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We analyze a set of discrete-time quantum walks for which the displacements on a chain follow binary
aperiodic jumps according to three paradigmatic sequences: Fibonacci, Thue-Morse, and Rudin-Shapiro. We
use a generalized Hadamard coin, ĈH , as well as a generalized Fourier coin, ĈK . We verify the QW experiences a
slowdown of the wave packet spreading, σ 2(t ) ∼ tα , by the aperiodic jumps whose exponent, α, depends on the
type of aperiodicity. Additional aperiodicity-induced effects also emerge, namely, (1) while the superdiffusive
regime (1 < α < 2) is predominant, α displays an unusual sensibility with the type of coin operator where the
more pronounced differences emerge for the Rudin-Shapiro and random protocols and (2) even though the angle
θ of the coin operator is homogeneous in space and time, there is a nonmonotonic dependence of α with θ .
Fingerprints of the aperiodicity in the hoppings are also found when distributional measures such as the Shannon
and von Neumann entropies, the Inverse Participation Ratio, the Jensen-Shannon dissimilarity, and the kurtosis
are computed, which allow assessing informational and delocalization features arising from these protocols and
understanding the impact of linear and nonlinear correlations of the jump sequence in a quantum walk as well.
Finally, we argue the spin-lattice entanglement is enhanced by aperiodic jumps.
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I. INTRODUCTION

Since their introduction, quantum walks (QWs) [1] have
been understood as a means for comprehending ubiquitous
complex dynamics ruled by quantum fields and mathemati-
cally described by a sequence of local (and unitary) operations
that act on the quantum particle—i.e., a cell occupied by
a quantum particle—and its internal degrees of freedom as
well [2,3]. Among the instances which have profited from this
approach we refer to problems within algorithmics [4–6], ma-
chine learning [7], and experimental implementations [8,9],
just to mention a few.

Still considering the scope of QWs, a relevant field of
research has to do with quantum systems under high noise and
randomness [10] where—as occurs for classical systems—
nondeterministic elements are aimed at depicting some sort of
interaction between the system and the environment [11,12].
Complementarily to different types of randomness [13–16]
in either the phase of the unitary transforms [13,14] or the
jump distribution [15,16], it is possible to assess the existence
of sequencing in the protocol. The purpose of the present
work is precisely to understand to what degree the existence
of the aperiodic sequencing features impacts in the quantum
statistical and informational properties of a quantum walk
with such traits. To that, we consider three paradigmatic ape-
riodic sequences which strongly relate to quantum systems:
Fibonacci [17], Thue-Morse [18], and Rudin-Shapiro [19].
Explicitly, in employing those aperiodic sequences, we are

*piresma@cbpf.br
†sdqueiro@cbpf.br

able to gauge the impact of relevant and wide-ranging types
of inhomogeneity wherewith it is possible to manipulate the
(de)localization properties of a quantum system, which is a
very handy tool, namely, in their applications like quantum
algorithms and other protocols. Moreover, owing to the fact
that these sequences have different degrees of linear and/or
nonlinear self-dependencies, the present work allows under-
standing the impact of nonlinear correlations in delocalization
phenomena and spin-lattice entanglement as well.

The paper is organized as follows: in Sec. II we put our
work within the context of quantum walks subjected to noise
and disorder by briefly reviewing the literature on this matter,
in Sec. III we introduce our model and each protocol, in
Sec. IV we present the results for each aperiodic sequence
case, and in Sec. V we address our final remarks on this
research as well as setting forth an outlook for future steps.

II. LITERATURE REVIEW

In its canonical version [1], every step of a QW has the
same size Jt = 1. The breakdown of such homogeneity paves
the way to a set of phenomena such as multipeaked distri-
butions [20], localization [21], either inhibition [22–24] or
hyperballistic spreading [15]—defined by the deviation of the
wave packet σ 2(t ) ∼ tα—and enhancement of the spin-coin
entanglement [16,23,25]. More recently, it was reported the
emergence of multiple dynamical transitions [16], especially,
between ballistic (α = 2) → diffusive (α = 1) → superdiffu-
sive (1 < α < 2) → ballistic → hyperballistic regimes (α =
3). In all of those works time is discrete; complementar-
ily, continuous-time QW with nonrandom position-dependent
jumps have also been treated [26]. In the latter case, it was
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found a robust ballistic spreading for deterministic jumps
following a power-law decaying step size. In Ref. [27] it was
shown the interplay between long-range hopping and long-
range interaction breaks the symmetry of the two-particle
correlation diagram. Last, open quantum Lévy flights have
been treated in the literature as well [28].

The aforementioned studies with discrete-time QW share
the feature of assuming random jump protocols. Herein we
address the problem of QWs considering a deterministic pro-
tocol that is not periodic as well. Nonetheless, we specifically
consider binary aperiodic sequences as the generator of the
jumps performed by quantum particles on the chain. In spite
of the fact that aperiodic sequences have been used as a source
of disorder in the coin operator [29–36], this kind of protocol
has not been embedded into the step operator. In this work, we
fill that gap by letting the steps of the quantum walker follow
one out of three paradigmatic aperiodic sequences, namely,
Fibonacci, Thue-Morse, or Rudin-Shapiro, as previously men-
tioned. Besides the theoretical implications of our proposal
stated in Sec. I, we can look at this work from an experimental
perspective and point out the use of deterministic aperiodic
disorder has the advantage of permitting very controllable
dynamics [37,38].

III. MODEL

A. Discrete-time quantum walk

We consider a two-state quantum walker moving on x ∈ Z
in a way that the wave function, at step t ∈ N, is given by

�t =
∑

x

[
ψD

t (x)| ↓〉 + ψU
t (x)| ↑〉] ⊗ |x〉, (1)

where ψD
t (x) and ψU

t (x) are the position- and time-dependent
probability amplitudes associated with the two degrees of
freedom {↓,↑} of the quantum particle, respectively. That is
to say, the QW dynamics lives in a composite Hilbert space
H2 ⊗ HZ. The evolution of �t is ruled by

�t+1 = Ŵt�t , (2)

where the operator

Ŵt ≡ T̂ (Ĉ ⊗ ÎZ) (3)

is composed of two other operators, each acting on its respec-
tive Hilbert subspace. Accordingly, we have

(1) The coin operator:

Ĉ ≡ c11| ↑〉〈↑ | + c12| ↑〉〈↓ | + c21| ↓〉〈↑ | + c22| ↓〉〈↓ |,
(4)

with ci j standing for the matrix elements corresponding to
the quantum coin operator, so that c12 and c21 appraise the
coupled evolution of the components ψU

t (x) and ψD
t (x);

(2) The spin-dependent hopping operator:

T̂ ≡ | ↓〉〈↓ | ⊗
∑

x

|x − Jt 〉〈x| + | ↑〉〈↑ | ⊗
∑

x

|x + Jt 〉〈x|,
(5)

where Jt is the step size, which will be discussed in detail
shortly.

Rudin−Shapiro
0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 1

Thue−Morse
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0

Fibonacci
0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0

Periodic
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

FIG. 1. Paradigmatic protocols to generate the jump sequence
Jt = 1 + bt : Periodic, Fibonacci, Thue-Morse, and Rudin-Shapiro.
In addition, we have used the unbiased random case as well. As a
means of comparison, we have considered the standard case where
bt = 0 → Jt = 1 ∀ t .

With respect to the quantum coin, we employ either the
generalized Hadamard coin ĈH or a generalized Fourier coin
ĈK (also known as a Kempe-like coin [2]):

ĈH ≡
(

cos θ sin θ

sin θ − cos θ

)
, ĈK ≡

(
cos θ i sin θ

i sin θ cos θ

)
. (6)

We now define the initial condition as the localized state:

�0 = 1√
2
δx,0(| ↓〉 + eiφ| ↑〉) ⊗ |x〉. (7)

In order to have symmetric distributions we set φ = π/2
for ĈH and φ = 0 for ĈK [16].

B. Jump protocol

We devise a protocol for the step that obeys Jt = 1 + bt

with the binary variable b = {bt }. If Jt = 1 ∀t , we recover the
standard QW where the probability flux only occurs towards
adjacent sites. In all the cases, we start from b0 = 0, which
corresponds to J0 = 1, then we apply one of the following
rules:

(1) Periodic: the values of bt are systematically alternated
between 0 and 1

(2) Fibonacci: the sequence of values of b is generated by
applying the substitution rule 0 → 01 and 1 → 0

(3) Thue-Morse: the sequence of values of b is generated
by applying the substitution rule 0 → 01 and 1 → 10

(4) Rudin-Shapiro: first, we generate a sequence with four
letters by means of the substitution rule A → AB, B → AC,
C → DB, and D → DC. Then we set A = B → 0 and C =
D → 1

(5) Random: we first generate a periodic sequence until
tmax, then we randomize it. This procedure is done to make a
fair comparison between such protocols.

In Fig. 1 we display the first 25 elements of the sequences
we have described here. For further details on the Fibonacci,
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FIG. 2. Main properties of the aperiodic sequences Fibonacci, Thue-Morse, Rudin-Shapiro. (a–c) Normalized power spectrum density
versus the scaled frequency w/wmax. (d) Autocorrelation versus lags. (e) Fraction of 1 over time. (f) Lempel-Ziv complexity over time. For
comparison, we also show the corresponding results for the random and periodic sequence when needed.

Thue-Morse, and Rudin-Shapiro sequences we point the
reader to Refs. [39–45].

We compute the power spectral density (PSD) for the
discrete sequences zt = bt as shown in Figs. 2(a)–2(c),


(ω) =
∣∣∣∣∣ 1√

2π

n=T∑
n=1

zne−2π iωn/T

∣∣∣∣∣
2

ω = 1, . . . , ωmax, (8)

where the argument of the modulus is the discrete Fourier
transform and ωmax = T ; Normalization is implemented in a
way that

∑
ω 
(ω) = 1. For a proper symmetric analysis of

the PSD, we consider the usual procedure of working with
the equivalent sequence obtained from a centralization by its
mean. Recall that for a perfect white noise the autocorrelation
function

R(τ ) ≡ 〈zt zt−τ 〉 = 1

T − τ

T∑
t=τ

zt zt−τ (9)

reads R(τ ) = δ(τ ), which yields a flat spectrum 
(ω) = 1
since all frequencies have the same contribution. Neverthe-
less, for finite sequences a noisy behavior emerges. We see
that the Rudin-Shapiro sequence is broadly scattered over
the spectrum. On the other hand, the Fibonacci sequence
displays a multipeaked behavior. The Thue-Morse has an
intermediate behavior between both sequences. Alongside
the qualitative analysis of Figs. 1 and 2(a)–2(c) we assess
the structural properties of the aperiodic sequences we use

for each jump protocol. As depicted in Fig. 2(d), with that
quantity we reassure the pattern of peaks, which reveals the
aperiodic sequences we use have distinct local properties. The
overall behavior of the deterministic RS sequence shows that
it resembles a purely random sequence, but with much smaller
fluctuations.

Evaluating the fraction of 1s in the binary sequences, we
verify that relative frequency of 1 is strongly unbalanced for
Fibonacci chain [see Fig. 2(e)]. The periodic sequence is well
balanced and the random sequence is tailored to be balanced,
but it clearly presents local deviation from the unbiased case.
The Thue-Morse sequence has the interesting property of
being balanced despite its aperiodicity.

In order to further characterize these sequences from a
complexity point of view, we considered the evaluation of the
Lempel-Ziv complexity, as shown in Fig. 2(f). That measure
computes the number of nonidentical patterns in a sequence
when scanned from t0 to tmax [46]; to that, we use Kaspar-
Schuster’s method [47] to compute it; see Appendix A.
The extreme cases in Fig. 2(f) are the periodic and random
sequences with minimum and maximum complexity, respec-
tively. Between such extremes, we see the Fibonacci, Thue-
Morse, and Rudin-Shapiro with increasing complexity. Al-
though the Rudin-Shapiro sequence has a correlation pattern
similar to random sequences, it is clear that its Lempel-Ziv
complexity is much smaller. That feature is important to
explain discrepancies arising in the scaling behavior of the
spreading; in other words, the autocorrelation (or the spectral
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FIG. 3. (a–c) Spreading measure m2(t ) = x2 versus time for the quantum and classical walk with aperiodic, periodic, and random protocols
of jumps. (d–f) The symbols are the same as in previous panels but in log - log scale, and the lines represent the numerical adjustment m2(t ) =
const tα .

density) is not enough to fully explain our results. That is
related to the fact that the disordered sequence has nonlinear
dependencies that are not detected by a single measure (see,
e.g., Ref. [48]). Therefore, the application of different aperi-
odic sequences with different degrees of nonlinearity—which
can be understood as complexity as well—helps shed light
on the role of such features on spreading, delocalization, and
entanglement in QWs.

Last, and for comparison purposes, we have simulated a
classical walk using the same protocol of jumps previously
defined. Concretely, we use the symmetric discrete-time map

Pt+1(x) = 1
2 Pt (x − Jt ) + 1

2 Pt (x + Jt ), (10)

where it is clear the absence of interference effects since the
flux of probability from the positions {x ± Jt } do not modulate
one another.

IV. RESULTS AND DISCUSSION

In this section, we characterize the global and local prop-
erties concerning the evolution of the QW wave function.
The combination of this analysis with the description of the
nonlinear correlation features of each aperiodic sequence in
Sec. III puts us in a position to give an account over the

role played by such properties on the characteristics of QWs
under those rules. To accomplish that, we first compute the
space-time probability Pt (x) of the corresponding wave packet

Pt (x) = ∣∣ψD
t (x)

∣∣2 + ∣∣ψU
t (x)

∣∣2
. (11)

With that result in hand, we compute the nth-order statisti-
cal moments

mn(t ) = xn
t =

∑
x

xnPt (x). (12)

Pivotal for the characterization of each type of quan-
tum walk is the case n = 2 since as m1 = 0 ∀t , m2 = σ 2 ≡
m2 − m2

1, which is an effective measure of the wave packet
spreading in time. Typically—and under the Markov law—
physical processes behave asymptotically as σ 2(t ) ∼ tα (t 
1), where the diffusion exponent α is utilized to classify the
spreading and diffusion taking place. As we have learnt from
the computation of σ 2(t ) plotted in Figs. 3(a)–3(c), aperiodic
jumps play a dual role; on the one hand, they help enhance the
spreading in the classical walk, but they induce a counterintu-
itive inhibition of dispersion for the quantum counterpart as a
result of the enhanced interference pattern. On the other hand,
we see that the classical spreading keeps the linearity relation
m2(t ) ∼ t . This picture is different from the quantum walks
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FIG. 4. Dynamic regimes for the QW and CW under aperiodic or periodic chain of jumps. We use tmax = 2 × 105 to estimate α from
m2 ∼ tα . Each point corresponds to an average over the two initial seeds of the binary sequence: b0 = 0 (J0 = 1) and b0 = 1 (J0 = 2). Error
bars are just the standard error from the mentioned average. The case θ = π/2 is presented in Appendix B.

we have analyzed, where the growing speed of m2(t ) seems to
change with the kind of aperiodicity. That hint is corroborated
with further analysis in Figs. 3(d)–3(f).

In Fig. 4 we unveil the role of the type of aperiodicity in the
scaling behavior of the wave packet spreading using tmax =
2 × 105 to estimate the value of α. From that analysis we
understand that (1) the ballistic dynamics, α = 2, is preserved
for periodic jumps; (2) the superdiffusive spreading, 1 < α <

2, is present for all deterministic aperiodic sequences in all
scenarios with θ �= 0; (3) when θ �= 0, there is a difference
in the value of α depending on the type of coin operator
(H or K); (4) even though the coin operator is disorder
free (θ is constant in space-time), we observe the exponent
changes nonmonotonically with θ ; (5) for processes where the
Hadamard coin was applied, α exhibits less variability than in
K coin systems; and (6) for the Kempe coin, the results for
the Rudin-Shapiro case display clear-cut differences from a
purely random setting.

As expected, we have found clear differences in relation
to the classical walk model. That comparison is presented
in Fig. 4. Immediately, we see the classical walk instance
is not affected by the sort of aperiodic jump protocol we
select; nonetheless the quantum approach is slightly sensitive
for the Fibonacci and Thue-Morse and strongly sensitive
for Rudin-Shapiro implementations, while the CW remains
robustly diffusive under aperiodic jumps, we note that the
scaling behavior of QW is sensitive to the type of aperiodicity.
For random jumps with ĈH (θ = π/4) we recover the results
shown in Refs. [16,22–25]. From that perspective, our random

setting generalizes those results for the full range of θ ∈
{0, π/2} with ĈH,K .

Figure 4 also shows that the overall values of α versus θ

decreases as the amount of nonidentical patterns increases
(LZC increases). Notably, when the LZC is minimum the
ballistic spreading (α = 2) is achieved for both the constant
and periodic sequence, which is a surprising result given that
the periodic jumps lead the wave packet to achieve much more
distant positions. These results highlight the important role
that the LZC plays in the scaling behavior of the transport
properties. Given the relevance of the aperiodic sequences
in science and technology [40–44] and that the LZC is a
simple measure to define and compute (see Appendix A), we
emphasize that the LZC enters as a new control feature for the
engineering and manipulating of wave packets.

Still in Fig. 4, we see another worthwhile result: the
implementation with θ = 0 is robustly ballistic regardless
of the type of temporal disorder in step lengths. Why are
aperiodicity-induced effects suppressed for θ = 0? The an-
swer to that question is traced back to the mathematical
structure of the coin and step operators. When θ = 0 the
diagonal terms c12 = c21 = 0 of the operators ĈH,K zero out.
The H coin operator becomes the z-Pauli matrix ĈH = σ̂z,
whereas the K coin becomes the identity matrix ĈK = I. As
diagonal operators now, ĈK and ĈH furthers the pure propa-
gation of each spin-component in its corresponding direction
without interfering with one another. Heeding these features,
it becomes clear that under decoupled conditions the ballistic
spreading remains safeguarded from the disorder in the step
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operator. In Appendix B we add a further discussion for the
case θ = π/2 as well.

The scaling analysis presented above allows determining
the exponent α that is a global measure of the wave packet
transport. Henceforward, we will employ a toolkit from statis-
tics and information theory with the motivation of detecting
local distributional fingerprints in the QW dynamics caused
by aperiodicity in the hoppings.

Besides the natural difference in m2(t ) for the quantum
and classical walks, we compute the discrepancy between the
distributions arising from QW and CW, Pqw

t (x) and Pcw
t (x),

by employing tools from the information theory, namely the
Jensen-Shannon dissimilarity [49],

JSDt (P
qw, Pcw) ≡ KLDt (Pqw|M ) + KLDt (Pcw|M )

2
, (13)

where M(x) is the mean distribution

M(x) = Pqw(x) + Pcw(x)

2
, (14)

and the function KLD is the Kullback-Leibler dissimilarity,

KLDt (R|W ) ≡
∑

x

Rt (x) log2
Rt (x)

Wt (x)
. (15)

Among the set of its properties [50], we emphasize the
fact that JSDt (Pqw, Pcw) has the advantage of being both
upper and lower bounded, 0 � JSDt (Pqw, Pcw) � 1, as well
as symmetric. Notwithstanding the recent assertion that the
Kullback-Leibler measure is very helpful in providing a bet-
ter understanding of the outcomes arising from their new
time-dependent protocol for the coin operator [51], we deem
symmetric measures like the JSD more reliable.

In Figs. 5(a)–5(d) we see to what extent Pqw
t (x) and

Pcw
t (x) are different due to interference effects. Specifically,

JSD(Pqw, Pcw) = 0 at t = 0 since both distributions are equal
Pqw

t (x) = Pcw
t (x) = δx,0. Such maximum overlap (minimum

dissimilarity) is persistent in the second step because during
the initial stage there are not enough quantum states to in-
terfere with one another. That scenery abruptly changes in
the subsequent time steps in which emerges an interference-
induced breaking in the full similarity Pqw

t (x) = Pcw
t (x). That

spatial dissimilarity increases quickly in the short run, but
subsequently, its rate peters out. In the right panel, we see a
nonmonotonic dependence of JSD(Pqw, Pcw) with θ for all
protocols. The overall behavior of Jensen-Shannon dissimi-
larity with the type of aperiodicity shows that there is a larger
site-to-site overlap (smaller dissimilarity) between Pqw

t (x) and
Pcw

t (x) as the complexity of the jump sequence increases.
Further insights on the distributions Pt (x) are obtained

from the behavior of the tails of Pt (x) on the chain. To that,
we employ the kurtosis

κ ≡ m4(t )

m2
2(t )

. (16)

In Figs. 5(e) and 5(f) we see that κ exhibits an increasing
pattern over time evincing that the tail-core relationship is
changeable. Specifically, this corresponds to a decrease in the
relevance of the tails of Pt (x) as the wave packet spreads on the
lattice over time. That property comes to happen because these

jumps induce two effects: (1) the increase of the range of x sat-
isfying Pt (x) > 0 and (2) centralization of Pt (x). Both effects
under the constraint

∑
x Pt (x) = 1 stimulates the penalization

of the importance of tails. In Figs. 5(g) and 5(h), the overall
behavior of κ versus θ shows a highly irregular behavior with
θ , that is more pronounced for the K coin. For the H coin, it
is possible to observe that the weakening in the tails of Pt (x)
becomes more pronounced as the complexity of the sequence
soars. The irregularities in the behavior κ are fingerprints of
the absence of regularity in the aperiodic sequences. Such
irregularity becomes very visible for κ because of its quartic
polynomial behavior that contributes to a high sensibility to
this measure. The plots over the evolution of the kurtosis in
Figs. 5(e)–5(h) point to the overall increase of the relevance
of the bulk of Pt (x) at the expense of the waning of the tails
that is mostly compatible with the overall increase of the
overlap between Pqw and Pcw, which, in turn, is stressed by
the decrease in JSD, as shown in Figs. 5(a)–5(d). Both features
provide complementary information about the slowing down
of the QW observed in Figs. 3 and 4.

We now focus on quantifying the amount of spatial partici-
pation of each state in the total wave packet. For this task, two
common quantities can be employed, namely, the Shannon
entropy (S) [21,51–53] and the inverse participation ration
(IPR) [13,54–57] of the probability profile. Explicitly,

S ≡ −
∑

x

Pt (x) log Pt (x) (17)

and

IPR ≡
{∑

x

[Pt (x)]2

}−1

, (18)

respectively. Those measures allow detecting different spatial
features of the wave packet delocalization. Although the Shan-
non entropy, S, is notoriously a classical quantity, in our case
it can be associated with the delocalization of Pt (x) over the
chain within the context of QWs in the sense it has two well-
defined extremes: (1) fully localized states → Pt (x) = δx,0 →
S = 0 and (2) fully delocalized states→ Pt (x) = 1/N → S =
log N where N is the maximum possible number of sites in
which Pt (x) can be distributed. In other words, we read S a dis-
tributional measure that gives us a complementary insight into
how much contribution each state provides to the full Pt (x)
and thus the impact of linear and nonlinear correlations in this
feature. The same sort of knowledge is given by the inverse
participation ratio with IPR = 1 indicating fully localization
whereas IPR = N corresponds to complete delocalization.

In Fig. 6 we perceive that IPR is more wobbly than the
entropy because of its quadratic behavior that leads to high
sensibility to spatiotemporal variations in Pt (x). Such a fea-
ture is smoothed in the figures provided by the calculations
of the Shannon entropy, which—because of its logarithmic
dependence—assigns little weight to the sites with Pt (x) � 1.
For both measures, we see a highly nontrivial dependence on
θ , which is one of the outcomes of the irregular presence of
aperiodic jumps. That irregularity in the jumps arises from
the absence of regularity of the corresponding aperiodic se-
quences. For the standard QW setting, we recover the smooth
curve for S, as previously obtained [58]. The nonmonotonic
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FIG. 5. (Left) Time series for Jensen-Shannon dissimilarity (JSD) and kurtosis, κ , for aperiodic and periodic protocols of jumps. (Right)
Dependence of such quantities as a function of θ at t = 500.

shape for S and IPR can be explained by the modulation of
the competition between two mechanisms: (1) as θ → 0, the
spreading of the wave packet is enhanced, which permits new
sites significantly off the origin to participate in Pt (x), and

(2) as θ approaches the unbiased coin case θ = π/4, spatial
splitting of states becomes more balanced between the spin
components | ↓〉 and | ↑〉, thus allowing old sites near the
origin to keep a non-negligible contribution to Pt (x).
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FIG. 6. (Left) Time series for the S and IPR for aperiodic and periodic protocols of jumps. (Right) Dependence of such quantities with θ

for t = 500.

Focusing on the role of the complexity, we see in
Figs. 6(c)–6(d) and 6(g)–6(h) that both the entropy and IPR
become left-skewed for all types of sequences with nontrivial
patterns. That indicates the delocalization of the wave packet
is increased towards θ < π/4, which are angles of ĈH,K

that favor the components related to propagation (c11, c22).
For θ = 0, the spreading is ballistic but with only two sites
participating in the full wave packet; now our results show
that by choosing protocol of jumps with nontrivial complexity
it is possible to attain a superdiffusive regime with the extra
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FIG. 7. Behavior of the von Neumann entanglement entropy Se in time for θ = π/4 (left) and with θ for t = 500 (right) for aperiodic
protocols. As comparison, we show the time evolution of Se for the standard case as well as for periodic jumps.

possibility for tuning θ in order to increase propagation with-
out too much loss in the spatial participation of the local
spinors in the total wave packet. That finding offers a new
possibility for tuning both the delocalization and propagation
of QWs.

Qubit-lattice entanglement is another important feature in
the evolution of a quantum walk. To quantify this property, we
compute the von Neumann entropy

Se ≡ −Tr[ρc log ρc]. (19)

To that, we must have the full density matrix ρ = |�〉〈�| of
the QW system whence we obtain the reduced density matrix
of the quantum walker

ρc ≡ Trx(ρ), (20)

where Trx stands for the trace over the position base. Since
ρc involves tracing out the position degree of freedom, then
0 � Se � 1 is interpreted as a quantifier of the entangle-
ment between the internal degree of freedom of the quantum
walker (spin, polarization) and the external degree of freedom
(chain). Explicitly, considering Eq. (1) and following the same
steps as in Refs. [13,14,59] the reduced density matrix reads

ρc =
[

Ga Gab

G∗
ab Gb

]
(21)

=
∑

x

[∣∣ψD
t (x)

∣∣2
ψD

t (x)
(
ψU

t (x)
)∗

ψU
t (x)

(
ψD

t (x)
)∗ ∣∣ψU

t (x)
∣∣2

]
(22)

wherefrom we compute the eigenvalues λ± of ρc,

λ± = 1
2 ± 1

2

√
1 − 4GaGb + 4|Gab|2, (23)

which finally yields the entanglement entropy,

Se = −λ− log2 λ− − λ+ log2 λ+. (24)

In Fig. 7 we present how much entanglement is generated
by the sequential application of the coin and translation op-
erator with jumps. We remind readers that in all cases the
QW starts from a separable state Se = 0. For the disorder-free
setting, Se → 0.872 . . . in agreement with Refs. [59,60]. All
the disordered settings, deterministic or random, lead to a
jump-induced enhancement of the spin-space entanglement.
Notwithstanding, aperiodicity makes the entanglement more
susceptible to fluctuations. These features are robustly present
in the right panel where we show Se versus θ . Taking a
closer look at Se versus θ for the settings with the Rudin-
Shapiro and random we observe that Srs

e tends to be smaller
than Srand

e . At first, that is intriguing given that both RS
and random series have no linear self-dependence (Pearson’s
correlation is null). On the one hand, that shows the hidden
nonlinear dependencies in the sequence of jumps—which are
not detected by the ACF and PSD [48]—become visible in
the entanglement measure. On the other hand, that same result
shows the remarkable role of randomness plays in the nature
of generation of entanglement.

Aiming at better grasping the underlying mechanism be-
hind all these results, we have evaluated the space-time asym-
metry [61] between the spin components

At = ∣∣ψU
t (x)

∣∣2 − ∣∣ψD
t (x)

∣∣2
, (25)

which assesses the flux of probability through the lattice.
Taking into account that one assume that the patterns formed
in space-time are more relevant than the magnitude of At in
itself, we have plotted in Fig. 8 the evolution of At (x)/|At |max

where |At |max = maxx At is the maximum over the chain for
each time step t ; therein, it is possible to perceive at every time
step each trajectory is constantly branching due to the trans-
formation of each state into a superposition of other states. In
Figs. 8(b)–8(f), we observe persistent secondary peaks near
the borders as well, a property that is mildly reminiscent of
the ballistic spreading, which is less pronounced for the K
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FIG. 8. Space-time evolution of the normalized asymmetry measure At (x)/|At |max for θ = π/4 with the H coin (a–f) and K coin (g–l).
Inside each panel the red (left) profile highlights the predominance of |ψD

t (x)|, whereas the blue (right) profile indicates the prevalence of
|ψU

t (x)|. In both cases, the darkness denotes the intensity of At (x)/|At |max.

coin as shown in Figs. 8(h)–8(l). The peaks close to the edges
are weaker than those for the H coin or are absent at all.
This arises—as shown in such quantum carpets—as a result
of the enhanced interference pattern between the components
|ψD

t (x)| and |ψU
t (x)|. The presence or not of such off-center

peaks is the main origin of the differences in the scaling
exponents: αH > αK in general.

At this point it is worthwhile to discuss the role of the
fraction of 1s in the binary sequences. To this task, con-
sider the periodic and TM sequences that are well balanced
[Fig. 2(e)] but exhibit different complexity [Fig. 2(f)]. Despite
both sequences having the same number of jumps, in all the
measures we considered, we did not find the same dynamical
features exhibited by the cases we have studied. That is, the
absence of periodicity in the TM protocol leads to noticeable
dynamical differences with respect to the 50-50 periodic
sequences. That result reveals that sequence complexity plays

a much more important role than the fraction of 1s in the
sequences of jumps. This is an important knowledge to have
before investing time and resources in the design of new
experimental setups.

V. CONCLUDING REMARKS

While for aperiodic disorder in the coin operator of a
quantum walk process there are recent works conveying an
augment of entanglement provided by the application of
aperiodic protocols [35,57], the approach we have imple-
mented herein based on deterministic aperiodic disorder in
the step operator—and the corresponding enhancement of
entanglement—is a unique alternative approach.

For the random protocol, there is a series of works re-
porting entanglement production with disorder either in the
coin operator [13,14,62–67] or in the step operator [16,23,25].
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TABLE I. Comparison between CWs (classical walks) and QWs (quantum walks) under the effects of aperiodic jumps.

Time evolution Scaling behavior

CW: enhancement of spreading CW: α invariant regardless the type of aperiodicity
QW: inhibition of spreading QW: α depends on the type of aperiodicity

Recently, it was experimentally verified that dynamic disorder
in the coin operator can lead to enhancement of entanglement
in photonic quantum walks [68]. For disorder in the steps,
there are no experimental results so far, but our protocol is
a potential candidate thereto since very short-range jumps can
be implemented with the optical multiports platform theoret-
ically proposed in Ref. [21]. The deterministic character of
our setting is another advantage since it avoids a sampling
process that is challenging for experimentalists as discussed
in Refs. [37,38].

As QWs can be realized with integrated optical waveguide
devices [8], our work offers alternative perspectives for the de-
velopments of new photonic architectures [69] with aperiodic
second-order coupling.

In terms of quantum transport, we stress that our protocol
provides a mechanism for the emergence of superdiffusive
spreading, i.e., a regime belonging to the broad class of
anomalous diffusion [70]. An additional feature of our pro-
posal assuming aperiodic jumps is that by controlling θ the
setup offers the possibility of tuning the scaling exponent
α in a given range of values in the class of superdiffusion.
Such results naturally prompt the definition of new aperiodic
sequences for allowing a broader adjustment of the scaling
exponent α.

For comparison purposes, we established a classical ver-
sion of the quantum protocols as well. Concerning the time-
dependent quantities, the variance of the QW distribution
experiences a slowdown with next-nearest neighbor hop-
ping, whereas the variance of the CW increases with ape-
riodic jumps. Concerning the asymptotic behavior (large t)
of the variance, the QW variants we introduced reveal the
aperiodicity-driven sensitivity of the scaling exponent. A sum-
mary is shown in Table I.

Besides the second statistical moment—from which we
analyzed the spreading features—we also highlight the appli-
cability of a set of tools from statistics and information theory
in providing a deeper understanding of the underlying space-
time features of the QW probability distribution. Specifically,
we employ the Shannon entropy, IPR, Jensen-Shannon dis-
similarity, and kurtosis. Such distributional measures allow
grasping to what extent the changes in the functional shape
of Pqw

t (x) relate to the dynamical behavior of the QW. Our
results show that by making a judicious choice of the aperiodic
sequence of jumps and θ it is possible to induce changes in the
tail-core relationship of Pqw

t (x) in a way that favors propaga-
tion as well as an enhanced participation of the local spinors
in the full wave packet. This finding reveals that the setup
introduced in this paper enlarges the range of possibilities for
tuning delocalization and propagation of QWs. This discovery
is worth of attention given that in certain algorithmic instances
is desired to increase delocalization without too much loss in
propagation [10].

Last, these results demonstrate that QWs can distinguish
the complexity of the sequence used as disorder (Fig. 4). This
feature is more noticeable for the uncorrelated sequences in
Figs. 4(e) and 4(f) where αRS > αrandom. That is to say, QWs
help detect the intrinsic nonlinearities in the RS sequence
that resembles the power spectrum of random sequences. If
we recall that classical walks are very helpful in a variety of
pattern recognition tasks [71], the present results suggest fur-
ther new applications of QWs, namely, as a tool for analyzing
the nonlinearity of time series. Such a task of bridging QWs
with pattern detection is one of our subsequent avenues of
research. Already existing results [72] point out the beneficial
intersection of both fields.
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APPENDIX A: KS METHOD FOR LEMPEL-ZIV
COMPLEXITY

The KS approach [47] consists of the proper use of elemen-
tary string manipulation tools: concatenation, insert, delete,
and search for substrings.

We first define the main binary string of size n as M =
s1s2s3, . . . , sn, where we call the minimal substring si a char-
acter or digit. We define an empty ancillary string S and an
empty ancillary substring Q as well. The LZC is started at
c = 1. Access the first character of M and include it in the
ancillary string: S = s1. Include the second character of M
in the ancillary substring: Q = s2. Now we have S = s1 and
Q = s2. Create SQ, the concatenation of S and Q. Create SQπ

by removing the final character from SQ. That is, π is defined
as the operation that removes the last character of a string or
substring. Ask the question: is Q contained in the vocabulary
v(SQπ )? If the answer is positive, Q ∈ v(SQπ ), then append
s3 into Q that now becomes Q = s2s3. Repeat the previous
steps SQ → SQπ and ask the question Q ∈ SQπ? When a
negative answer is given, that is, Q /∈ v(SQπ ), then append
Q into the S. Increase the LZC: c → c + 1. With the new
ancillary substring, S start the operations of concatenation,
delete, search of substrings described above. If the substring
SQ reached the size of the main string M the algorithm ends
and we set the last increase in the LZC: c → c + 1.

Now let us show some examples of such an approach.
Example 1: constant sequence M = 111:
(1) Set c = 1. The first character has always to be included

→ 1·, where the dot · means a newly inserted character
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FIG. 9. Spatiotemporal evolution of the normalized asymmetry measure At (x)/|At |max for θ = π/2. Quantum carpets for H coin (a–f) and
K coin (g–l). Periodic jumps leads to delocalization.

(2) S = 1, Q = 1, SQ = 11, SQπ = 1, Q ∈ v(SQπ ) →
1 · 1

(3) S = 1, Q = 11, SQ = 111, SQπ = 11, Q ∈ v(SQπ )
→ 1 · 1·

(4) The end of M has been reached, so c → c + 1, then
c = 2 is the LZC of a constant sequence, that indeed is the
minimum possible value. This means that we need only to
insert the first value k and then the whole sequence can
be reconstructed by copying such a character: kkkk . . . →
k · kkk . . .

Example 2: periodic sequence M = 1010:
(1) Set c = 1 and access the first character → 1·
(2) S = 1, Q = 0, SQ = 10, SQπ = 1, Q /∈ v(SQπ ) → 1 ·

0·, then c → c + 1 ⇒ c = 2
(3) S = 10, Q = 1, SQ = 101, SQπ = 10, Q ∈ v(SQπ )

→ 1 · 0 · 1·

(4) S = 10, Q = 10, SQ = 1010, SQπ = 101,
Q ∈ v(SQπ ) → 1 · 0 · 1 · 0·

(5) The end of M has been reached, so c → c + 1 ⇒ c =
3 as shown in Fig. 2(e).

Example 3[47]: M = 0010:
(1) Set c = 1 and start with → 0·
(2) S = 0, Q = 0, SQ = 00, SQπ = 0, Q ∈ v(SQπ ) →

0 · 0·
(3) S = 0, Q = 01, SQ = 001, SQπ = 00, Q/∈v(SQπ ) →

0 · 01·, then c → c + 1 ⇒ c = 2
(4) S = 001, Q = 0, SQ = 0010, SQπ = 001, Q ∈

v(SQπ ) → 0 · 01 · 0·
(5) The end of M has been reached, so c → c + 1 ⇒ c =

3. This leads to the partitioning M = 0010 ⇒ 0 · 01 · 0 where
c = 3 is the number of partitions separated by dots.

Example 4: Fibonacci chain M = 10110101:
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(1) Set c = 1 and begin with → 1·
(2) S = 1, Q = 0, SQ = 10, SQπ = 1, Q /∈ v(SQπ ) → 1 ·

0·, then c → c + 1 ⇒ c = 2
(3) S = 10, Q = 1, SQ = 101, SQπ = 10, Q ∈ v(SQπ )

→ 1 · 0 · 1
(4) S = 10, Q = 11, SQ = 1011, SQπ = 101,

Q /∈ v(SQπ ) → 1 · 0 · 11·, then c → c + 1 ⇒ c = 3
(5) S = 1011, Q = 0, SQ = 10110, SQπ = 1011, Q ∈

v(SQπ ) → 1 · 0 · 11 · 0·
(6) S = 1011, Q = 01, SQ = 101101, SQπ = 10110,

Q ∈ v(SQπ ) → 1 · 0 · 11 · 0 · 1·
(7) S = 1011, Q = 010, SQ = 1011010, SQπ = 101101,

Q /∈ v(SQπ ) → 1 · 0 · 11 · 010·, then c → c + 1 ⇒ c = 4
(8) S = 1011010, Q = 1, SQ = 10110101, SQπ =

1011010, Q ∈ v(SQπ ) → 1 · 0 · 11 · 010 · 1·
(9) The end of M has been reached, so c → c + 1 ⇒ c =

5. This leads to the partitioning M = 10110101 ⇒ 1 · 0 · 11 ·
010 · 1 where c = 5 is the number of partitions separated by
dots. Beware that the length of the complete patterns follows
the Fibonacci series: 1, 1, 2, 3, . . . .

APPENDIX B: SCENARIOS FOR θ = π/2: PERIODIC
JUMPS INDUCES DELOCALIZATION

In this Appendix we provide an extra analysis of the spa-
tiotemporal patterns for θ = π/2 in Fig. 9. In such scenarios
the operators ĈH,K have pure nondiagonal terms since c11 =
c22 = 0. The H coin becomes the x-Pauli matrices ĈH = σx

and is also equivalent to the NOT-gate that acts flipping the the
spin components: | ↓〉 → | ↑〉 and | ↑〉 → | ↓〉. The K coin
does not precisely the NOT gate, but it also acts flipping the
spin components. Such features of both coins lead to the al-
ternating propagation-reflection effect: if the QW propagates
at step t then it will be reflected in the opposite orientation
at t + 1 and vice versa. In turn, this forwards an oscillation
around the initial position. Then it is straightforward to see
that in such cases the QW will remain bounded localized near
the origin. Indeed, this happens for the standard, Fibonacci,
Thue-Morse, Rudin-Shapiro, and random protocols. But in-
terestingly, the periodic jumps boosts the escape from the fate
of localization.
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