B3)

Let xw be the position of the DW. Now as in model IA, we
have

np(1 + r) =
∫ xw

0
α dx +

∫ 1

xw

(1 − α)dx

+
∫ r

0
[δ + (γ − δ)x̃/r]dx̃

= xw(2α − 1) + (1 − α) + rδ/2 + rγ /2. (B4)

Here in the thermodynamic limit, δ → 0. Using the expres-
sion of γ from Eq. (B2) the location xw of the domain wall is
given by

xw = np(1 + r) − (1 − α) − r2

2d [α(1 − α)]

(2α − 1)
. (B5)
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FIG. 16. Phase diagrams for model IA for three different values
of β: (a) β = 0.1, (b) β = 0.5, and (c) β = 0.75. In each of the
figures, a solid line represents MFT results and circles MCS data.

The kymograph obtained for Model IB has been shown in
Fig. 17.

Phase diagram of model IB

As mentioned earlier, the phase space of model IB is
spanned by three parameters: np, d = D/N , and β. As ex-
plained above, for β < 1/2, LD and HD are the only possible
phases, with the possibilities of an LD-HD coexistence phase

FIG. 17. Kymograph for ρ(x) in model IB for N = 400, r = 2,
d = 0.006 32, β = 0.1, and np = 10.0, obtained from MCS studies.
This is consistent with the DDWs in T (see Fig. 6).

in the form of a domain wall. The phase boundaries between
the LD, LD-HD, and HD phases may be obtained as follows.

For xw � 0 the DW leaves T at the left junction resulting in
the HD phase having constant density ρ(x) = 1 − β, xw � 1
results in the LD phase having constant density ρ(x) = α, and
the LD-HD phase is characterized by the presence of a DW
inside the system for 0 < xw < 1.

Hence the boundary between the HD and LD-HD coexis-
tence regions may be obtained by setting xw = 0 in Eq. (B5).
This gives

d = r2β(1 − β )

2[np(1 + r) − (1 − β )]
. (B6)

Similarly the boundary between the LD and LD-HD coexis-
tence regions is obtained by setting xw = 1 in Eq. (B5) which
gives

d = r2β(1 − β )

2[np(1 + r) − β]
. (B7)

For β > 1/2, only the LD and MC phases are possible with
no HD phase. The phase boundary between the LD and MC
phases in the np-d plane for a given β may be obtained as
follows.

In the LD phase bulk density in T is ρ(x) = α and in the
MC phase ρ(x) = 1/2. In S is ρ̃(x̃) = δ + (γ − δ) x̃

r . From
particle number conservation (PNC)

np(1 + r) = α

∫ 1

0
dx +

∫ r

0
[δ + (γ − δ)x̃/r]dx̃. (B8)

Using the expressions of γ and δ for model IB in Eq. (B8) we
obtain

np(1 + r) = α + α(1 − α)

D

Nr2

2
. (B9)

For β > 1/2, as long as α < 1/2 we satisfy the condition for
the LD phase. As α exceeds 1

2 , we satisfy the condition for
the MC phase. Thus the phase boundary in the np-D plane
between the LD and MC phases is obtained by substituting
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FIG. 18. Phase diagrams for model IB for three different values
of β: (a) β = 0.2, (b) β = 0.5, and (c) β = 0.75. In each of the
figures, a solid line represents the MFT results and circles the MCS
data.

α = 1
2 in Eq. (B9) as

np(1 + r) = 1

2
+ r2N

8D
. (B10)

For β = 1/2, when α < 1/2 the LD phase ensues with a bulk
density ρ(x) = α, whereas for α > 1/2 in a given region of
the phase space in the np-D plane, the bulk density in T is
ρ = 1/2 with a boundary layer at x = 0. This is reminiscent
of the density profile in an open TASEP at the boundary of the

FIG. 19. Kymograph for ρ(x) in model II for N = 100 with
r = 100, d = 4.0, and np = 0.48. This corresponds to a DDW-like
domain wall in Fig. 9(e).

MC and HD phases. See phase diagrams in Fig. 18; our MFT
and MCS results are close to each other.

APPENDIX C: DOMAIN WALLS IN MODEL II

From particle number conservation one can write

Np =
∫ 1

0
ρ(x)N dx +

∫ r

0
ρ̃(x̃)N dx̃. (C1)

Density distribution in the TASEP channel ρ(x) = α + �(x −
xw )(1 − α − β ) and that in the diffusive channel ρ̃(x̃) = δ +
(γ − δ)x̃/r. This implies

np(1 + r) =
∫ xw

0
α dx +

∫ 1

xw

(1 − β )dx

+
∫ r

0
[δ + (γ − δ)x̃/r]dx̃

= αxw + (1 − β )(1 − xw ) + rγ

2
. (C2)

 0.5
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 0.2  0.3  0.4  0.5  0.6  0.7  0.8

LD HD
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d

np

FIG. 20. Solid lines represent the phase diagram obtained using
MFT and the circles represent the same obtained using MCS for
model II for r = 5. The phase diagram exhibits four different phases.
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FIG. 21. Phase diagram of model II: (a) r = 50 and (b) r = 100. Solid lines represent the phase boundaries obtained from MFT and the
circles represent the same obtained using MCS.

Since δ ∼ O(1/N ) in the thermodynamic limit, δ → 0 and
α → d

r . Also from Eq. (24) γ = 1 − β. Now from the
condition of DW α = β. Using these conditions we have from
Eq. (C2),

xw = 2r(1 + r)np − (r − d )(2 + r)

4d − 2r
. (C3)

The kymograph obtained for Model II has been shown in Fig.
19.

Phase diagrams for model II

For different values of r we can get a phase diagram
in (np, d) space consisting of different regimes depending
on the position of the DW. For xw � 0 the DW leaves the
active part at the left junction resulting in the HD phase
having constant density ρ(x) = 1 − β; xw � 1 results in the
LD phase having constant density ρ(x) = α and the LD-HD
phase is characterized by a DW localized inside the system for
0 < xw < 1. From Eq. (C3) the phase boundary between the
HD phase and the LD-HD coexistence region is given by

d = r − np2r(1 + r)

2 + r
. (C4)

The phase boundary between the LD and LD-HD (domain
wall) phases is obtained as

d = 2npr(1 + r) − r2

2 − r
. (C5)

Similar to an ordinary TASEP, the ring system also exhibits
an MC phase which is characterized by maximum active
part current JMC = 1/4 and constant density ρ = 1/2 and is
obtained for α, β > 1/2. Hence, N/2 particles have to be
present in the active part. Equality of the active part current
and passive part current allows one to write γ = δ + r

4d .

Particle number conservation in the MC phase gives

(1 + r)np = r

(
δ + r

8d

)
+ 1

2
. (C6)

The constraints α, β > 1/2 on the active part impose con-
straints on the passive part by the use of Eqs. (21) and (24) as

δ >
1

2dN
(C7)

and

δ <
1

2
− r

4d
. (C8)

Implementing Eq. (C7) in Eq. (C6) one can get a phase bound-
ary between the LD and MC phases in the thermodynamic
limit as

d = r2

8(1 + r)np − 4
. (C9)

Similarly the phase boundary between the HD and MC phases
can be obtained using Eq. (C8) in Eq. (C6) as

d = r2

4(1 + r)(1 − 2np)
. (C10)

The phase diagrams in the (np-d) plane for model II are shown
in Figs. 20 and 21 for different values of r.
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