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We consider the efficiency of multiplexing spatially encoded information across random configurations of a
metasurface-programmable chaotic cavity in the microwave domain. The distribution of the effective rank of
the channel matrix is studied to quantify the channel diversity and to assess a specific system’s performance.
System-specific features such as unstirred field components give rise to nontrivial interchannel correlations and
need to be properly accounted for in modeling based on random matrix theory. To address this challenge, we
propose a two-step hybrid approach. Based on an ensemble of experimentally measured scattering matrices
for different random metasurface configurations, we first learn a system-specific pair of coupling matrix and
unstirred contribution to the Hamiltonian, and then add an appropriately weighted stirred contribution. We verify
that our method is capable of reproducing the experimentally found distribution of the effective rank with good
accuracy. The approach can also be applied to other wave phenomena in complex media.
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The phenomenon of wave multiplexing underpins a wide
range of applications in wave engineering [1]. Sometimes,
multiplexing devices are carefully engineered [2–4]; often,
however, multiplexing is a result of the complete scrambling
of wave fronts propagating through a complex medium (e.g.,
multiply scattering layer, chaotic cavity, multimode fiber).
The most common example in the microwave domain is spa-
tial multiplexing in multichannel wireless communication due
to an irregular propagation environment [5,6]. More recently,
in order to circumvent the need for costly coherent receiver
networks, the idea of multiplexing spatial information across
different frequencies [7–10] or configurations [11–15] of a
complex medium gained traction in electromagnetic imaging
and sensing.

Common to all multiplexing schemes is the description
with the matrix formalism Y = HX , linking the input vector
X to the output vector Y via the channel matrix H. The
amount of correlations between different channels determines
the quality of the multiplexing: The higher the correlations
are, the more redundant information is acquired. Incidentally,
this insight recently motivated efforts to tweak the disorder
of complex media in order to reduce channel correlations
via “disorder engineering,” both in space-to-space [16] and
space-to-configuration [15] multiplexing. A convenient metric
to quantify channel correlations is the effective rank, defined
as Reff (H) = exp

[−∑n
i=1 σ̃iln(σ̃i)

]
, where σ̃i = σi/

∑n
i=1 σi;

σi are the singular values of H and n is the smaller one of the
two dimensions of H [17]. Note that only perfectly orthogonal
channels yield Reff (H) = n.

The intuition used by the wave engineering community
to interpret multiplexing phenomena and to conceive ap-
plications building upon them is largely based on the as-
sumption that H resembles a random matrix with inde-
pendent and identically distributed (i.i.d.) Gaussian (usually

complex-valued) entries. Consider for concreteness space-
to-configuration multiplexing with a reconfigurable chaotic
cavity, as depicted in Fig. 1(a) and discussed in Refs. [11–15].
Ideally, such a system with considerable losses is indeed
characterized by a perfectly stirred field distribution following
the Rayleigh model [18,19]. In practice, however, a substan-
tial unstirred field component persists, resulting in additional
channel correlations and a lower-than-expected Reff [15]. As
a result, the widespread notion of degrees of freedom as
corresponding to the dimensions of H, rather than being
related to its singular value spectrum [15,20,21], needs to be
revisited [22,23].

The unstirred field component also presents a significant
challenge from a modeling point of view. Over the past
decades, random matrix theory (RMT) has seen large success
in predicting universal features of a wide range of wave-
chaotic systems [24–30]. In other words, nonuniversal fea-
tures are usually removed before comparing experimental
data to RMT predictions [31–34]. The crux of the space-to-
configuration multiplexing system we consider lies, however,
precisely in the nonuniversal features which cause additional
correlations between channels. Our goal here is to model
the statistical properties of our specific system’s scattering
matrix and to thereby reproduce the experimentally observed
distribution of Reff .

System-specific features arise from reflections at the ports
due to impedance mismatches [35–37], from rays connecting
two ports without ergodically exploring the cavity [38,39],
and from ergodic rays that are not affected by the stirring
mechanism. References [40–42] report efforts to capture
system-specific properties via semiclassical calculations of
the average impedance matrix in terms of ray trajectories
between ports. Such an analysis is not feasible for a geo-
metrically complex three-dimensional cavity like the one we
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FIG. 1. (a) Experimental setup: Eight modulated signals are in-
jected into a metasurface-reconfigurable chaotic cavity; the resulting
field is probed with a ninth antenna. (b) The P × (M − 1) channel
matrix H is constructed for space-to-configuration multiplexing from
entries of the M × M scattering matrix S for P different configura-
tions of the system.

consider (see Fig. 1(a)). An approach recently proposed in
Refs. [43,44] addresses yet another system-specific mecha-
nism: the presence of an established direct transmission medi-
ated by a resonant mode coupled to the (isolated) complex
environment. This approach is not applicable in our case,
where scattering has a multimode nature with both modes and
channels being coupled mainly to the same chaotic environ-
ment.

To overcome the above limitations, we propose a two-step
approach to incorporate nonuniversal features in an RMT
framework relying on an effective non-Hermitian Hamiltonian
to describe the open wave system. First, we learn a system-
specific coupling matrix. Second, we determine an appro-
priate weighting between the unstirred (deterministic) and
stirred (chaotic) components of the Hamiltonian by employing
a variant of parametric motion modeling [45]. Rather than
relying on knowing exact geometrical details of our system,
we extract the scattering distributions of our system from
experimental measurements of the scattering matrix for an
ensemble of configurations. We find good agreement between
the distributions of Reff observed in our experiments and RMT
simulations.

Our experiment, depicted in Fig. 1(a), consists of an
irregularly shaped electrically large metallic cavity whose
walls are partially covered with a reconfigurable reflect-array
metasurface [15]. At the working frequency of 5.6 GHz,
each of its 304 elements can be configured individually
via the bias voltage of a p-i-n diode to mimic Dirichlet or
Neumann boundary conditions [46]. By choosing different
random configurations, the field inside the chaotic cavity

can therefore be stirred in an all-electronic manner [11,13–
15,47]. We modulate in situ eight electromagnetic signals in
amplitude and phase and inject them into the cavity via eight
randomly located antennas. These eight pieces of information
are multiplexed across P configurations of the system by
probing the field inside the cavity with a single antenna for P
random metasurface configurations. In total, M = 9 antennas
are thus connected to the cavity. For concreteness, we consider
P = 8 in this work. As illustrated in Fig. 1(b), each row of
the resulting 8 × 8 channel matrix H is part of a different
system’s 9 × 9 scattering matrix S. In our experiment, con-
sidering the ninth port as receiver, based on 500 realizations
we find the ensemble-averaged 〈Reff〉 = 4.11 ± 0.20 which is
well below the value of 6.48 ± 0.23 expected for an 8 × 8
matrix whose random complex entries are i.i.d. Gaussian
distributed [15].

Following the RMT scattering approach [24,48–50], we
model our system as consisting of N levels (modes) which
are coupled to the environment via M scattering channels.
The coupling is described by an N × M real matrix V . The
(energy-dependent) M × M scattering matrix SRMT(E ) is rep-
resented in terms of the N × N Hamiltonian H of the closed
system and the coupling matrix V as

SRMT(E ) = IM − iV T 1
(
E + i �a

2

)
IN − (

H − i
2VV T

)V, (1)

where IN denotes the N × N identity matrix and �a rep-
resents the dominant global absorption contribution to the
resonance width. Conventionally, for an open chaotic system
with time-reversal symmetry, H is a real symmetric random
matrix drawn from the Gaussian orthogonal ensemble (GOE)
and the entries of V are mutually independent zero-mean
real Gaussian random variables. This ensures that SRMT is a
symmetric matrix. We evaluate SRMT at E = 0 (the center of
the GOE spectrum) and choose the normalization of the mean
level spacing � = 1 at this point.

To account for system-specific nonuniversal features, we
alter two details in the above-described conventional RMT
approach. First, we compose the Hamiltonian of an unstirred
component H0 and a stirred component Hs, weighted by a
parameter λ:

H = cos(λ)H0 + sin(λ)Hs. (2)

Both H0 and Hs are drawn from the GOE, but H0 is kept
fixed for different system realizations. The cosine and sine
terms ensure that the Hamiltonian’s eigenvalue probability
density function (PDF) is not altered through our modification
(see Ref. [51] as well as Sec. 11.10 in Ref. [45]). Second,
while H0 is chosen randomly, we optimize V and λ such
that the statistical properties of the resulting ensemble of
SRMT match as closely as possible those of the experimental
ensemble of SEXP. We assume that the nondiagonal nature of
the ensemble-averaged scattering matrix 〈S〉, i.e., the unstirred
field components, are related to correlations between V and
H0 in light of Eq. (1); in principle, one could thus also keep V
fixed and optimize H0 [52].

Our two-step optimization is based on the intuition that
V and λ determine center and diameter, respectively, of
the clouds of Si, j in the complex Argand diagram. We
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FIG. 2. (a) Comparison of 〈SEXP〉, SRMT
0 , and 〈SRMT〉 in terms

of magnitude and phase. The magnitude of the difference of the
latter two from 〈SEXP〉 is also shown. (b) Dependence of εSD on λ

considering all entries, only diagonal entries, or only off-diagonal
entries of S. (c) SD of SEXP and SRMT and PDF of the SD of the
off-diagonal entries of S.

hypothesize that using H = H0 or H = cos(λ)H0 + sin(λ)Hs

in Eq. (1) will approximately yield the same 〈SRMT〉—an intu-
itive assumption that we observe to be heuristically verified in
Fig. 2(a). Therefore, using H = H0 (and hence independent
of λ), we can first optimize V to ensure that SRMT

0 = 〈SEXP〉,
where SRMT

0 is the scattering matrix obtained via Eq. (1) with
H = H0. Once V is fixed, we identify a suitable value of
λ to ensure that the standard deviations (SDs) of the Si, j , a
measure of the cloud sizes in the Argand diagram, match the
experimentally observed ones.

We choose N = 250 which is sufficiently large to ensure
the local character of fluctuations but at the same time not
too large in terms of the computational cost of optimizing V .
Assuming that global absorption effects dominate, we extract
�a = 7.4 (in units of the mean level spacing) from the average
decay rate of inverse Fourier transforms of experimentally
measured transmission spectra. The optimization of V is
based on sequential least-squares programming as originally
introduced in Ref. [53] and achieves equality of SRMT

0 and
〈SEXP〉 within large precision, as evidenced in Fig. 2(a).

The conventional RMT approach would assume that 〈S〉 is
diagonal and norm(Vi) ≈ √

2κiN�/π , where 1 − |〈Si,i〉|2 =
4κi/(1 + κi )2 (see Refs. [50,54]). For our optimized coupling
matrix, this is no longer the case in order to account for
the above-mentioned correlations between V and H0. More-
over, we observe that for different optimization runs (for the
same objective ensemble of SEXP but using a different H0),
completely different norm(Vi) are obtained. This is a typical
observation in inverse problems, where usually a large number
of different configurations (local optima) yields optimization
outcomes of comparable quality.

Having optimized V , we now identify the optimal value
of λ based on the SDs of Si, j across 500 realizations. For
SD[SEXP], shown in Fig. 2(c), we notice that the average
of the diagonal SDs (0.0673) is roughly double that of the
off-diagonal SDs (0.0302). Moreover, the distribution of off-
diagonal SDs shown in Fig. 2(c) is narrowly peaked close to
the average value but a weaker second peak at roughly double
the value indicates that for a few entries of S the SD is much
stronger than on average. The fluctuations of the diagonal
SDs for the experimental data are much larger than for the
RMT data. To optimize λ, we search for the value that yields
the lowest average error of the SDs of Si, j , εSD. As shown
in Fig. 2(b), λ ≈ 0.05 is optimal if the error of the SD is
averaged over all entries of S or only over the off-diagonal
entries of S. For the diagonal entries of S, however, λ ≈ 0.09
would be ideal. We use the former since our channel matrix is
exclusively built from off-diagonal entries of S.

Using the optimized V and λ in combination with an
ensemble of 500 realizations of Hs drawn from the GOE, we
obtain an ensemble of 500 realizations of SRMT via Eq. (1). As
seen in Fig. 2(a), its average value 〈SRMT〉 is still extremely
similar to 〈SEXP〉, heuristically confirming our hypothesis
that 〈SRMT〉 is approximately independent of λ. The SDs
obtained for the RMT ensemble, shown in Fig. 2(c), nicely
match the experimental ones for most off-diagonal entries.
We notice that the RMT SDs are very uniform without any
outliers, as evidenced by the narrow single-peaked PDF of the
off-diagonal SDs. Consequently, our RMT model essentially
appears to assume that all off-diagonal entries have the same
SD of 0.03 and that all diagonal entries have a SD of 0.04.
Different optimization runs starting with a different random
H0 yield very similar results.

Given our system-specific RMT model, we proceed with
constructing the space-to-configuration multiplexing channel
matrix H by picking eight random realizations out of the 500
available ones. We repeat this 105 times to compute the PDF
of Reff . We perform this analysis for all nine possible choices
of receiving antenna and for five optimization runs starting
with a different random H0. The results are summarized in
Fig. 3. To evidence how closely our proposed RMT model
matches the experimental distribution in contrast to conven-
tional RMT, we include the latter as a benchmark in Fig. 3,
too. Specifically, for each of the five runs with conventional
RMT, we generate 500 scattering matrices by drawing 500
Hamiltonians from the GOE but keeping the random coupling
vector V fixed for all 500 realizations. We also plot the PDF
of Reff obtained for an 8 × 8 matrix for which the real and
imaginary components of the entries are simply drawn from a
normal distribution.

010201-3



DEL HOUGNE, SAVIN, LEGRAND, AND KUHL PHYSICAL REVIEW E 102, 010201(R) (2020)

FIG. 3. For the nine different possible choices of receiving port
(number indicated as inset), we compare the PDF of Reff extracted
from SEXP with that extracted from SRMT. For the latter, five different
optimization runs (starting with a different random H0) are shown
in different colors (blue for run No. 1, etc.). A Gaussian fit to the
experimental distribution is also shown. Moreover, we show the
PDFs for five different ensembles with conventional RMT as well
as for the case of H being a simple complex Gaussian matrix with
i.i.d. entries.

It is evident in Fig. 3 that the PDFs of Reff for con-
ventional RMT and for such a Gaussian matrix are iden-
tical and independent of the choice of receiving port (i.e.,
of antenna coupling, etc.). They clearly fail completely to
predict the experimentally observed PDF, which motivates
this Rapid Communication. Moreover, it can be seen that
the experimentally observed PDF is very well fitted with a
Gaussian normal distribution. The PDFs resulting from five
runs with our proposed RMT model differ slightly from run
to run. Overall, the agreement of our proposed RMT model’s
PDF with the experimentally observed one is occasionally
perfect (receiving port No. 7) but always decent such that our
proposed model serves its purpose.

Figure 2(c) already hints at the reason why the agreement
with the experiments is not perfect: the centered distributions
of the Si, j are not identical for all i, j. To shed some light on
this limitation of our model, we plot in Fig. 4 the distribution
of selected Si, j in the complex Argand diagram as well as

FIG. 4. Distribution of selected Si, j in the complex plane and cor-
responding PDFs of Re[Si, j] and Im[Si, j]. Experiment and simulation
are presented in blue and red, respectively.

PDFs of real and imaginary components, using the data from
the optimization run already considered in Fig. 2. The first
example, S4,7, is representative of the behavior seen for most
off-diagonal entries of S: the cloud in the complex plane is
circular and the PDFs from our proposed RMT model match
the experimentally obtained ones. One exception, illustrated
by S2,8, is due to clouds with a diameter that is significantly
larger than the average. Another exception, namely, S1,4, is
a case in which the cloud is not circular but elliptical. In both
cases, our model fails to reproduce the PDFs correctly. For the
off-diagonal entries of S, as already obvious in Fig. 2(c), our
model’s prediction is not very good. In general the diameter
of the cloud is much larger in the experimental data, e.g., for
S1,1, and in some cases the cloud is not circular, as for S8,8.

The Si, j clouds thus occasionally deviate from the ex-
pected behavior, either having a different radius or being
deformed. Deformed (noncircular) clouds of Si, j were not
seen in Ref. [47], possibly by chance because only a single
Si, j was considered. Such exceptions imply that simply using
centered quantities Si, j − 〈Si, j〉 does not always guarantee
Rayleigh statistics in a tunable-metasurface-stirred chaotic
cavity. Indeed, it was recently shown that in the presence of
a deterministic scattering component the transmission ampli-
tude and phase develop nontrivial statistical correlations even
at strong absorption [55]. Such correlations may also impact
techniques using such centered quantities, for instance, for
antenna characterization in reverberation chambers [56].

Finally, we mention an alternative parametric model in
which H = H0 + λCC†, where C is a N × Npix matrix whose
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entries are zero-mean real Gaussian random variables and
Npix is the (effective) number of metasurface pixels. This
model could be motivated by a treatment of each meta-
surface element as an active scattering center or “chan-
nel” in one of two possible distinct reflecting states [57],
which can be described by a low-rank perturbation of that
type [58]. The weighted sum of a Gaussian Wigner and a
Wishart matrix [59,60] brings about complications related
to the distortion of the Hamiltonian’s eigenvalue PDF. Our
findings with this model, summarized in Ref. [61], show
that overall it is not as compatible with our optimization
protocol as is the model we presented above. In particular,
we saw that using H = H0 or H = H0 + λCC† does not
yield the same 〈S〉 (within reasonable precision), a crucial
assumption for the applicability of our two-step optimization
procedure.

To summarize, we have introduced a modified RMT frame-
work to capture system-specific features based on the mea-

surements of an ensemble of realizations of the experimental
scattering matrix. Our approach, first, optimizes the coupling
matrix to ensure the correct 〈S〉 is obtained and, second, adds
an appropriately weighted stirred contribution to the Hamilto-
nian to adjust the fluctuations of the scattering parameters. We
found good agreement with the experimentally obtained dis-
tribution of Reff that characterizes our space-to-configuration
multiplexing system. Our modified RMT scheme can also be
applied to other scenarios where an ensemble of realizations
of a chaotic system contains nonuniversal features, for in-
stance, in the context of antenna characterization in stirred
reverberation chambers [56,62].
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