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Self-isolation or borders closing: What prevents the spread of the epidemic better?
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Pandemic propagation of COVID-19 motivated us to discuss the impact of the human network clustering
on epidemic spreading. Today, there are two clustering mechanisms which prevent of uncontrolled disease
propagation in a connected network: an “internal” clustering, which mimics self-isolation (SI) in local naturally
arranged communities, and an “external” clustering, which looks like a sharp frontiers closing (FC) between
cities and countries, and which does not care about the natural connections of network agents. SI networks
are “evolutionarily grown” under the condition of maximization of small cliques in the entire network, while
FC networks are instantly created. Running the standard SIR model on clustered SI and FC networks, we
demonstrate that the evolutionary grown clustered network prevents the spread of an epidemic better than the
instantly clustered network with similar parameters. We find that SI networks have the scale-free property for
the degree distribution P(k) ∼ kη, with a small critical exponent −2 < η < −1. We argue that the scale-free
behavior emerges as a result of the randomness in the initial degree distributions.
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Introduction. It is known [1] that the spread of an epidemic
on a network is sensitive to two generic features: clustering
and adaptivity [2–5], where under adaptivity typically it is un-
derstood that the self-consistent network rewiring minimizes
the impact of the disease on the human population. Both the
clustering and the adaptivity have a strong effect on epidemic
threshold, peak value, and typical distribution time. Our work
is inspired by the pandemic distribution of COVID-19 and
we are focused on some mechanisms of network clustering
which have an essential influence on the disease propagation.
Specifically, we discuss effects of adaptive network rewiring.

We are encouraged by an observation made in Ref. [6]
concerning the localization of one-body excitations on net-
work clusters obtained in a specific evolutionary way. More
recently, similar results have been derived for networks with
various patterns of dynamically induced clustering [7–9]. In
this Rapid Communication, we analyze and compare numer-
ically the spread of an epidemic on adaptively rewired and
instantly clustered connected networks.

In Ref. [6], we have considered spectral properties of
two types of constrained random Erdős-Rényi networks in
the clustered phase: (i) so-called e-networks, obtained by
the evolutionary Metropolis maximization of small cliques
of connected nodes, and (ii) so-called i-networks, instantly
prepared clustered graphs having the same geometrical prop-
erties as e-networks but which are created ad hoc without any
evolutionary selection.

In e-networks, which are nonergodic, excitations are
mostly localized on clusters and weakly spread through the
entire network. However, the entire network is connected and
there is a small, though finite, density of intercluster links

which prevents complete localization. In contrast, i-networks
are ergodic and they serve as a particular example of a stochas-
tic block model [10,11]. Being geometrically very similar
to e-networks, i-networks nevertheless are less effective in
blocking the spreading of excitations. As we show below,
the distinction between e- and i-networks deals with different
statistics of intercluster links. In our work, we report results
of simulations of the standard SIR model on clustered e-
and i-networks. The SIR model (described in Sec. IV) is the
simplest and widely used model of disease transmission from
human to human.

The paper is organized as follows: First, we formulate the
model of adaptive clustering. Second, we argue that our model
has a scale-free degree distribution providing explanation of
a very specific triangular shape of the spectral density of
clustered e-networks observed in Ref. [12]. Then, we describe
results of simulations of the SIR model on Erdős-Rényi (ER)
e- and i-networks. Finally, we speculate about the possible
interpretation of self-isolation (SI) in communities as a forma-
tion of adaptively clustered e-networks and frontiers closing
(FC) as a formation of i-networks, and we demonstrate that SI
prevents the spread of the epidemic more efficiently than FC.

Definitions and networks generation. The main object of
our consideration is the dynamically evolving constrained
Erdős-Rényi network. The N-node Erdős-Rényi network is a
topological graph of N vertices constructed by random linking
with the probability p any pair of points from a set of N
arbitrary points. The probability, P(k), to find a vertex in
the ER network, linked with other k vertices, is Poissonian
with the mean value 〈k〉 = N p. Another well-studied class of
random networks are the so-called scale-free networks, for
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which the vertex degree distribution, P(k) ∼ kη, has a power-
law tail with a critical exponent η < 0 (typically η < −2). The
overwhelming majority of natural networks are scale-free, and
the network of distribution of COVID-19 is not an exception
[13].

Natural networks, being complex self-organized objects,
evolve in time, trying to adapt to imposed external condi-
tions. We distinguish two classes of dynamic Erdős-Rényi
networks: “unconstrained” (without the vertex degree conser-
vation during the network evolution) and “constrained” (with
preservation of vertex degrees in all nodes under the network
rewiring). In unconstrained ER networks, one can remove any
link from one place of the graph and insert it into any other
place. In contrast, in constrained ER networks, the realization
of a rewiring is more complex and involves simultaneous
replacement of at least two bonds.

Speaking more practically, consider a network of human
social relations, where each graph vertex represents a partic-
ular agent. It seems reasonable to assume that for each agent,
the number of social connections (the particular vertex degree
in a social network) is conserved. The number of connec-
tions may vary from one agent to the other one; however,
for each human, it is supposed to be fixed and unchanged
during the social network evolution. Such a supposition seems
rather natural since the number of relations per one individual
rapidly increases, saturates, and then remains approximately
conserved during the lifetime, being a typical social habit of a
human.

Returning to the network, we proceed with the following
rewiring setup which conserves all vertex degrees. We take
a random Erdős-Rényi N-vertex graph without double con-
nections as an initial state of a network. Then, we randomly
select a pair of arbitrary links, say, (i j) between vertices i
and j and (k, l ) between k and l , and reconnect them, getting
new links (i, k) and ( j, l ). Such reconnections conserve the
vertex degree [14] but allow for bond redistribution and do
not prohibit topological changes in the entire network. In
the context of phase transitions in social networks, such a
dynamic model has been discussed in Ref. [15].

The following question has been addressed in Ref. [12].
Suppose that we rewire links in the constrained Erdős-Rényi
network (CERN) under the condition that at each step of
rewiring we try to maximize the number of small cliques
(small complete subgraphs of few links). What would be the
equilibrium structure of the entire network? In mathematical
terms, this question reads as follows. We assign the energy,
μ, to each simplest clique (closed triad of bonds) and denote
by n� the number of such triads in the network. The partition
function of the network can be written as

Z (μ) =
∑

{states}

′
e−μn� , (1)

where prime in (1) means that the summation runs over all
possible configurations of links (“states”), under the condition
of fixed degrees {v1, ..., vN } in all network vertices.

To simulate the rewiring process, one applies the standard
Metropolis algorithm with the following rules: (i) If under
the reconnection the number of closed triads is increasing,
a move (rewiring) is accepted, and (ii) if the number of
closed triads is decreasing by � n�, or remains unchanged, a

FIG. 1. A few typical samples of intermediate stages of a net-
work evolution at fixed vertex degree upon the maximization of
triads. Network has N = 750 vertices and the connection probability
at the preparation is p = 0.08.

move is accepted with the probability e−μ� n� . The Metropolis
algorithm runs repeatedly for a large set of randomly chosen
pairs of links, until it converges. In Ref. [16], it was proven
that the algorithm converges to the Gibbs measure eμN� in
the equilibrium ensemble of random undirected Erdős-Renyi
networks with fixed vertex degrees.

In Ref. [12], it has been shown that given the bond forma-
tion probability, p, in the initial graph, the evolving network
splits into the maximally possible number of clusters, Ncl :

Ncl =
[

N

N p + 1

]∣∣∣∣
N�1

≈
[

1

p

]
, (2)

where [x] means the integer part of x and the denominator
N p + 1 defines the minimal size of formed cliques. The
asymptotic limit ∼[p−1] at N → ∞ in (2) is independent of
the particular set of vertex degrees, {v1, ..., vN }.

According to Ref. [17], clustering of evolving constrained
Erdős-Rényi network occurs upon the triad maximization,
as a first-order phase transition with increase of the control
parameter, μ, the chemical potential of the triads. To have
some insight about topological network structure in course
of the evolution, we reproduce in Fig. 1 typical adjacency
matrices at three sequential stages of a particular network
rearrangement: The initial adjacency matrix of the CERN is
shown in Fig. 1(a), its snapshot at the intermediate stage of
rewiring upon triad maximization is depicted in Fig. 1(b),
while the final stage of the network adjacency matrix after the
first-order clustering transition is represented in Fig. 1(c); see
Ref. [12] for details.

To visualize the evolution, we enumerate vertices at the
preparation condition in arbitrary order and run the Metropolis
stochastic dynamics. When the system is equilibrated and
clusters are formed, we re-enumerate vertices according to
their belongings to clusters. Then we restore corresponding
dynamic pathways back to the initial configuration.

We compare the evolutionary grown clustered e-network,
obtained by the maximization of triangles (triadic motifs),
with another mechanism of clustered i-network formation.
The i-network is instantly formed and is a particular example
of a stochastic block random graph [10,11]. To be precise,
the i-network is constructed by the following procedure. First,
we construct the N-vertex clustered e-network, in which we
detect all clusters {J} and define the average link probabilities
as pJ

in inside each cluster J and pout between clusters. Then,
we take a set of N points, split the set in groups as in
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FIG. 2. Examples of typical adjacency matrices for (a) Erdős-
Rényi random network, (b) e-networks evolutionary grown by trian-
gle maximization from the network in panel (a), and (c) i-networks,
which have N = 750 vertices and are created with the link prob-
ability p = 0.08. By visual inspection, it is almost impossible to
distinguish the adjacency matrices of e- and i-networks.

the e-network, and connect points in these groups with the
probability pJ

in. In such a way, we generate a set {J ′} of
new clusters which mimic clusters of e-networks. Finally,
we randomly connect vertices belonging to different clusters
from the set {J ′} with the probability pout borrowed from
the average connection probability between clusters in the
e-network. Such an instantly created i-network mimics the
e-network, since the i-network has the same linking prob-
ability and community structure as the evolutionary grown
e-network. In Fig. 2(a), we have shown the initial Erdős-
Reényi random network, from which the e-network, shown in
Fig. 2(b), and i-network, shown in Fig. 2(c), are constructed
according to the procedure described above. Let us emphasize
that the i-network has no history, knows nothing about the
evolution, has no dependence on μ, and has no vertex degree
conservation. However, the visual inspection of Figs. 2(a) and
2(c) does not allow us to distinguish adjacency matrices e-
and i-networks. Besides, the propagation of excitation on e-
and i-networks behaves very differently.

To summarize, we have ensembles of two kinds of net-
works: (i) evolutionary grown e-networks which have memory
about the history of their creation and (ii) instantly ad hoc
formed i-networks. Projecting mechanisms of construction of
e- and i-networks onto the human society, it seems plausible
(1) to identify clustered e-networks obtained by a preferential
arrangement of network vertices in small cliques with the
self-isolation (SI) of humans in small communities and (2)
to identify instantly created i-networks with the splitting of
entire human network into the collection of weakly connected
clusters obtained by frontier (border) closing (FC). For com-
parison, we also consider random Erdős-Rényi networks with
the same vertex degree distribution, which are the source of
our evolutionary algorithm.

Evolutionary clustering and scale-free distribution in e-
networks. In Ref. [12], we have pointed out some puzzling
property of the spectral density (eigenvalue distribution) of
evolutionary clustered networks. The spectrum above clus-
tering transition has demonstrated the two-band structure in
which the first (main) band was naturally attributed to the
perturbative excitations inside clusters, while the second non-
perturbative” band emerged from the eigenvalues tunneling
from the first zone aside. It was found numerically that the
spectral density in the perturbative band has a triangular shape
typical of the scale-free networks [18,19]. Such a result looks
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FIG. 3. The outer cluster degree distribution ρ(k) in log-log
scale for e-networks (black squares), i-networks (red circles), and
random regular graphs (blue triangles). Results are obtained for
100 realizations of networks with N = 750 nodes and the linking
probability p = 0.08. The solid line shows the slope η = −1.12 for
the power law ρ(k) = k−η.

surprising since a clustered network has emerged from an
Erdős-Rényi graph with a binomial degree distribution in
which the vertex degree is conserved during the network
evolution (rewiring), naively thinking there is no place for a
clustered network to be scale-free.

The resolution of that puzzle turns out to be as follows:
In the evolutionarily grown clustered network, we have to
consider separately the distributions of internal (inside clus-
ter) and external (between clusters) vertex degrees. Let us
consider a vertex i belonging to the cluster J of a clustered
e-network, and define the “outer degree” for a vertex i as the
number of links, connecting i to vertices of clusters others
than J . In Fig. 3, we have plotted the outer vertex degree
distribution, ρ(k), of cluster nodes for three types of networks:
e-networks (black squares), i-networks (red circles), and RRG
e-networks (blue triangles). The simulations show that the
e-networks demonstrate the power-law scaling

ρ(k) ∼ kη (3)

with a surprisingly small value of η. The line of the best fit
in Fig. 3 for the outer vertex degree distribution of e-networks
has the slope η = −1.12. In contrast, the inner vertex degree
demonstrates the binomial distribution modified by the long
tail at small degrees.1 Instantly created i-networks (red circles)
do not possess such a scale-free behavior for outer vertex
degrees.

It is eligible to ask which property of an e-network is
responsible for the scale-free distribution. To this aim, we con-
sider the e-networks constructed on the basis of random reg-
ular graphs (RRG), which possess similar cluster structures.
The outer vertex degree distribution of RRG e-networks,

1Outer vertices we understand as nodes connected by cross-cluster
(outer) links, while inner vertices are nodes connected by in-cluster
(inner) links. These notations should not be confused with outer and
inner links in directed networks.
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shown by blue triangles in Fig. 3, does not demonstrate the
scale-free behavior; however, the distribution itself seems to
be closer to the one of e-networks rather than of i-networks.
Thus, we have solid arguments to believe that the scale-free
behavior of e-networks is induced by the disorder in the vertex
degree distribution of the parent constrained Erdős-Rényi
network.

The scale-free dependence (3) is fully consistent with our
former investigations [6,12] of spectral statistics of evolution-
ary grown clustered networks. It has been shown in Ref. [12]
that the enveloping shape of the main band in the spectral
density of the adjacency matrix is changing with increasing
of μ from the semicircle (in the initial ER network below
μcr) to the triangle (in the clustered network above μcr),
where μc is the first-order transition point. According to our
observation, the triangular shape of the spectral density in
the main band should be attributed mainly to the scale-free
property of intercluster excitations of e-networks.

The critical exponent η is small (−2 < η < −1), meaning
that the average vertex degree distribution diverges. General
conditions to have η > −2 in the scale-free networks with
fixed number of nodes is discussed in Refs. [20,21]. A nontriv-
ial rewiring procedure for generating networks with η > −2
has been proposed in Ref. [20]. Although the algorithm of
Ref. [20] looks sophisticated, the ideas behind its construction
are in good agreement with our simple generation procedure
of the scale-free network with −2 < η < −1. Namely, to get
η > −2 one should carefully tune the combination of local
and global constraints. One more rewiring procedure was sug-
gested in Ref. [21] for getting η = −1. Fortunately, our simple
algorithm dealing with maximization of triads in constrained
Erdős-Rényi network brings the system automatically in the
regime where the generation of a scale-free subnetwork with
−2 < η < −1 occurs. To summarize, the main result of this
section consists in providing a simple rewiring mechanism
for the fabrication of scale-free distribution in constrained
Erdős-Rényi networks.

Numerical simulation of SIR model. Epidemic models clas-
sify individual agents (humans) based on the stage of disease
affecting them. The simplest classification scheme assumes
that an agent can be in one of three states (compartments):
(a) susceptible (S) for healthy agents having not yet contacted
the pathogen, (b) infectious (I) for contagious agents who
have contacted the pathogen and can infect others, and (c)
recovered (R) for recovered (or immune) agents. The distri-
bution of disease on some target space is considered in the
frameworks of transformations among susceptible, infectious,
and recovered agents and is known as the SIR model [22]. The
standard dynamics of the SIR model reads as follows:

S + I
β−→ I + I,

I
γ−→ R. (4)

The model has two adjustable parameters, (β, γ ). These pa-
rameters set transition rates β for susceptible nodes to become
infected from infected neighbors and γ for infected nodes to
recover.

We have run the SIR model on three types of graphs:
random Erdős-Renyi (ER) network, e-network, and i-
network, and the respective adjacency matrices are shown in

FIG. 4. The fraction of infected nodes in time for Erdős-Rényi
networks, i-networks, and e-networks. Results are obtained for the
SIR dynamics with transmission rate β = 0.05 and recovery rate
γ = 0.03 for n = 1000 simulation runs on each networks. Shadowed
regions designate the confidence range of the dependence fi(t ) for a
network type.

Figs. 2(a)–2(c). The results of our simulations are depicted in
Fig. 4, where we have plotted the density of infected agents,
fi, versus time, t . To be able to compare distributions, we
took networks from different classes (random ER, e-networks,
and i-networks) with the identical sets of parameters, namely
with the number of nodes N = 750 and the link probability
p = 0.08. The black dotted, blue dashed, and red solid lines
in Fig. 4 show the dependencies fi(t ) for random Erdős-Rényi
(ER) networks, i-networks, and e-networks, respectively. The
shadowed regions represent the standard deviations from the
curves, averaged over n = 1000 simulations for each type
of network. The parameters β and γ are chosen as follows:
β = 0.05 and γ = 0.03.

Analyzing distributions in Fig. 4, we see two important
features of the epidemic spread described by the SIR model on
different network types. Apart from the maximal distribution
on the nonclustered ER network (which is our reference
state), the interesting features demonstrate e-networks and
i-networks. It turns out that clustering actually weakens the
epidemic spread, but the details are very sensitive to the
way the clustered network is created. The evolutionary grown
e-networks demonstrate better suppression of the epidemic
spread than instantly created i-networks for the same set of pa-
rameters. Meanwhile, the peak of the distribution of infected
agents on e-networks is shifted to later times compared to both
ER and i-networks.

Results and discussion. Here we briefly speculate about
the provocative title of our work in the context of selecting
between two different protocols of suppressing the epidemic
proliferation. Currently, two main mechanisms of human pop-
ulation network clustering are used by different countries to
prevent the uncontrolled spreading of COVID-19. Tentatively,
these mechanisms could be named self-isolation (SI) and
frontiers closing (FC). In both cases, the aim of clustering
is to localize the illness propagation in a closed commu-
nity and prevent it from spread through the entire human
network. Specifically, we are interested in the question of
which mechanism better blocks the spread of the epidemic:
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self-quarantine in local communities induced by increasing
the weights of small cliques in the human network or sharp
clustering via closing of borders between arbitrary parts of the
human network. In an ideal situation, when all self-isolated
communities are absolutely disconnected from each other,
and when the border crossings between cities and countries
are totally prohibited, both protocols are equally efficient and
definitely inhibit disease expansion. However, in reality, it
is impossible to isolate communities completely and some
fraction of cross-community connections is always present.
In that case, we claim that the human network clustering
obtained by self-isolation better prevents the spread of the
epidemic than the instant separation of the network into the
clusters. Readers are invited to make their own judgment of
whether this speculation seems plausible in the context of the
human society and to what extent.

We have demonstrated that a network which is evolutionar-
ily grown from a randomly generated Erdős-Rényi graph with
the fixed vertex degree under the condition of maximizing
small cliques (triadic motifs) gets clustered into community
clusters and the number of such communities depends on
the linking probability p in the initial graph [see Eq. (2)].
We have also verified numerically that similar adaptive clus-
tering occurs when triadic motifs are replaced by complete
4-cliques. Running SIR model on e-networks and in parallel
on i-networks (which mimic clustered structure of e-networks
but are memoryless), we see from Fig. 4 that e-networks
prevent better spread of the epidemic than i-networks (the

maximum of infected agents is lower for e-networks), while
the maximum of infected agents (peak of the epidemic spread)
on e-networks is shifted to later times compared to i-networks.

Importantly, we have found that the clustered e-networks
are scale-free, which explains some previously obtained nu-
merical observations concerning spectral density of the adap-
tively grown networks. Thus, by maximizing the number of
triadic motifs in the constrained Erdős-Rényi networks, we
have proposed a simple mechanism of generating scale-free
graphs via the rewiring process.

The epidemic spreading on the scale-free networks has
some specific peculiarities [23]. In particular, the epidemic
threshold almost vanishes, which means that the scale-free
network is bad for epidemic suppression at the beginning of
its distribution. However, once started, the epidemic can be
operated on a scale-free network more effectively than on
other types of networks. This rewiring mechanism for getting
scale-free behavior can be useful for these purposes.
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