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Cody D. Schimming * and Jorge Viñals
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 4 June 2020; accepted 13 July 2020; published 30 July 2020)

Disclination configurations of a nematic liquid crystal are studied within a self-consistent molecular field
theory. The theory is based on a tensor order parameter, and can accommodate anisotropic elastic energies
without the known divergences in the Landau–de Gennes formulation. Our results agree with the asymptotic
results of Dzyaloshinskii for the Frank-Oseen energy far from the defect core, but reveal biaxial order at
intermediate distances from the core, crossing over to uniaxial but axisymmetric configurations as the core
is approached. The elastic terms considered in our energy allow for the separate control of surface tension,
anchoring, and elasticity contrast, and are used to analyze recent results for lyotropic chromonic liquid crystals.
The latter display unusually large defect cores (on the order of tens of microns) which can be used for a
quantitative comparison with the theory. Both ±1/2 disclination configurations are well reproduced by our
calculations. Elastic anisotropy is also shown to lead to qualitative changes in the disclination polarization, a
quantity that is proportional to the active stress in models of active matter.
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The Landau–de Gennes theory, originally introduced to
model the isotropic to nematic phase transition in a liquid
crystal, forms the basis of many if not most theoretical
and computational studies of equilibrium and nonequilib-
rium phenomena in systems that exhibit broken orientational
symmetry [1,2]. They range from conventional liquid crys-
tals and liquid-crystal elastomers [3,4], to active matter and
self-organizing living systems [5–8]. The Landau–de Gennes
theory introduces a tensor order parameter Q to describe local
order, distinct from the more classical approach based on a
director field n̂ which represents the average orientation of
anisotropic molecules. In director-based theories, boundary
conditions and topological constraints generically lead to con-
figurations with point or line singularities in the director field.
Therefore director models must address unbounded spatial
derivatives near the singularities, and, with them, diverging
elastic energies [9,10]. However, for most liquid crystals the
characteristic size of the physical core of the singularity is
much smaller than scales of interest, so that a short length
scale cutoff is often sufficient to eliminate the need to resolve
the director field at too fine a scale. Since elastic constants and
generalized viscosities are well characterized experimentally,
the director representation with a short distance cutoff has be-
come the theory of choice to study equilibrium and transport
in macroscopic size nematic systems.

The assumption that local order is described by a director
field breaks down near singularities, at two-phase interfaces,
and in some cases near boundaries [11–14]. It is then replaced
in the Landau–de Gennes theory by the symmetric, trace-
less tensor order parameter Q that allows for biaxial order:
molecular configurations in which the orientation cannot be
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described by a single direction. Order is now characterized by
the eigenvalue structure of Q: All eigenvalues vanish for an
isotropic phase, a degenerate eigenvalue describes a uniaxial
phase, and three distinct eigenvalues signal biaxial order.
An important additional advantage of the Landau–de Gennes
theory is that it eliminates diverging elastic energies at director
field singularities as the tensor’s eigenvalues change smoothly
over regions in which the director changes rapidly. However, it
is still necessary to resolve multiple length scales, down to the
scale of director singularities. This makes it difficult to use the
theory for the study of macroscopic configurations and flow.

There are several well-known difficulties associated with
Landau–de Gennes theory. First, elastic constants in the direc-
tor and tensor representations can be mapped into each other
only away from singularities. Therefore, while the constants
can be nominally related to experimentally determined elastic
constants, the elastic energies near singularities of n̂ remain
largely phenomenological. Second, to lowest (second) order
in a gradient expansion of the free energy as a function of
Q, the elastic energy does not distinguish splay and bend
distortions. Third-order terms in gradients are needed to break
this degeneracy, but it is known that the free energy at this
order becomes unbounded for all values of its parameters.
Therefore, the requirement of a stable free energy implies
consideration of terms at least of fourth order in gradients
(there are 22 possible terms allowed by symmetry [15]), thus
making the theory intractable for anisotropic systems. The
lack of boundedness can be traced back to the fact that the
Landau–de Gennes theory as formulated does not constrain
the eigenvalues of Q to remain within their physically admis-
sible range [16]. The ability to extend the Landau–de Gennes
theory to anisotropic systems is imperative for contempo-
rary applications in active and living nematics [5–8,17,18],
in surface actuation and the study of the effects of surface
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curvature [19–23], or in transport of droplets and biological
materials in nematic media [24–27].

A computational framework is introduced, based on a
tensor order parameter, that accommodates elastic anisotropy
and fully biaxial configurations. It avoids divergences at third
order in gradients by self-consistently constraining the range
of variation of the eigenvalues of Q. Our calculations address
recent benchmark experiments on lyotropic chromonic liquid
crystals that have revealed very large disclinations in the ne-
matic phase, with cores on the order of a few microns [28], and
hence resolvable by optical means. The measurements show
strong anisotropy in the director configuration, and also a tran-
sition from a uniaxial state far away from the core, to biaxial
at intermediate distances, and back to uniaxial near the core.
These experiments evidence the unique and complex interplay
between elasticity, anisotropy, and topology that gives rise to
the anisotropic morphology. We show that it is sufficient to
consider two anisotropic gradient terms to separately control
energy anisotropy and elastic constant contrast, and use the
experimentally determined optical retardance to determine
the values of the coupling coefficients. Good agreement with
experiments is found for both +1/2 and −1/2 disclinations
at all distances from the core, thus validating the tensor order
parameter theory down to the core of the singularity, including
anisotropic and biaxiality effects.

Our work is based on a self-consistent, mean-field the-
oretic extension of the Maier-Saupe molecular field the-
ory [16,29,30], including anisotropic terms in the elastic free
energy. We obtain equilibrium configurations Q(r) that min-
imize a free-energy functional F [Q] = H[Q] − T �S, where
H is the Hamiltonian of a configuration to be defined below,
and �S is the entropy relative to the isotropic state. Unlike
the Landau–de Gennes theory, we conduct a constrained
minimization restricted to tensors of the form

Q(r) =
∫

S2

(
û ⊗ û − 1

3
I
)

p(û, r)dû, (1)

where û is the molecular orientation, and I is the iden-
tity tensor. Any configuration Q(r) satisfying this con-
straint will have eigenvalues −1/3 � q � 2/3. The func-
tion p(û, r) is the canonical probability distribution at
fixed temperature, allowed to vary in space (via the as-
sumption of local equilibrium). The entropy is given by
�S = −nkB

∫
�
〈ln 4π p(û, r)〉dr, which we compute self-

consistently with Eq. (1). The entropy of a given configuration
Q can be obtained by maximization over microscopic config-
urations subject to the constraint (1). If �(r) is the associated
tensor of Lagrange multipliers, the entropy is maximized by

p(û, r) = exp
[
ûT �(r)û

]
Z[�(r)]

, (2)

where Z[�(r)] is interpreted as a single-particle partition
function and �(r) an effective conjugate field. This parti-
tion function cannot be obtained analytically. The method to
compute it for spatially varying configurations of Q(r), and
the associated self-consistent free-energy minimization are
key results of our work. Note that although the molecular
units are uniaxial, when � has three distinct eigenvalues, the
distribution over Q is biaxial [30].

Substituting Eq. (2) into the constraint, Eq. (1), yields the
the following self-consistency relation,

Q + 1

3
I = ∂ ln Z[�]

∂�
. (3)

This equation serves to implicitly determine � as a function
of Q, which is necessary to minimize F . It has been shown
that if the eigenvalues of Q approach the limits of the physical
range, �, and thus the free energy, diverges [16].

We choose the Hamiltonian H[Q] = ∫
�
{−α Tr[Q2] +

fe(Q,∇Q)}dr, where α is an interaction strength parameter.
The gradient independent contribution is an extension of the
original Maier-Saupe Hamiltonian [3,31] to which an elastic
term fe is added to penalize spatial variation. The following
functional form of the elastic free energy will be used,

fe(Q,∇Q) = L1∂kQi j∂kQi j + L2∂ jQi j∂kQik

+ L3Qk�∂kQi j∂�Qi j, (4)

where ∂k stands for the partial derivative ∂/∂xk , and sum-
mation over repeated indices is assumed. With this choice
of elastic energy, cubic in Q, the Landau–de Gennes
free energy is unbounded below [15,16]. However, because
of the constraint on the eigenvalues of the field Q, implicit in
the form of Eq. (1), the free energy resulting from the partition
function Z in Eq. (2) remains bounded within a finite range of
L3/L1 [32].

We study order parameter configurations around positive
and negative disclinations as in the experiments of Ref. [28].
In the lyotropic chromonic liquid crystals used in the exper-
iments, it has been established that splay K11 and bend K33

elastic constants are different for a large range of temperatures
and molecular concentrations [33,34]. The elastic energy,
Eq. (4), has the fewest number of terms required to lift the
degeneracy between splay and bend while allowing a degree
of separate control of anchoring and elastic anisotropies. If the
eigenvalues of Q are uniform, fe in Eq. (4) can be mapped
to the Frank-Oseen energy with K33 − K11 = (16/3)S3L3,
where S = (3/2)qmax is the usual scalar order parameter for
uniaxial nematic liquid crystals, and qmax denotes the largest
eigenvalue of Q. In the experiments performed in thin films,
the director is fixed in the xy plane, and the twist term in the
Frank-Oseen energy is always zero.

Dimensionless variables are introduced as follows: f̃ =
f /(nkBT ), x̃ = x/ξ , ξ = √

L1/(nkBT ), L̃2 = L2/L1, L̃3 =
L3/L1, where f is the free-energy density. We subsequently
drop the tilde for brevity. We find the minimum of the free
energy by solving the Euler-Lagrange equations, δF/δQ =
0, given uniaxial outer boundary conditions for Q with the
specified degree of the singularity, and by solving numeri-
cally the self-consistency equations involving Q(r) and �(r),
Eq. (3) [30]. For all computations α/(nkBT ) = 4 so that
the system is below the supercooling limit, as in the ex-
periments of Ref. [28], and the nematic phase is the stable
phase with an equilibrium S = 0.6751. To analyze the re-
sults, we parametrize solutions by Q = S[n̂ ⊗ n̂ − (1/3)I] +
P(m̂ ⊗ m̂ − �̂ ⊗ �̂), where P is the degree of biaxiality of the
distribution, n̂ is the director, and {n̂, m̂, �̂} form an orthonor-
mal frame. P can be calculated from the difference of the
two smallest eigenvalues of Q. We include biaxiality in the
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FIG. 1. (a)–(c) Director configuration; (d)–(f) director angle φ vs polar angle θ for three radial distances from the core: r = 5 (solid), r = 1
(dashed), and r = 0.3 (dotted); and (g)–(i) disclination polarization ∇ · Q. Left: ε = −0.95; center: ε = 0; and right: ε = 0.95. x, y, and r are
in units of the length scale ξ = √

L1/(nkBT ). For ε �= 0 the polarization is nonuniform and exhibits contractile or extensile vector flows.

parametrization as there is no uniaxial restriction on Q except
at the boundary.

We first compare our results with results given by the
Frank-Oseen model with K11 �= K33 away from the core
of a disclination. This problem was originally solved by
Dzyaloshinskii, where solutions are parametrized by ε =
(K33 − K11)/(K33 + K11) [28,35,36]. With this definition, in
the limit ε = −1, the bend elastic constant goes to zero,
while for ε = 1 the splay constant is zero. The qualitative
effect of ε on the spatial order parameter profile is easiest
to visualize for +1/2 disclinations since in the case of zero
bend constant, the director exhibits distortions with no splay
and vice versa for the case of zero splay constant. For −1/2
disclinations the director cannot relax to remove all of one
type of distortion. In Figs. 1(a)–1(c) we show the director
configurations given by the molecular field theory studied
here for the cases of ε = −0.95, ε = 0, and ε = 0.95 for a
+1/2 disclination. In Figs. 1(d)–1(f) we show the angle of the
director with respect to the x axis φ versus the polar angle
θ for various distances away from the core. Away from the
core, the director conforms to the Dzyaloshinskii solution, as

seen by the deviation from φ = (1/2)θ . Near the core, the
director profile becomes similar to the Frank degenerate case
[i.e., φ(r → 0) ∼ (1/2)θ ] which can be understood by the
fact that S becomes small in this region, and the anisotropic
elastic constant difference, K33 − K11 ∝ S3, is negligible. Our
solutions of the molecular field theory smoothly interpolate
between these two asymptotic behaviors.

Figures 1(g)–1(i) show the computed disclination polar-
ization ∇ · Q for the +1/2 disclination. This quantity is
important in the field of active matter as it is proportional to
the active force [17,37,38]. Such an active force is argued to
lead to flows and motion of +1/2 disclinations, while −1/2
disclinations remain stationary. Active matter models to date
have neglected elastic anisotropy, and focused on the “one
constant approximation” [7,8]. Our solutions to the molecular
field theory show that although the director profile becomes
Frank degenerate at the center of the core, its anisotropy
results in a nonuniform ∇ · Q across the disclination. These
nonuniformities would result in qualitatively different, spa-
tially nonuniform active forces acting on +1/2 disclinations,
in particular, contractile forces for ε ≈ −1 and extensile
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TABLE I. Expansion of terms in the elastic energy, Eq. (4).

Term fσ fw fFO

∂kQi j∂kQi j
2
3 |∇S|2 0 2S2[(∇ · n̂)2 + |n̂ × (∇ × n̂)|2]

∂ jQi j∂kQik
1
9 |∇S|2 1

3 (n̂ · ∇S)2 + 2
3 S(n̂ · ∇S)(∇ · n̂) + 2

3 S{∇S · [n̂ × (∇ × n̂)]} S2[(∇ · n̂)2 + |n̂ × (∇ × n̂)|2]
Qk�∂kQi j∂�Qi j − 2

9 S|∇S|2 2
3 S(n̂ · ∇S)2 2S3[|n̂ × (∇ × n̂)|2 − 1

3 (∇ · n̂)2]

forces for ε ≈ 1 (or vice versa if the proportionality between
the active force and ∇ · Q is negative).

The consequences of the gradient terms in the elastic
energy can be qualitatively understood by considering a uni-
axial solution of the form Q(r) = S(r)[n̂(r) ⊗ n̂(r) − (1/3)I].
Substituting this into Eq. (4) explicitly separates contributions
to gradients in the degree of ordering S and the director n̂.
We note three types of contributions to the energy: a surface
tension term fσ (S, n̂), an anchoring energy term fw(S, n̂) (i.e.,
an energy that depends on the relative orientation of n̂ to ∇S),
and fFO(S, n̂), an elastic contribution of the Frank-Oseen type.
Note that although we do not have a two-phase interface or
solid surface, the underlying order changes rapidly and it is
useful to name the respective terms as surface tension and sur-
face anchoring as they would appear on the interfaces. These
three contributions to the elastic free energy are summarized
in Table I. Larger surface tension contributions lead to larger
disclinations, but do not contribute to the anisotropy in the
morphology of the core. Anchoring energies, on the other
hand, directly result in anisotropic shapes through its depen-
dence on the angle between n̂ and ∇S, while contributions in
fFO only result in anisotropy if the bend and splay degeneracy
is broken.

We finally compare our solutions corresponding to the
disclination configurations of Ref. [28]. As appropriate for
the experiments, we present results for the optical retar-
dance, � = γ (S − P). The results are reported as a function
of angular Fourier modes: �(r, θ ) = �0(r) + �1(r) cos θ +
�3(r) cos 3θ . The higher-order Fourier modes are thus mea-
sures of anisotropy of the ordering fields of the solution.
Elastic energies with no anchoring contribution, fw = 0, and

degenerate Frank elastic constants lead to an axisymmetric
core with �(r, θ ) = �0(r). Thus, both anisotropic terms in
Eq. (4) will yield nonzero higher-order Fourier modes in �.
However, as seen in Table I, the L2 term also has a positive
surface tension contribution, which yields larger disclinations
as it is increased and the anisotropy becomes less pronounced.
On the other hand, the L3 term does not contribute to the
size of the disclination due to the negative surface tension
term and the anisotropy of disclinations is sensitive to this
term throughout the valid range of L3. However, if L3 is
chosen so that |ε| > 1, the energy becomes unstable. Be-
cause larger values of L2 decrease ε (because they increase
the overall magnitude of K11 and K33), L2 and L3 can be
adjusted to find the desired anisotropy (e.g., peak height of
�i �=0) while also conforming to the physically relevant value
of ε.

In Fig. 2 we show our computational results for the spatial
profile of the optical retardance for ±1/2 disclinations with
L2 = 7 and L3 = 5. In order to compare with experiments, we
plot the angular Fourier modes along with the experimental
data from Ref. [28] in Fig. 2(b). As in the experiments, we
have determined γ and ξ by fitting the computed �0 to the
experiment for the +1/2 disclination. We find γ = 119.75 nm
and ξ = 1.2 μm. The proportionality γ is related to the film
thickness of the experiments and the birefringence of the sam-
ple which is proportional to (S − P) [28]. The values of L2 and
L3 chosen are not independent; rather, they satisfy ε = 0.4,
as appropriate for the chromonic liquid crystal used [28,34].
We find that the anisotropy, quantified by the angular Fourier
modes, is peaked roughly at the “edge” of the disclination
core, while it goes to zero far from the core and at the core

FIG. 2. (a), (b) Optical retardance � and (c) biaxiality parameter β for a +1/2 disclination (top) and −1/2 (bottom). Solid (�0) and dashed
(�1, �3) lines in (b) are solutions to the molecular field theory, and dots are the experimental data points in Ref. [28].
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center. Importantly, even though we use an elastic energy
with the minimal number of free parameters needed to break
the Frank degeneracy, and have only one free parameter to
determine, the model agrees with experiments for both ±1/2
disclinations.

We also find anisotropy in the biaxiality, as shown in
Fig. 2(c) where we plot the biaxiality parameter β given by
β2 = 1 − 6 Tr[Q3]2/ Tr[Q2]3 [39,40]. β = 0 where the sys-
tem is uniaxial, while β = 1 where the system is maximally
biaxial. We find the system is uniaxial far from the core,
maximally biaxial in the core region, and uniaxial again at
the center of the core. The anisotropy is subtle for the +1/2
disclination, but it is prominent for the −1/2 disclination,
and extends away from the core into the regions where the
director is radially oriented relative to the disclination center.
This can be understood by the fact that the splay constant
is reduced, and thus it is more favorable for the distribution
to become biaxial in the splay-dominated regions. However,
close to the core center the biaxiality becomes axisymmetric,
similarly to �. This is likely due to the reduction of the
eigenvalues of Q near the core as discussed previously. We
note that the appearance of biaxiality has been studied in ax-
isymmetric disclination cores by using a Landau–de Gennes
free energy [11,13,41]. In our calculations, the biaxiality
is a result of the single-particle partition function instead,
Eq. (2), since the Hamiltonian itself only favors uniaxial
configurations.

In summary, we have developed a molecular field theory
of nematic order in liquid crystals that includes anisotropy
and elasticity contrast while yielding stable results. Further,
anisotropic disclination cores—in both eigenvalues and eigen-
vectors of Q—result from such an elastic free energy, with
the results for the order parameter configuration quantitatively
agreeing with experiments, even for the minimal number
of parameters required. We have also introduced a simple
conceptual framework to understand the contribution of these
elastic free energies to the structure of defects, and shown
that terms contributing to the classic Frank-Oseen elastic
energy lead to anisotropic morphologies when K11 �= K33.
Our results are also relevant for models of active matter as
anisotropic energies would result in disclination configura-
tions with qualitatively different spatial distributions of active
forces, as shown in Figs. 1(g)–1(i). In addition, the interplay
between anchoring and elasticity anisotropy on the one hand,
and surface tension on the other, will be important in the study
of two-phase domain coexistence (tactoids), their interaction,
and structure coarsening.

We thank Sergij Shiyanovskii for stimulating discussions,
and him as well as the other authors of Ref. [28] for sharing
the raw data of the experiments with us. This research has
been supported by the National Science Foundation under
Grant No. DMR-1838977, and by the Minnesota Supercom-
puting Institute.
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