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Active matter constantly dissipates energy to power the self-propulsion of its microscopic constituents. This
opens the door to designing innovative cyclic engines without any equilibrium equivalent. We offer a consistent
thermodynamic framework to characterize and optimize the performances of such cycles. Based on a minimal
model, we put forward a protocol which extracts work by controlling only the properties of the confining walls
at boundaries, and we rationalize the transitions between optimal cycles. We show that the corresponding power
and efficiency are generally proportional, so that they reach their maximum values at the same cycle time in
contrast with thermal cycles, and we provide a generic relation constraining the fluctuations of the power.
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The properties of thermal engines, which operate typically
with cycles of temperature and volume, are well described
within the framework of standard thermodynamics. Simple
protocols, such as the Carnot and the Stirling cycles, provide
an intuitive understanding of the minimal rules required to
extract maximal work and dissipate minimal heat out of
ideal fluids [1]. As such, they still serve today as insightful
references to develop optimal cycles in more realistic settings.
More recently, they have also been used to test the concepts of
stochastic thermodynamics in experiments where fluctuations
cannot be neglected [2–4].

During the last decade, active matter has emerged as an
important class of nonequilibrium systems where particles
extract energy from their environment to power a directed mo-
tion [5–7]. Swarms of bacteria [8–10] and assemblies of Janus
colloids in a fuel bath [11,12] are typical examples where
the microscopic dissipation controls the macroscopic fluid
properties. A number of theoretical works have strived to build
a thermodynamic approach to rationalize these properties by
analogy with equilibrium [13–20]. In minimal models where
the solvent only provides passive friction and momentum is
not conserved, the pressure is not an equation of state, at
variance with equilibrium, since it generally depends on the
properties of the wall used to measure it [21–23]. In these
models, a definition of chemical potential has also been pro-
posed which highlights again the limitations of equilibrium
analogies [24,25].

In thermal systems, work can be extracted from cyclic
protocols only by establishing a heat flow in the system, for
instance with a periodic change of temperature. In active
matter, heat flows are already present at fixed temperature
due to individual self-propulsion. Autonomous engines can
then be designed by promoting the current of asymmetric
obstacles [26–28] and extracting work with an external load
[29]. In principle, monothermal cycles can also extract work
out of active matter in the case where macroscopic currents
are absent. It remains to determine how to properly exploit
nonequilibrium properties in active matter to design such

cycles, and how to build a generic approach to quantify,
compare, and optimize systematically their performances.

In this Rapid Communication, we provide a thermody-
namic framework to investigate systematically the perfor-
mances of monothermal cyclic engines operating with active
matter. As a popular model of active fluids, we consider a set
of N independent active Brownian particles in two dimensions
[14]. They are subject to external confining and aligning po-
tentials, respectively denoted by ut and ur . Neglecting particle
interactions, the dynamics of position ri and orientation θi

reads

ṙi = vei − μt∇iut +
√

2Dtξi,

θ̇i = −μr∂θi ur +
√

2Drηi,
(1)

where v is the self-propulsion speed, ei = (cos θi, sin θi ) the
orientation vector, and {ξi, ηi} a set of uncorrelated Gaussian
white noises with zero mean and unit variance. The transla-
tional and rotational mobilities {μt, μr} are independent in
general, and so are the translational and rotational diffusion
constants {Dt, Dr}.

To extract work, we suppose that the operator can modify
externally a series of parameters {α1, . . . , αn} which con-
trol the shape of the potentials ut and ur (see Fig. 1). The
tools of stochastic thermodynamics, introduced originally for
thermal systems [30,31] and later extended to active ones
[17,18,32–37], allow us to identify the average incremental
work associated with an infinitesimal variation of an ar-
bitrary number of parameters as δW = N

∑
n〈∂αn utot〉dαn,

where utot = ut + ur and 〈·〉 is the average with respect to
noise realizations. For quasistatic protocols, it is sufficient to
evaluate averages in steady state at fixed αn denoted by 〈·〉s.
Considering a cyclic protocol ∂� which encloses the surface
� in the space of two independent parameters, the average
quasistatic work Wqs then reduces to

Wqs = N
∮

∂�

[〈
∂utot

∂α1

〉
s

dα1 +
〈
∂utot

∂α2

〉
s

dα2

]
, (2)
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FIG. 1. Schematic illustration of the active engine. Left: Ellipti-
cal active particles are confined between two parallel walls separated
by a distance � with stiffness λ. Right: The cycle of volume and
stiffness, operating either clockwise or counterclockwise, extracts
work by controlling only confining walls.

which can also be written using Green’s theorem as

Wqs = ± N
∫∫

�

w(α1, α2)dα1dα2,

w(α1, α2) = ∂

∂α2

〈
∂utot

∂α1

〉
s

− ∂

∂α1

〈
∂utot

∂α2

〉
s

,

(3)

where + and − signs respectively refer to clockwise and
counterclockwise protocols in the {α1, α2} plane. With our
convention, the cycle extracts work from the system whenever
Wqs < 0.

At equilibrium (v = 0 and ut = ur = u), the weight of
configurations follows the Boltzmann factor e−u/T . The
temperature T = Dt/μt = Dr/μr enforces a constraint be-
tween mobilities and diffusion constants, and the aver-
ages in (3) are written in terms of the free energy F =
−NT ln [

∫
e−u/T dr dθ ] as 〈∂αn u〉s = ∂αnF . Then, the qua-

sistatic work always vanishes independently of the cycle de-
tails, as expected from standard thermodynamics. For generic
active fluids, the steady state is no longer given by the
Boltzmann distribution, as a consequence of the breakdown of
detailed balance [16,17,38]. Hence, work can now potentially
be extracted by tuning only the external parameters {α1, α2}
without varying any internal parameter of the dynamics.

In what follows, we consider that the volume of the system
and the stiffness of confining walls change periodically, as
shown in Fig. 1. This cycle illustrates how controlling active
systems only at boundaries is actually sufficient to extract
work, without changing any property of the microscopic
constituents, at variance with thermal cycles. We first compute
the average work for quasistatic protocols. This sheds light
on a transition of the appropriate cycle direction to extract
work, either clockwise or counterclockwise, recapitulated in a
phase diagram in terms of microscopic parameters. For finite
cycle time, we then provide a generic relation between the
average and the variance of extracted power, and we show
that the cycle efficiency, defined in terms of work and heat,
is proportional to the average power.

The active particles are confined along x̂ by two parallel
walls with translational invariance along ŷ. Inspired by a
recent work [22], we take the confining and aligning poten-
tials as ut = (λ/2)[(x − �)2H (x − �) + x2H (−x)] and ur =
(λκ/2) cos(2θ )[H (x − �) + H (−x)], where H is the Heavi-
side step function. The control parameters are the distance

between the walls �, which sets the volume of the system, and
the stiffness of the walls λ. The parameter κ , kept constant
throughout the protocol, determines the tendency of particles
to align parallel to the wall. For elliptical particles of axial
dimensions {a, b}, as shown in Fig. 1, κ is proportional to
the anisotropy a2 − b2, and it vanishes for isotropic particles
(a = b) [22]. Note that the stiffness sets the amplitudes of both
confining and aligning potentials.

With these settings, the average quasistatic work (2) ex-
tracted from the cycle of volume and stiffness ∂� reads

Wqs =
∮

∂�

[
− Pd� + N〈utot〉s

dλ

λ

]
, (4)

where we have introduced the pressure exerted on the right
wall P = −N〈∂�ut〉s = Nλ〈(x − �)H (x − �)〉s [22,23]. Al-
though P is defined independently of the torque exerted by
the wall, its explicit expression depends on κ in general.
The first term in (4), which embodies the work extracted by
compressing and expanding the system, has a similar form as
in equilibrium except that the pressure now potentially differs
for active fluids. The second one quantifies the work required
to stiffen and soften the wall.

It is well documented that active particles accumulate at
the walls for small angular diffusion Dr � λμt [6,16,38],
thus affecting the density profile beyond the wall regions. To
evaluate explicitly P and 〈utot〉s, we focus on the opposite
regime where the distribution of position and orientation is
flat between the walls. Since the confining potential ut is
soft, particles can penetrate the wall and thereby deplete the
bulk: The bulk density ρ varies when changing either volume
or stiffness. To account for this effect, we approximate the
distribution in the wall regions by a Boltzmann factor with
effective temperature Dt (1 + Pe)/μt , where Pe = v2/(2DtDr )
is the Péclet number, leading to

ρ(�, λ) = N

� + √
2πDt (1 + Pe)/(λμt )

. (5)

In practice, the regime where the wall penetration provides a
significant contribution to the bulk density ρ is consistent with
the effective temperature approximation [39]. Importantly, we
only use this approximation when renormalizing the bulk
density as in (5).

The pressure was already computed in [22] as

P = ρ(�, λ)Dt

μt

[
1 + Pe φ

(
λκμr

Dr

)]
, φ(z) = 1 − e−z

z
.

(6)

We evaluate the confining energy from the Fokker-Planck
equation associated with the dynamics (1), yielding [39]

N〈ut〉s = Dt[N − � ρ(�, λ)]

2μt

[
1 + Pe ψ

(
λκμr

Dr
,
λμt

Dr

)]
,

ψ (z, z′) = φ(z)[1 − χ (z)]

1 + z′φ(z)
, χ (z) = I1(z/2)

I0(z/2)
, (7)

where In is the modified Bessel function of the first kind.
The confining energy (7) follows the equipartition theorem
at equilibrium (Pe = 0), and the nonequilibrium correction
for Pe > 0 yields a dependence on orientation parameters.
Since orientations follow an equilibrium dynamics in the wall
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FIG. 2. (a) The square protocol of scaled volume �
√

Dr/Dt and scaled stiffness λμt/Dr splits into subcycles with opposite directions
when it crosses the black solid line w(λ, �) = 0, where w obeys Wqs = N

∫∫
w(λ, �)dλ d�. (b) Average quasistatic work Wqs produced with a

clockwise square protocol as a function of the Péclet number Pe and of the scaled particle anisotropy κμr/μt . Blue and red regions respectively
refer to work extraction for clockwise and counterclockwise cycles. (c)–(e) Numerical simulations and corresponding analytical predictions,
respectively shown in points and solid lines, illustrate the nonmonotonic behavior of Wqs with κ . Parameters: Pe = 0.2 (c), 0.067 (d), and
0.033 (e). Simulation details in [39].

regions, we get the aligning energy by averaging over the
Boltzmann weight e−μrur/Dr , yielding

N〈ur〉s = λκ[� ρ(�, λ) − N]

2
χ

(
λκμr

Dr

)
. (8)

Combining (4)–(8), the work then follows as

Wqs = v2

2μtDr

∮
∂�

{
− ρ(�, λ) φ

(
λκμr

Dr

)
d�

+ 1

2
[N − �ρ(�, λ)] ψ

(
λκμr

Dr
,
λμt

Dr

)
dλ

λ

}

+ κ

2

∮
∂�

[�ρ(�, λ) − N] χ

(
λκμr

Dr

)
dλ, (9)

where we have identified a boundary term of the form∮
d ln ρ(�, λ) = 0. The three lines in (9) correspond re-

spectively to contributions from the pressure as the volume
changes, and from the confining and aligning potentials as the
wall stiffness changes.

The work Wqs can take either sign depending on whether
the cycle operates clockwise or counterclockwise in the space
of volume and stiffness. To determine the appropriate direc-
tion for extracting work (Wqs < 0), it is sufficient to know the
sign of the surface integrand w defined by

Wqs = N
∫∫

�

w(λ, �)dλ d�, w(λ, �) = ∂λP

N
+ ∂�〈utot〉s

λ
,

(10)

where here the cycle is clockwise in the {λ, �} plane [see
Fig. 2(a)]. For a given range of volume � and stiffness λ, the
protocol which realizes maximal work is a square running
clockwise (counterclockwise) for w < 0 (w > 0) when the
sign of w is fixed within the whole surface �. In contrast,
when � intersects the null line w = 0, the optimal protocol no
longer corresponds to � and λ varying independently. Instead,
one now has to make a choice between the subprotocols which
enclose the parts where w has a constant sign. In particular,
when these subprotocols enclose exactly opposite values of
w, the work of the associated square cycle vanishes.

Changing internal parameters affects the shape of the null
line, whose coordinates follow directly from (5)–(8), which
can yield a transition between having either clockwise or
counterclockwise cycles to extract work (Wqs < 0). We re-
capitulate this transition in the diagram of particle anisotropy
κ and Péclet number Pe shown in Fig. 2(b). At fixed Pe, the
work has a nonmonotonic dependence on κ , as confirmed by
numerics in Figs. 2(c)–2(e). When Pe � 1 or λκμr � Dr, the
contribution of 〈ur〉s to the work, given by the third term in
(9), dominates others. In this regime, the pressure follows an
equation of state, which does not preclude extracting work
from orientational degrees of freedom. In practice, increasing
(decreasing) the stiffness λ lowers (elevates) the bottom of
the aligning potential ur , hence extracting (providing) energy
from (to) the particles. Since more particles align with the
walls at small volume, the protocol should compress and
expand, respectively, at small and large stiffness in order to
extract more energy when increasing λ than the one provided
when decreasing λ. This corresponds to the counterclockwise
cycle [see red regions in Fig. 2(b)].

We now turn to discussing finite-time protocols where
volume and stiffness no longer vary slowly compared with
particle relaxation. Though the quasistatic case is useful to
build intuition on how to operate the cycle, it has only a
limited application since the power extracted per cycle, P ,
vanishes on average at large cycle time τc:

P = −W
τc

, W = N
∫ τc

0

(
∂utot

∂�
�̇ + ∂utot

∂λ
λ̇

)
dt, (11)

where W is the finite-time work. At small cycle time, the
cycle does not extract work (〈W〉 > 0), and the average power
reaches a peak value for intermediate cycle time, as shown in
Fig. 3. In practice, our numerical data are well fitted by 〈P〉 =
(Wqs/τc)(τr/τc − 1) where τr is the only free parameter, as
expected from linear response [40,41].

Building on thermodynamic uncertainty relations [42,43],
recent works have put forward a generic relation between the
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FIG. 3. Scaled power μt〈P〉/v2 and efficiency E as functions of
the scaled cycle time τc/τd, where τd = �2/Dt . They reach a peak
value at finite cycle time, and follow the proportionality relation E =
μt〈P〉/(Nv2) shown in the inset. The solid lines refer to the best
fits 〈P〉 = (Wqs/τc )(τr/τc − 1) where τr is the only free parameter.
Simulation details in [39].

power P and the heat Q [44,45]:

1

〈(P − 〈P〉)2〉
[
〈P〉 + τc

d〈P〉
dτc

]2

� 〈Q〉
2T

. (12)

It holds for any cyclic protocol independently of the mi-
croscopic details, hence being valid for both thermal and
active cycles. As a straightforward extension of the ther-
mal case [30,31], the heat of active cycles equals the work
done by the particles on the thermostat, provided that the
forces {ṙi/μt, θ̇i/μr} and {√2Dtξi/μt,

√
2Drηi/μr} indeed

stem from the surrounding solvent, respectively as damping
and thermal fluctuating contributions:

Q =
N∑

i=1

∫ τc

0

[
ṙi

μt
· (ṙi −

√
2Dtξi ) + θ̇i

μr
(θ̇i −

√
2Drηi )

]
dt,

(13)

where the integral is interpreted in the Stratonovich sense.
The average heat 〈Q〉 is always positive, as a signature of the
irreversibility of the dynamics [17,32–36].

Substituting the dynamics (1) in (13), we get

〈Q〉 = 〈W〉 + v

μt

N∑
i=1

∫ τc

0
〈ṙi · ei〉dt, (14)

where we have used the chain rule u̇tot = [�̇∂� + λ̇∂λ]utot +∑
i[θ̇i∂θi + ṙi · ∇i]utot and the stationarity condition

〈utot (0)〉 = 〈utot (τc)〉. The expression of average heat in (14)
clearly differs from the standard first law of thermodynamics:
This is at variance with other studies of active cycles which
rather define heat by enforcing a relation in terms of work and
potential energy as in thermal systems [46–50]. Importantly,
our definition captures the fact that heat is dissipated even
when the potential is static (〈W〉 = 0), which stems from
the microscopic self-propulsion vei. Provided that most
particles evolve in the bulk region without being affected by
the confining potential ut , the average heat can be simplified

using
∑

i〈ṙi · ei〉 = Nv − μt
∑

i〈ei · ∇iut〉 ≈ Nv, yielding

〈Q〉 ≈ τc [Nv2/μt − 〈P〉]. (15)

It follows that (12) reduces to a constraint only between the
average and the variance of the power for any cycle time. In
particular, at maximum average power (d〈P〉/dτc = 0), we
get

〈P〉2

〈(P − 〈P〉)2〉 � Nv2/μt − 〈P〉
2T τc

. (16)

The uncertainty relation (16) remains valid beyond the spe-
cific case of varying volume and stiffness as long as (i) the
protocol consists in changing only the potential at boundaries,
and (ii) interactions between particles are neglected.

To characterize further the engine performances, we con-
sider the cycle efficiency E . Following standard definitions for
monothermal protocols [29,51,52], it reads

E = 〈W〉
〈W〉 − 〈Q〉 � 1, (17)

from which, by using (15), we deduce

E ≈ μt〈P〉
Nv2

. (18)

Considering a square protocol where � and λ vary linearly in
time, the efficiency and power measured numerically indeed
confirm (18), as shown in Fig. 3. The proportionality relation
(18) assumes that the bulk region is large compared with the
wall penetration length, which typically leads to a modest
efficiency: Most particles dissipate energy in the bulk without
contributing to the work produced at boundaries. Conversely,
reducing the relative bulk size compared with the typical pen-
etration length within the walls should increase the efficiency,
though the assumption of flat bulk profile, used when deriving
quasistatic work, can break down in this regime. Note that
increasing the system size along the direction parallel to walls
also leads to higher efficiency.

Importantly, the efficiency is maximum at finite cycle time,
in contrast with thermal engines where quasistatic protocols
always realize maximal efficiency [1]. This is because active
particles dissipate energy even when the potential is static,
so that the energy cost increases with cycle time and thus
one cannot afford to operate the cycle infinitely slowly. In
practice, the efficiency (18) only accounts for the transfer of
energy from particle motion to work extraction: It deliberately
discards energy exchanges at the basis of the microscopic
self-propulsion consuming fuel supply. Provided that fuel
consumption operates faster than the typical relaxation of
positions and orientations, it should not be affected by the
cycle time of external protocols. Then, the cycle still achieves
maximum efficiency at finite time even when accounting for
such a consumption.

In this Rapid Communication, we have provided a con-
sistent thermodynamic framework for cycles operating with
active matter. The approach for identifying the appropriate
cycle direction, which relies on evaluating the deviation from
Boltzmann statistics w(α1, α2) in (3), carries over beyond our
case study: It gives a recipe for evaluating and comparing
the properties of various cycles [46–50,53]. Importantly, we
demonstrate that one can extract work without changing any
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property of active particles, since it is sufficient to con-
trol only the potential at boundaries. Thus, our work offers
guidelines for future experiments of active engines, based on
manipulating either colloidal [3] or macroscopic [54] active
particles, where the properties of confining walls can be
varied externally. A potential realization of soft walls consists
in adding polymer brushes on surfaces, whose extension is
controlled for instance by ionic concentration [55,56]. Based
on our framework, it would be interesting to propose ideal
protocols which bound the cycle performances, analogously
to the Carnot cycle for thermal engines [1]. In stark contrast
with thermal cycles, which entail a trade-off between power
and efficiency [40,41,44,57], our cycles simultaneously reach

maximum power and efficiency. The challenge is then to find
optimal protocols, where the control parameters have poten-
tially a complex time dependence beyond linear behavior, to
increase efficiency and power at a finite cycle time.
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