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Bond percolation on simple cubic lattices with extended neighborhoods
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We study bond percolation on the simple cubic lattice with various combinations of first, second, third, and
fourth nearest neighbors by Monte Carlo simulation. Using a single-cluster growth algorithm, we find precise
values of the bond thresholds. Correlations between percolation thresholds and lattice properties are discussed,
and our results show that the percolation thresholds of these and other three-dimensional lattices decrease
monotonically with the coordination number z quite accurately according to a power-law pc ∼ z−a with exponent
a = 1.111. However, for large z, the threshold must approach the Bethe lattice result pc = 1/(z − 1). Fitting our
data and data for additional nearest neighbors, we find pc(z − 1) = 1 + 1.224z−1/2.
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I. INTRODUCTION

Percolation is a fundamental model in statistical
physics [1,2]. It is used to describe a variety of natural
processes, such as liquids moving in porous media [3,4],
forest fire problems [5,6], and epidemics [7]. It is also a model
for phase-transition phenomena. In percolation systems, sites
or bonds on a lattice are occupied with probability p, and the
value of p at which an infinite cluster (in an infinite system)
first appears is known as the percolation threshold pc.

Many kinds of lattices, graphs, and networks have been
investigated to find the percolation thresholds and the corre-
sponding critical exponents. In two dimensions, exact values
of percolation thresholds are known for several classes of
lattices [8–16], but there are still many more lattices where
thresholds cannot be found analytically, and in higher di-
mensions, there are no exact solutions at all. Consequently,
a major focus of investigation at present is still based on
approximation schemes or numerical simulations.

Numerous algorithms and techniques have been devel-
oped to find the threshold numerically [2,15,17–28]. Many
related problems in percolation have also received attention
recently [29–38]—it remains a very active field.

The study of three-dimensional (3D) lattices (the
most common ones being the simple cubic (sc), the
face-centered cubic (fcc), the body-centered cubic (bcc),
and diamond lattices) is particularly important due to their
relevance for many natural processes. Much work in finding
thresholds and critical exponents has been performed in
three dimensions [20,25,26,33,39–44], and the values of
percolation thresholds have been more and more accurate.
Lorenz and Ziff [20] performed extensive Monte Carlo
simulations to study bond percolation on three-dimensional
lattices [pc(sc) = 0.248 8126(5), pc(fcc) = 0.120 1635(10),
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and pc(bcc) = 0.180 2875(10)] using an epidemic
cluster-growth approach. By examining wrapping
probabilities, Wang et al. [25] and Xu et al. [26] carried
out extensive numerical simulation studies on these
models and found pc(sc) = 0.248 811 85(10), pc(fcc) =
0.120 163 77(15), pc(bcc) = 0.180 287 62(20) for bond
percolation and pc(sc) = 0.311 607 68(15), pc(fcc) =
0.199 235 17(20), pc(bcc) = 0.245 9615(2) for site
percolation as well as investigating critical exponents. In
general, pure Monte Carlo results are practically limited to
about eight significant digits of accuracy due to statistical
error and limitations of computers: At least, 1016 random
numbers must be generated to achieve that level of accuracy
and would require ≈104 days of computation on a single
node.

The problem of studying percolation on lattices with ex-
tended neighborhoods has received a great deal of attention
in the past decades [43–47] with much work stimulated by
the 2005 paper of Malarz and Galam [48]. With extended
neighbors, the coordination number z can be varied over a
wide range, so many types of systems can be studied, and
there are applications where these results are useful [49]. Site
percolation on lattices with extended neighborhoods corre-
sponds to problems of adsorption of extended shapes on a
lattice, such as k × k squares on a square lattice [50,51]. Bond
percolation relates to long-range links similar to small-world
networks [52] and models of long-range percolation [53]. In
two dimensions, having lattices with complex neighborhoods
models nonplanar systems.

For three-dimensional systems, some work has been per-
formed for the sc lattice with extended neighborhoods [43,44],
although to relatively low precision and for site percolation
only. Precise percolation thresholds are needed in order to
study the critical behavior, including critical exponents, criti-
cal crossing probabilities, critical and excess cluster numbers,
etc. Therefore, in this paper, we study bond percolation for
several sc lattices with extended neighborhoods, including
combinations of NNs, 2NNs, 3NNs, and 4NNs as shown
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FIG. 1. The neighborhoods considered here: Nearest neighbors
(NNs) (black with heavy bond and 6 vertices); second nearest neigh-
bors (2NNs) (red with dashed bond and 12 vertices); third nearest
neighbors (3NNs) (blue with no links to the origin and 8 vertices);
and fourth nearest neighbors (4NNs) (green with thin bond and 6
vertices).

in Fig. 1. We use an effective single-cluster growth method
similar to that of Lorenz and Ziff [20] and what we have re-
cently used to study percolation problems in four dimensions
(4D) [54]. Thresholds for these systems are studied here for
bond percolation, and, thus, we find all the values. We find
results to a precision of five or six significant digits.

With regard to the sc lattice with extended neighborhoods,
crossing bonds exist in these kinds of structures. This bond
percolation model with crossing bonds lives in an extended
space of connectivities [55]. Here, we show that the single-
cluster growth method we used in this paper can be efficiently
applied to these kinds of lattices.

Another goal of this paper is to explore the relation be-
tween percolation threshold and coordination number. The
value of percolation thresholds depends on kind of percolation
(site or bond), lattice topology, and assumed neighborhoods,
etc. The study of how thresholds depend upon lattice structure,
especially the coordination number z, has also had a long
history [56–61]. Having thresholds of more lattices is useful
for extending those correlations.

In the following sections, we present the underlying theory
and discuss the simulation process. Then, we present and
briefly discuss the results that we obtained from our simula-
tions.

II. THEORY

A quantity of central interest in percolation is the cluster
size distribution ns(p), which is defined as the number of
clusters (per site) containing s occupied sites, as a function
of the occupation probability p. At the percolation threshold
pc, ns is expected to behave as

ns ∼ A0s−τ (1 + B0s−� + · · · ), (1)

where τ is the Fisher exponent and � is the exponent for the
leading correction to scaling. Both τ and � are expected to be
universal—the same for all lattices of a given dimensionality.
In three dimensions, relatively accurate results for τ exist:
2.189 06(8) [62] and 2.189 09(5) [26]. For �, the value is

not known to comparable accuracy: 0.64(2) [20], 0.65(2) [63],
0.60(8) [64], 0.64(5) [65], and a recent higher value � =
0.77(3) [33]. The A0 and B0 are constants that depend upon
the system and are nonuniversal.

Note that, even though we are considering bond percola-
tion, we characterize the size of the cluster by the number of
sites it contains. This is, in fact, a common way to do it and
convenient for the growth method to generate clusters that we
employ here where we do not determine the states of internal
bonds. This is also natural in many theoretical approaches,
such as the Temperley-Lieb calculation for percolation [66].
In any case, the number of occupied bonds of a cluster is
proportional to the number of occupied sites for large clusters,
so either choice will yield the same scaling.

The probability a site (vertex) belongs to a cluster with size
greater than or equal to s will then be

P�s =
∞∑

s′=s

s′ns′ ∼ A1s2−τ (1 + B1s−� + · · · ), (2)

where A1 = A0/(τ − 2) and B1 = (τ − 2)B0/(τ + � − 2).
When the probability p is away from pc, a scaling function
needs to be included. Then, the behavior for large s (ignoring
corrects to scaling here) can be represented as

P�s ∼ A2s2−τ f [B2(p − pc)sσ ]. (3)

Here, σ is another universal exponent, which is estimated to
be 0.4522(8) [62], 0.452 37(8) [26], and 0.4419 [67].

The scaling function f (x) can be expanded as a Taylor
series,

f [B2(p − pc)sσ ] ∼ 1 + C2(p − pc)sσ + · · · , (4)

where C2 = B2 f ′(0). We assume f (0) = 1 so that A2 = A1.
Combining Eqs. (3) and (4) leads to

sτ−2P�s ∼ A2 + D2(p − pc)sσ , (5)

where D2 = A2C2.
The theory mentioned above provides us two methods

to determine pc. The first way, we can plot sτ−2P�s vs sσ .
Equation (5) predicts that sτ−2P�s will converge to a constant
value at pc for large s, whereas it deviates from a constant
value when p is away from pc. The second way, we can plot
sτ−2P�s vs s−�. It can be seen from Eq. (2) that there will be
a linear relationship between sτ−2P�s and s−� for large s if
we choose the correct value of �, whereas for p �= pc where
Eq. (2) does not apply, the behavior will be nonlinear.

We also consider a third method to study pc and τ . It
follows from Eq. (2) that, at pc,

ln P�2s−ln P�s

ln 2
∼ (2−τ )(ln 2s−ln s)

ln 2
− B1s−�(2−� − 1)

ln 2

∼ (2 − τ ) + B3s−�, (6)

where (ln P�2s − ln P�s)/ ln 2 is the local slope of a plot
of ln P�2s vs ln s, and B3 = B1(2−� − 1)/ ln 2. Equation (6)
implies that if we make a plot of the local slope vs s−� at
pc, linear behavior will be seen for large s, and the intercept
s−� → 0 of the straight line will give the value of (2 − τ ).
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Again, if we are not at pc, the behavior will not be linear for
large s.

III. SIMULATION RESULTS

We carried out numerical simulations using the single-
cluster growth algorithm. First, a site on the lattice is chosen as
the seed. Under periodic boundary conditions, any site on the
lattice can be chosen. Then, an individual cluster is grown at
that seeded site. To grow the clusters, we check all neighbors
of a growth site for unvisited sites, which we occupy with
probability p or leave unoccupied with probability 1 − p, and
put the newly occupied growth sites on a first-in, first-out
queue. To simulate bond percolation, we simply leave the sites
in the unvisited state when we do not occupy them, i.e., when
rnd<p where rnd is a uniformly distributed random number in
(0,1). (For site percolation, sites are blocked from ever being
occupied in the future, once they have been visited by the
growth process.) The single-cluster growth method is similar
to the Leath method [68]. A more detailed description of our
algorithm is given in Ref. [54].

Some clusters will be small, whereas others may be very
large. To keep the clusters from exceeding the system size, an
upper size cutoff is set. Clusters that are smaller than the upper
size cutoff can grow until they terminate in a complete cluster.
For clusters larger than the upper size cutoff, their growth is
halted when the size of the cluster reaches the cutoff. In fact,
there are many clusters that are quite small and grow very
quickly. We utilize a simple programming procedure to avoid
clearing out the lattice after each cluster is formed: The lattice
values are started out at 0, and for cluster n, any site whose
value is less than n is considered unoccupied. When a site is
occupied in the growth of a new cluster, it is assigned the value
of the cluster number n. The procedure saves a great deal of
time because we can use a very large lattice and do not have
to clear out the lattice after each cluster is generated.

Another advantage of the single-cluster growth method is
that it is very simple to record and analyze the results [20]. We
attribute clusters of different sizes to different bins. Clusters
whose size (number of sites) fall in a range of (2n, 2n+1 −
1) for n = 0, 1, 2, . . . belong to the nth bin. Clusters still
growing when they reach the upper size cutoff are counted
in the last bin. Then, the only thing we need to record is the
number of clusters in each of the bins. Thus, one does not
need to study properties, such as the intersections of crossing
probabilities for different size systems or create large output
files of intermediate microcanonical results to find estimates
of the threshold. The cutoff is 216 occupied sites for all the
lattices in this paper, meaning that the output files here are
simply the 17 values of the bins for each value of p. Although
the method is not as efficient as the union-find method [69],
which utilizes only one set of runs to simulate all values of p,
it has the virtue that it is simple to analyze. If one concentrates
the longest runs only to the values closest to pc (determined
as one goes), the net disadvantage is not that great.

We have tested this method on the sc lattice, and find pc =
0.248 8117(5), τ = 2.189 05(5), and � = 0.63(3), consis-
tent with previous works as mentioned above. We do not show
the details of that work here. We have also used this method

FIG. 2. Plot of sτ−2P�s vs sσ with τ = 2.189 05 and σ = 0.4522
for the sc-NN + 4NN lattice under different values of p. The inset
indicates the slope of the linear portions of the curves shown in
the main figure as a function of p, and the threshold value of pc =
0.106 8263 can be calculated from the x intercept.

to study four different four-dimensional lattices, including one
with a complex neighborhood in Ref. [54].

In this paper, simulations on the sc lattice with extended
neighborhoods were carried out for system size L × L × L
with L = 512 and with helical periodic boundary conditions.
Some 109 independent samples were produced for each lat-
tice, representing several weeks of computer time each. Then,
the number of clusters greater than or equal to size s was found
based on the data from our simulations, and sτ−2P�s could be
easily calculated.

The plot of sτ−2P�s (with τ = 2.189 05) vs sσ (with σ =
0.4522) for the sc-NN + 4NN lattice for different values of p
is shown in Fig. 2. For small clusters, there is a steep decline
due to finite-size effects. For large clusters, the plot shows a
linear region. The closer p is to pc, the linear portions of the
curve become more nearly horizontal. Then, the value of pc

can be deduced by plotting the slope of that linear part vs p
since by (5),

d (sτ−2P�s)

d (sσ )
∼ D2(p − pc), (7)

Finding the intercept where the derivative equals zero yields
pc. This is shown in the inset of Fig. 2. The predicted value
of the percolation threshold, which is pc = 0.106 8263, corre-
sponds to the x intercept in the inset plot.

If we try different values of τ , we find the value of pc

changes by a small amount. If, instead, we use τ = 2.188 95,
the lower end of the accepted values of τ , we find pc =
0.106 8265, and if we take τ = 2.189 15, the upper end of
the accepted values, we find pc = 0.106 8261. Thus, we can
assign to pc = 0.106 8263 an error of just 2 in the last digit
due to the uncertainty in τ .

Figure 3 shows the plot of sτ−2P�s (with τ = 2.189 05)
vs s−� (with � = 0.63) for the sc-NN + 4NN lattice under
different values of p for large clusters. When p is very near to
pc, we can see better linear behavior, whereas the curves show
a deviation from linearity if p is away from pc. From this plot,
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FIG. 3. Plot of sτ−2P�s vs s−� with τ = 2.189 05 and � = 0.63
for the sc-NN + 4NN lattice under different values of p.

we can conclude that 0.106 826 < pc < 0.106 827, which is
consistent with the value we just deduced from Fig. 2.

Comprehensively considering the two methods above as
well as the errors for the values of τ = 2.189 05(15) and � =
0.63(4) (we take large error bars for the sake of safety), we
deduce the percolation threshold of the sc-NN + 4NN lattice
to be pc = 0.106 8263(7) where the number in parentheses
represents the estimated error in the last digit.

In Fig. 4, we plot the local slope (6) vs s−� with � =
0.63 for the sc-NN + 4NN lattice under the values of
p = 0.106 826, 0.106 8263, 0.106 826 35, 0.106 8264, and
0.106 827. Due to the finite-size effects and the exis-
tence of longer-range bonds, we find significant higher-
order corrections for smaller clusters in this lattice and
use just the last three bins for each p to calculate τ .
We determine the value of τ falls in the interval of
(2.189 00, 2.189 17) (τ = 2.189 00, 2.189 09, and 2.189 17
for p = 0.106 8263, 0.106 826 35, and 0.106 8264, respec-

FIG. 4. Plot of the local slope (ln P�2s − ln P�s )/ ln 2 vs s−�

with � = 0.63 for the sc-NN + 4NN lattice under values of p =
0.106 826, 0.106 8263, 0.106 826 35, 0.106 8264, and 0.106 827.

FIG. 5. Plot of local slope (ln P�2s − ln P�s )/ ln 2 vs s−� for the
sc-NN + 4NN lattice under different values of p, considering second-
order finite-size corrections.

tively), which is consistent with the value we use to determine
pc.

If we plotted points representing slopes from the last six
bins, for example, we would have to use a quadratic to fit the
data as shown in Fig. 5. Here, we are effectively assuming the
next-order correction has exponent 2�. However, the fit is not
that good and the intercept does not agree with the value of τ

found above, so we do not consider higher-order corrections
further. In fact, we do not report any of the plots of the local
slopes (6) for the other lattices.

The simulation results for the other ten lattices we con-
sidered are shown in the Supplemental Material [70] in Figs.
1–20, and the corresponding percolation thresholds are sum-
marized in Table I. We did not calculate the values of τ for
all these lattices one by one; otherwise, the overall simulation
time would, at least, double. For all these plots, we assumed
the values of τ = 2.189 05 that we found for the sc lattice, and
σ = 0.4522.

TABLE I. Bond percolation thresholds determined here for the
sc lattice with combinations of NNs, 2NNs, 3NNs, and 4NNs. Also
shown for reference are the site thresholds.

Lattice z pc (bond) pc (site)

sc-NN + 4NN 12 0.1068263(7) 0.15040(12)a

sc-3NN + 4NN 14 0.1012133(7) 0.20490(12)a

sc-NN + 3NN 14 0.0920213(7) 0.1420(1)b

sc-NN + 2NN 18 0.0752326(6) 0.1372(1)b

sc-2NN + 4NN 18 0.0751589(9) 0.15950(12)a

sc-2NN + 3NN 20 0.0629283(7) 0.1036(1)b

sc-NN + 3NN + 4NN 20 0.0624379(9) 0.11920(12)a

sc-NN + 2NN + 4NN 24 0.0533056(6) 0.11440(12)a

sc-NN + 2NN + 3NN 26 0.0497080(10) 0.0976(1)b

sc-2NN + 3NN + 4NN 26 0.0474609(9) 0.11330(12)a

sc-NN + 2NN + 3NN + 4NN 32 0.0392312(8) 0.10000(12)a

aReference [43].
bReference [44].
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IV. DISCUSSION

In Table I, the lattices are arranged in the order of increas-
ing coordination number z. As one would expect, the values
of pc decrease with increasing z. For reference, we have also
added the site percolation thresholds found in Refs. [43,44].
Note that the ordering of the site thresholds is not always the
same as for the bond thresholds, and the site thresholds are not
all monotonic with z as the bond thresholds are.

In percolation research, there has been a long history of
studying correlations between percolation thresholds and lat-
tice properties [56,58–60]. For example, in Ref. [43], Kurza-
wski and Malarz found that the site thresholds for several
three-dimensional lattices can be fitted fairly well by a simple
power law in z,

pc(z) ∼ cz−a, (8)

with a = 0.790(26). Similar power-law relations for various
systems were studied by Galam and Mauger [57], van der
Marck [41], and others, often in terms of (z − 1)−a rather than
vs z−a. For bond percolation in four dimensions, we found
a = 1.087 in Ref. [54] (where we called the exponent a as
γ4).

Here, we plot the log-log relation of pc vs z in Fig. 6 along
with the bond percolation thresholds of pc = 0.389 5892 [26],
0.248 8117, 0.180 2875 [20], and 0.120 1635 [20] for the
diamond (z = 4), the sc (z = 6), the bcc (z = 8), and the fcc
(z = 12) lattices, respectively. In Fig. 6, we also make a com-
parison with site percolation for the same lattices using data
from various sources [71]. It can be seen that bond percolation
follows a much better linear behavior than site percolation
where there is more scatter in the plot. As z increases, the
relative difference between site and bond thresholds grows be-
cause in site percolation, a single occupied site automatically

FIG. 6. A log-log plot of percolation thresholds pc vs coordina-
tion number z (squares) for the diamond lattice, the sc lattice, the
bcc lattice, the fcc lattice, and the lattices simulated in this paper
in the order of Table I, left to right. The slope gives an exponent
of a = 1.111 in Eq. (8), and the intercept (z = 1) of the line is at
ln pc = 0.594, yielding the formula pc ≈ 1.811z−1.111. Also shown
on the plot are the site thresholds (provided by Refs. [20,26,43,44])
for the same lattices, in which case, the correlation of the thresholds
with z is not nearly as good (circles).

has the ability to connect to the entire neighborhood at once,
whereas, for bond percolation, only two sites are connected
by an added bond. By data fitting, we deduce a = 1.111 for
bond percolation in three dimensions, and deviations of the
thresholds from the line are within about 5% (except ≈7% for
the sc-NN + 4NN lattice).

For site percolation, one might expect a = 1 for compact
neighborhoods and large z because such neighborhoods can
represent the overlap of extended objects. For example, con-
sider the percolation of overlapping spheres in a continuum.
Here, the percolation threshold corresponds to a total volume
fraction of adsorbed spheres equal to [72,73]

ηc = 4

3
πr3 N

V
≈ 0.341 89, (9)

where r is the radius of the sphere for N particles adsorbed in
a system of volume V . Covering the space with a fine lattice,
the system corresponds to site percolation with extended
neighbors up to radius 2r about the central point, because two
spheres of radius r whose centers are separated a distance
2r apart will just touch. The ratio N/V corresponds to the
site occupation threshold pc. The effective z is equal to the
number of sites in a sphere of radius 2r, z = (4/3)π (2r)3

for a simple cubic lattice. Then, from Eq. (9), it follows that
zpc/8 = 0.341 89 or

pc = 2.735 12

z
. (10)

For the site thresholds available, this gives fairly accurate
estimates; for example, for site percolation on the sc-NN +
2NN + 3NN lattice with z = 26, this predicts pc = 0.1052,
compared to the measured value of 0.0976 [43]. This system
is actually a cube rather than a sphere, and using the cube’s
continuum threshold ηc = 0.324 76 [73,74], we find even a
better value of pc = 0.099 93. [In a future study, we plan to
determine site percolation thresholds with complex systems
having various nearest neighbors to test Eq. (10) for higher
z.] In any case, this analysis implies an exponent a equal to
1 for site percolation systems with compact neighborhoods.
This argument does not seem to apply directly to bond per-
colation, although, in general, bond thresholds scale with site
thresholds, and it is known that bond thresholds are always
lower than site thresholds for a given lattice [75], so it is
not surprising that the bond thresholds should follow similar
1/z behavior. Of course, we are not considering just compact
neighbors (such as NN, NN + 2NN, NN + 2NN + 3NN, and
NN + 2NN + 3NN + 4NN) in our analysis in Fig. 6, but also
more sparse ones, which may also affect the apparent scaling
of exponent a.

For bond percolation, we have the bound that the threshold
must be greater than that of a Bethe lattice with coordination
number z, namely, pc = 1/(z − 1). In fact, for large z, one
would expect the Bethe result to hold asymptotically, because
of the small chance that the bonds in a cluster will visit the
same site. In Fig. 7 we plot (z − 1)pc vs z−1/2, using additional
threshold data for larger z, and indeed find an intercept very
close to 1. The power −1/2 for the correction term was found
empirically.

Note that some lattices in Table I share the same z, but
have slightly different values of pc. For pairs of lattices with
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FIG. 7. A plot of (z − 1)pc vs 1/
√

z for the compact
lattices sc−NN+2NN (z = 18), +3NN (z = 26),+4NN
(z = 32), +5NN (z = 56),+6NN (z =, 80), +7NN (z = 92), +8NN
(z = 122), +9NN (z = 146) (right to left), using additional
threshold data for larger z. This plot implies the behavior shown in
Eq. (11).

coordination numbers z = 18, 20, and 26, a farther distance
between two neighborhood vertices seems to lead to a smaller
percolation threshold. For example, for z = 18, we have the
two lattices sc-NN + 2NN and sc-2NN + 4NN, and the latter
lattice, which has a lower percolation threshold, has 4NN
vertices instead of the NN vertices of the first lattice. The
exception to this trend is the sc-NN + 3NN and sc-3NN +
4NN lattices both with z = 14 in which the latter lattice has
a higher threshold. This behavior may be due to the special
cluster structure of the latter lattice. An example is shown in
Fig. 8: For the bond in red (gray) color, it is easy to form a
loop, which has no contribution to percolation and, in fact,
will be forbidden in our growth process where we do not add
bonds to previously occupied sites in the cluster. With the
former lattice, however, loops cannot form from only three
bonds, so it is easier for percolation to spread, and thus, the
threshold is lower. In this case, the threshold is closer to the
Bethe-lattice prediction.

Finally, we note that for the bcc and fcc lattices with
complex neighborhoods, some thresholds follow from the
results of our paper here. For example, the bcc-NN + 2NN
lattice is equivalent to the sc-3NN + 4NN lattice, and the
fcc-NN + 2NN lattice is equivalent to the sc-2NN + 4NN
lattices. In the same manner, the noncomplex sc-2NN lattice
is equivalent to the fcc lattice, and the sc-3NN is equivalent to
the bcc lattice.

V. CONCLUSIONS

To summarize, we have found precise estimates of the
bond percolation threshold for 11 three-dimensional systems

FIG. 8. An example of the sc-3NN + 4NN cluster. Suppose the
bonds in black color are occupied at the nth step, then the occupation
of the bond in red (gray) color will be forbidden at the (n + 1)th step.

based upon a simple cubic lattice with multiple neighbor
connections. Similar to what we have found recently in four
dimensions, the thresholds decrease monotonically with the
coordination number z, quite accurately according to a power
law of pc ∼ z−a with the exponent a = 1.111 here. This com-
pares to the value a = 1.087 for 4D bond percolation [54],
and the value of 0.790(26) for 3D site percolation found in
Ref. [43]. However, for large z, the threshold must be bounded
by the Bethe-lattice and site percolation results, and we find
pc is given by

pc = 1

z − 1
(1 + 1.224z−1/2). (11)

We also find that the correlation of thresholds with z for bond
percolation is much better than it is for site percolation.

In two, three, and higher dimensions, many percolation
thresholds are still unknown, or known only to low signifi-
cance, for many lattices. Malarz and co-workers [43,44,46–
48] have carried out several studies on lattices with vari-
ous complex neighborhoods in two, three, and four dimen-
sions. Their results have all concerned site percolation and
are generally given to only three significant digits. Know-
ing these thresholds for higher precision and knowing bond
thresholds may be useful for various applications and worthy
of future study. The single-cluster algorithm is an effective
way of studying these in a straightforward and efficient
manner.
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