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The lattice Boltzmann method (LBM) has been formulated as a powerful numerical tool to simulate
incompressible fluid flows. However, it is still a critical issue for the LBM to overcome the discrete effects on
boundary conditions successfully for curved no-slip walls. In this paper, we focus on the discrete effects of curved
boundary conditions within the framework of the multiple-relaxation-time (MRT) model. We analyze in detail a
single-node curved boundary condition [Zhao et al., Multiscale Model. Simul. 17, 854 (2019)] for predicting the
Poiseuille flow and derive the numerical slip at the boundary dependent on a free parameter as well as the distance
ratio and the relaxation times. An approach by virtue of the free parameter is then proposed to eliminate the
slip velocity while with uniform relaxation parameters. The theoretical analysis also indicates that for previous
curved boundary schemes only with the distance ratio and the halfway bounce-back (HBB) boundary scheme,
the numerical slip cannot be removed with uniform relaxation times virtually. We further carried out some
simulations to validate our theoretical derivations, and the numerical results for the case of straight and curved
boundaries confirm our theoretical analysis. Finally, for fluid flows with curved boundary geometries, resorting
to more degrees of freedom from the boundary scheme may have more potential to eliminate the discrete effect
at the boundary with uniform relaxation times.
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I. INTRODUCTION

Over the past two decades, the lattice Boltzmann method
(LBM) has been formulated as an effective mesoscopic simu-
lation tool for various hydrodynamic problems [1–6]. Unlike
the conventional computational fluid dynamics method, the
LBM does not solve the macroscopic variables but instead the
discrete distribution functions with the so-called “Collision
and Streaming” algorithm [7]. The kinetic nature and local
dynamics, which bring about the algorithmic simplicity, easy
boundary treatment, and natural parallelism, boost the grow-
ing popularity of the LBM to compute fluid flows that are
governed by the Navier-Stokes equations. Up to now, there
have been considerable kinetic boundary schemes as well as
the lattice Boltzmann (LB) equation models in the literature
[8,9]. The present discussion treats the special case of the
no-slip boundary condition at physical walls.

In the context of the LBM, the boundary condition is
responsible for determining the unknown distribution func-
tion at the lattice nodes nearest to the physical boundary
(i.e., boundary nodes). Among these boundary conditions for
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realizing no-slip walls, the bounce-back scheme is the most
common and simplest implementation. This scheme requires
that the outgoing particle distribution at the boundary node re-
flects back in the opposite direction [7]. However, it has been
recognized that the so-called discrete effects from boundary
schemes must be minimized to derive correct results for fluid
flows. This important topic has been extensively investigated
by many researchers. Ginzburg and Adler [10] analyzed the
boundary condition of the face-centered-hypercube LB model
and found that for the plane Poiseuille flow, the halfway
bounce-back (HBB) boundary condition produces a second-
order spatial error, which can be eliminated due to a special
relationship complied by some eigenvalues of the collision
matrix. He et al. [11] conducted an analysis of the discrete
effects of several boundary conditions with the Bhatnagar-
Gross-Krook (BGK) model and mathematically derived the
slip velocities generated in the bounce-back boundary condi-
tion. For the Poiseuille flow solved by the three-dimensional
BGK model, Prasianakis et al. [12] found similar results for
the discrete effect of the HBB boundary condition as the
two-dimensional case [11]. Following the procedure outlined
in Ref. [11], Meng et al. [13] recently implemented the
analysis for the BGK model with two discrete velocity models
and investigated the slip velocity produced by the modified
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bounce-back scheme [11]. To eliminate the nonphysical slip
velocity, they provided a strategy to supplement the missed
distribution function in the bounce-back scheme. Through the
developed Taylor expansion method [14,15], Dubois et al.
[16] also performed an analysis of the HBB boundary con-
dition within the multiple-relaxation-time (MRT) model for
the Poiseuille flow. They obtained the combined relations
of relaxation times for the HBB boundary scheme exact up
to third order. With the MRT model based on the lattice
kinetic scheme [17–19], Meng and Guo [20] analyzed the
HBB boundary scheme for the Poiseuille flow and deter-
mined the choice of the relaxation rate λ4 (or λ6) to realize
the no-slip boundary condition. However, we note that the
aforementioned boundary condition analyses are restricted to
flows with straight boundary geometry, which is located just at
the lattice node or halfway away from the boundary node. In
addition, it can be noticed that for inclined straight boundaries
or curved ones, the distance of a boundary node from physical
walls is changeable with its position and link lattice direction.
Therefore, the above derivation results for aligned flat walls
are theoretically invalid to yield enough accurate results when
dealing with curved boundaries.

For fluid flows with curved walls, there have been many
boundary conditions based on interpolating or extrapolating
the distribution function or the fluid velocity at boundary
nodes [9,21]. The exact location of the physical boundary
is embodied through its intersection distance ratio γ be-
tween boundary nodes and solid nodes. Although being more
accurate than the bounce-back treatment for curved walls,
some discrete effects still exist in these curved boundary
schemes [22–24]. When examining the mass leakage of
curved boundary conditions [25,26], Bao et al. [22] observed a
nonzero velocity in a hydrostatic flow system with the no-slip
boundary condition. Such slip velocities associated with γ

are also revealed by Oulaid and Zhang in their hydrostatic
simulations [23]. Unlike the mathematical expressions of He
et al. [11], they attributed the slip velocity over the boundary
walls to the violation of involved assumptions in the boundary
scheme. They further proposed a formulation of modifica-
tions to restrain the artificial velocity. Through the Chapman-
Enskog expansion and the Taylor expansion, Ginzburg and
d’Humières [27] theoretically studied the accuracy of some
existing boundary conditions and their multireflection bound-
ary scheme for curved no-slip walls. From the analysis for the
simple Poiseuille flow, it is definitely indicated that the numer-
ical error from the exact solution is affected by a combined
coefficient of two relaxation parameters plus the distance ra-
tio. In developing second-order volumetric boundary schemes
for no-slip walls, Rohde et al. [24] analyzed the discrete
effect of the bounce-back method for planar Poiseuille flow
and skew channel flow. They found that the numerical slip is
dependent on the combined effects of the relaxation time and
the weighting factor (equivalently, the distance ratio γ ). For
skew channel flows, their mathematical derivations show that
the slip velocity is influenced by the distance ratio γ varied
with lattice directions.

From the above available works, we can learn that besides
the relaxation parameter, the distance ratio at a boundary
node and certain associated linking lattice direction also
affects the discrete effects of curved boundary conditions.

Therefore, to eliminate the numerical slip from boundary
conditions for curved no-slip walls, the relaxation parameter
in the LBM should be changeable at different boundary nodes
with different distance ratios. However, these nonuniform
relaxation parameters make the collision operator anisotropic.
One conventional strategy for this issue is to approximate
the curved surface with zigzag lines, which is composed by
some points located halfway between the boundary and solid
nodes [28,29]. In this way the HBB scheme is executed at
boundary nodes for the no-slip boundary condition, and the
uniform relaxation parameter then can be determined with
the fixed γ = 0.5 [10,11]. However, such a treatment will
lose the fidelity of real curved geometry under coarse grid
resolutions, and more importantly, it can still lead to a nonzero
numerical slip on the solid wall [30]. Therefore, as noted
above, it is inspiring us to resolve the critical issue about the
discrete effects of curved boundary conditions: the relaxation
parameters are kept invariant while the numerical slip at
curved no-slip walls can be removed successfully.

The main objective of this work is, therefore, to keep the
relaxation parameters unchanged while the discrete effects on
boundary conditions are eliminated for fluid flows with curved
no-slip walls. Unlike previous curved boundary conditions,
the single-node boundary condition recently proposed by
Zhao et al. [31] contains another free parameter as well as the
distance ratio γ , which can bring many boundary schemes,
and hence is adopted in our analysis. As usually done in
previous studies, the planar Poiseuille flow is employed as the
benchmark problem for the mathematical analysis. We will
theoretically deduce the numerical slip associated with the
curved boundary scheme within the MRT model, and then
show how to eliminate the discrete effect with uniform re-
laxation parameters. The theoretical analysis is scrutinized by
simulating fluid flows with aligned and inclined planar walls
and curved walls. Additionally, the HBB boundary scheme
is compared with the adopted curved boundary condition
in terms of the slip velocity on curved no-slip walls. It is
unequivocally found that the present derivations produce the
most accurate results consistent with the analytical solution.

The paper is organized as follows. Section II briefly de-
scribes the MRT LB model for fluid flows. In Sec. III the
adopted single-node boundary condition is first analyzed, and
we subsequently show how to achieve uniform relaxation
parameters to remove the numerical slip. Some numerical
tests and comparisons are performed in Sec. IV, and finally
a summary is given in Sec. V.

II. MULTIPLE-RELAXATION-TIME LATTICE
BOLTZMANN MODEL FOR FLUID FLOWS

The working principle of the LBM is to track the discrete
distribution functions in time and space. The evolution of
these distribution functions conforms to the lattice Boltzmann
equation (LBE),

fi(x + ciδt , t + δt ) − fi(x, t ) = �i( f )(x, t ) + δt Fi(x, t ),

i = 0, 1, . . . , b − 1, (1)

where fi(x, t ) is the distribution function at position x and
time t moving with the discrete velocity ci, �i( f ) is the
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discrete collision operator, Fi is the forcing term, δt is the time
step, and b is the number of discrete velocities.

Our starting point is the LB model with the MRT collision
operator. This is due to the fact that the generalized MRT
model possesses more free relaxation parameters and can rem-
edy some numerical artifacts in the BGK model [10,11,27,32].
The MRT collision operator has the following form:

�i( f ) = −
∑

j

(M−1SM)i j
[

f j − f (eq)
j

]
, (2)

where M is a b × b transformation matrix, and S =
diag(τ0, τ1, . . . , τb−1)−1 is a diagonal relaxation matrix with
non-negative elements. f (eq)

j appearing in Eq. (2) is the equi-
librium distribution function given by

f (eq)
j = ω jρ

[
1 + c j · u

c2
s

+ (c j · u)2

2c4
s

− u2

2c2
s

]
,

j = 0, 1, . . . , b − 1, (3)

where ω j is the weight coefficient, cs is the lattice sound
speed, and ρ and u are, respectively, the density and fluid
velocity. To be accurately consistent with the macroscopic
equations, the discrete forcing term Fi in Eq. (1) should be
taken as [8]

F = M−1

(
I − S

2

)
MF, (4)

where I is the identity matrix, F = (F0, F1, . . . , Fb−1)T is a
b-dimensional vector, and F = (F 0, F 1, . . . , F b−1)T is given
from the external force G = ρa:

F i = ωiρ

[
c j · a

c2
s

+ ua :
(
cici − c2

s I
)

c4
s

]
. (5)

In this work, our analyses are carried out in the two-
dimensional case. Thus, we consider the D2Q9 (two-
dimensional nine-velocity) lattice model where the discrete
velocities are given by

ci := cei =
⎧⎨
⎩

c(0, 0), i = 0,

c(cos[(i − 1)π/2], sin[(i − 1)π/2]), i = 1, 2, 3, 4,√
2c(cos[(i − 1)π/2 + π/4], sin[(i − 1)π/2 + π/4]), i = 5, 6, 7, 8,

(6)

where c = δx/δt with δx denoting the lattice spacing.
Correspondingly, the sound speed cs = c/

√
3, and the

weight coefficients are taken as ω0 = 4/9, ω1−4 = 1/9, and
ω5−8 = 1/36.

In the framework of the MRT model, the transformation
matrix M maps the discrete distribution functions fi onto
the moment space m := M f where f = ( f0, f1, . . . , f8)T. It
can be constructed from the discrete velocities via the Gram-
Schmidt orthogonalization procedure. For the D2Q9 model,
one form of the matrix M with c = 1 is given by [33]

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

As a result, the discrete velocity moments of distribution
functions are expressed in the following order:

m = M f = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)T. (8)

As noted in Ref. [33], each moment has clear physical signifi-
cance: ρ is the density stemming from the zero-order moment;
e is related to the total energy stemming from the second-order
moment; ε is related to the energy square stemming from the
fourth-order moment; jx and jy are, respectively, the x and
y components of momentum stemming from the first-order
moments; qx and qy are, respectively, the x and y components
of energy flux stemming from the third-order moments; pxx

and pxy are, respectively, the diagonal and off-diagonal com-

ponents of the stress tensor stemming from the second-order
moments. The corresponding relaxation diagonal matrix S has
the following relaxation elements:

S = diag(τρ, τe, τε, τ j, τq, τ j, τq, τs, τs)−1. (9)

The fluid density ρ and velocity u = (u, v) are computed
by the distribution function

ρ =
∑

i

fi, ρu =
∑

i

ci fi + δt

2
ρa. (10)

Through the multiscale analysis as demonstrated in much
of the literature, the MRT model with the above equilibria
(3) and the forcing term (5) can derive the Navier-Stokes
equations:

∂tρ + ∇ · (ρu) = 0, (11a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · [2ρνS

+ ρζ (∇ · u)I] + ρa, (11b)

where p = c2
s ρ is the fluid pressure, S = [∇u + (∇u)T]/2

is the strain rate, and the shear and bulk viscosities are,
respectively, determined by

ν = c2
s

(
τs − 1

2

)
δt , ζ = c2

s

(
τe − 1

2

)
δt . (12)

The implementation of Eq. (1) can be decomposed into two
substeps:

Collision: f ′
i (x, t ) = fi(x, t )

−
∑

j

(M−1SM)i j
[

f j (x, t ) − f (eq)
j (x, t )

]
+ δt Fi(x, t ),

Streaming: fi(x+ciδt , t + δt ) = f ′
i (x, t ), (13)
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FIG. 1. Schematic of a curved-wall boundary along one single lattice direction. The thin solid line is the grid line, and the thick curved one
represents the boundary surface. White circles (◦): the fluid nodes; black circle (•): the intersection point of the boundary with the grid line;
square box (�): the solid node outside the computational domain.

where f ′
i (x, t ) is the postcollision distribution function. In the

framework of the MRT model, the collision step is usually
executed in the moment space first and then mapped to the
velocity space:

m′(x, t ) = m(x, t ) − S[m(x, t ) − m(eq)(x, t )] + δt F̂(x, t ),

f ′(x, t ) = M−1m′(x, t ),
(14)

where m′ := M f ′ with f ′ = ( f ′
0, f ′

1, . . . , f ′
8)T denotes the

postcollision moment, and m(eq) := M f (eq) and F̂ := MF =
(I − S

2 )F̂ are the corresponding equilibria and forcing term
in the moment space, respectively. Finally, it should be noted
that when the relaxation times are equal to the same τ , i.e.,
S = 1

τ
I, the MRT model will reduce to the BGK model.

III. SINGLE-NODE BOUNDARY CONDITION
FOR CURVED NO-SLIP WALLS

In addition to the LB models for the evolution of distri-
bution functions, boundary conditions play another important
role in simulating fluid flows by the LBM. For a more accurate
treatment of curved no-slip walls, the tunable distance ratio γ

is commonly included in various curved boundary schemes
rather than the HBB scheme in the literature [7–9]. However,
when the discrete effects are removed from these boundary
conditions, the relaxation parameters, as noted previously,
cannot be independent of γ at boundary nodes with different
lattice directions. To resolve this important problem, we will
analyze a single-node curved boundary condition within the
framework of the MRT model first, and then provide our strat-
egy to eliminate the discrete effect with uniform relaxation
parameters.

A. The single-node boundary condition for a curved no-slip wall

To adapt with the local computation of the LBM, our sub-
sequent analyses are based on single-node boundary schemes,

which involve only the information of the current boundary
node without invoking interpolation or extrapolation treat-
ments. Actually, for flows with curved boundaries or porous
flows, such local single-node boundary treatments would be
especially desired.

Note that the no-slip boundary condition with a curved
wall can be treated separately for each lattice direction along
a boundary node. For the sake of convenience, we consider
a single lattice direction ei from the intersected point xb to
the boundary node x f , as illustrated in Fig. 1. The curved
wall intersected with the link of boundary node x f and
solid node xr is depicted using the distance ratio γ as γ =
|xb − x f |/|xr − x f |. For the no-slip boundary condition on
the curved wall, the fluid velocity u(x, t ) obtained from the
Navier-Stokes equations at xb should equal the wall velocity
u(xb, t ). As displayed in Fig. 1, after a time step δt , the
distribution function fi(x f , t + δt ) at x f in lattice direction ei

is unknown and to be determined. To this end, the single-node
boundary condition developed by Zhao et al. [31] is adopted
to give the unknown distribution function fi(x f , t + δt ):

fi(x f , t + δt ) = 1 + l − 2γ

1 + l
fī(x f , t ) + l

1 + l
f ′
i (x f , t )

+ 2γ − l

1 + l
f ′̄
i (x f , t ) + 2

1 + l
ωiρ0

ci · u(xb, t )

c2
s

,

(15)

where ī results in eī = −ei, ρ0 is the mean density, and l is
a free parameter. In Ref. [31], l is introduced such that xb =
(x1 + x2)/2 for using the HBB scheme. To achieve the convex
combination in Eq. (15) for numerical stability, the parameter
l should obey the condition of max{0, 2γ − 1} � l � 2γ as
given in Ref. [31]. It can be seen that no information from
other neighboring nodes of x f is involved in this boundary
scheme. Under the diffusive scaling δt = ηh2, h = δx (η is
an adjustable parameter), the single-node scheme has been
justified to be second-order accurate in space [31].
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FIG. 2. Schematic of the flow and lattice arrangement with a
distance ratio γ . The wall boundary in the HBB boundary condition
is placed with γ = 1/2.

In previous boundary conditions for a curved no-slip wall,
most of them contain only the distance ratio γ as a variable
parameter. In contrast, the above adopted boundary scheme
contains another free parameter l as well as γ . Because of the
flexibility of l , numerous curved boundary conditions, includ-
ing some existing single-node schemes, can be generated. For
example, the HBB scheme [28] corresponds to l = 0, γ = 0.5
in Eq. (15). More importantly, as will be shown later, it
is the free parameter l that ensures the invariant relaxation
parameters when the discrete effect is removed.

B. Discrete effect on the single-node boundary scheme

We now examine the discrete effect of the boundary
scheme expressed by Eq. (15). To simplify the analy-
sis, we will consider a unidirectional incompressible flow
problem, i.e., the force-driven Poiseuille flow in a chan-
nel, which has been commonly adopted in previous stud-
ies [10,11,13,16,20,27]. This time-independent problem, as
shown in Fig. 2, has the following assumptions:

ρ = const, v = 0, ∂xφ = 0, ∂tφ = 0, (16)

where φ is an arbitrary flow variable. Without loss of gen-
erality, the planar wall is kept stationary, i.e., u(xb) = 0.
The driven force is assigned with a constant acceleration
a = (a, 0) along the x direction. The wall boundary locates
with a distance ratio of γ away from its nearest inner lattice
node at j = 0. Here j is the index of the grid line at y j =
( j + γ )δx. After the streaming step, the distribution functions
f0, f1, f3, f4, f7, and f8 at the layer j = 0 are known, while
the remaining inward ones, f2, f5, and f6, are unknown and
determined from Eq. (15):

f 0
2 = 1 + l − 2γ

1 + l
f 0
4 + l

1 + l
f ′0
2 + 2γ − l

1 + l
f ′0
4 , (17a)

f 0
5 = 1 + l − 2γ

1 + l
f 0
7 + l

1 + l
f ′0
5 + 2γ − l

1 + l
f ′0
7 , (17b)

f 0
6 = 1 + l − 2γ

1 + l
f 0
8 + l

1 + l
f ′0
6 + 2γ − l

1 + l
f ′0
8 , (17c)

where f 0
i = fi(y0) and f ′0

i = f ′
i (y0) with y0 = γ δx.

Before proceeding to derive the numerical slip from
Eq. (17), we can obtain the following formulas based on the
relationship between f and m:

f1 − f3 = 1

3
jx − 1

3
qx, (18a)

f5 − f6 = 1

3
jx + 1

6
qx + 1

2
pxy, (18b)

f8 − f7 = 1

3
jx + 1

6
qx − 1

2
pxy, (18c)

from which together with Eq. (10) we can have

jx = ρu − 1

2
δtρa. (19)

In a similar way, the postcollision distribution functions can
be expressed as follows:

f ′
1 − f ′

3 = 1

3
j′x − 1

3
q′

x, (20a)

f ′
5 − f ′

6 = 1

3
j′x + 1

6
q′

x + 1

2
p′

xy, (20b)

f ′
8 − f ′

7 = 1

3
j′x + 1

6
q′

x − 1

2
p′

xy, (20c)

where j′x, q′
x, and p′

xy stand for the postcollision moments.
Accompanied by the conditions in Eq. (16), we can obtain
that

j (eq)
x = ρu, q(eq)

x = −ρu, p(eq)
xy = 0, (21a)

F̂ 3 = ρa, F̂ 4 = −ρa, F̂ 8 = 0. (21b)

Then, on the basis of Eq. (14), the postcollision moments
j′x, q′

x, and p′
xy can be expressed as follows:

j′x =
(

1 − 1

τ j

)
jx + 1

τ j
ρu +

(
1 − 1

2τ j

)
ρaδt , (22a)

q′
x =

(
1 − 1

τq

)
qx − 1

τq
ρu −

(
1 − 1

2τq

)
ρaδt , (22b)

p′
xy =

(
1 − 1

τs

)
pxy. (22c)

Applying the unidirectional property of the flow, it sug-
gests that

f1 − f3 = f ′
1 − f ′

3. (23)

Further based on Eqs. (18a), (19), (20a), and (22), we can
obtain

qx = −ρux −
(

2τq − 1

2

)
ρaδt , (24)

from which combined with Eq. (19) we can derive that

j′x = ρu + 1

2
ρaδt , (25a)

q′
x = −ρu −

(
2τq − 3

2

)
ρaδt . (25b)

In order to obtain the numerical slip due to discrete effects,
we now turn to the single-node boundary scheme given by
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Eq. (17). First, based on the relationship between the distribu-
tion functions at j = 0 and j = 1 (see Fig. 2), we have

f 1
5 − f 1

6 = f ′0
5 − f ′0

6 , f 0
8 − f 0

7 = f ′1
5 − f ′1

6 , (26)

where f j
i = fi(y j ) and f ′ j

i = f ′
i (y j ). With the above results at

hand, we can deduce p0
xy from Eq. (26) that

p0
xy = τs[(2τs − 1)(ρu0 − ρu1) − 3ρaδt ]

3(2τs − 1)
, (27)

where u j = u(y j ). Furthermore, we can obtain the following
relationship as Eq. (17) is employed:

1 + l − 2γ

1 + l

(
f 0
8 − f 0

7

) + 2γ − l

1 + l

(
f ′0
8 − f ′0

7

)
= l

1 + l

(
f ′0
5 − f ′0

6

) − (
f 0
5 − f 0

6

)
. (28)

After some tedious manipulations, one can derive another
expression of p0

xy as

p0
xy = − τs

3γ
ρu0 + τs(1 + 4τq + 6l − 6γ )

6γ
ρaδt . (29)

Equating Eq. (27) and Eq. (29), one can reach the relationship
between u0 and u1,

u1 = Au0 + Baδt , (30)

where

A = 1 + γ

γ
,

B = − 6l (2τs − 1) + 12γ (τs − 1) − (1 + 4τq )(2τs − 1)

2γ (2τs − 1)
.

(31)

As for the considered Poiseuille flow, due to discrete effects
of boundary conditions, the LB results will deviate from
the analytical solution with a numerical slip. Thus, the fluid
velocity predicted between two flat plates, which are located
at y = 0 and y = H , can be written as

u j = 4uc
y j

H

(
1 − y j

H

)
+ us, (32)

where uc = aH2/8ν is the maximum sreamwise velocity,
and us is the slip velocity at the solid wall. By substituting
Eq. (32) at j = 0 and j = 1 into Eq. (30), we can obtain the
dimensionless slip velocity:

Us : = us

uc
= 2

3

δ2
x

H2
[−6γ 2 + 6γ (1 − 2τs) + 6l (2τs − 1)

+ (1 + 4τq)(2τs − 1)]. (33)

Here we comment on the results derived above. First, when
the wall moves with a velocity u(xb), by following the above
analysis procedure, the expression of the slip velocity can be
still derived as Eq. (33). Second, the slip velocity Us generated
in the boundary scheme (17) has a quadratic dependence on
δx/H . This clearly confirms the second-order accuracy of
the single-node scheme (15) as justified by Zhao et al. [31].
Third, when the parameter l is dependent only on γ , the
slip velocity Us degenerates to be related to the relaxation
times and the distance ratio γ , which is the current practice

in previous curved boundary conditions. From this viewpoint,
we now could have more degree of freedom to eliminate Us

than previous studies. The last and final point is that, as noted
in Ref. [31], the parameter l in Eq. (17) is such that xb =
(x1 + x2)/2 in the link along direction ei (see Fig. 1). Thus,
the free parameter l should be considered as a function of γ .

C. Elimination of the slip velocity

Now we focus on how to eliminate the slip velocity to
realize the no-slip boundary condition on curved walls. To this
end, we let Us = 0 in Eq. (33) and obtain that

Us = 0 ⇒ τq = 1 + 6l − 6γ + 6γ 2 − 2τs − 12lτs + 12γ τs

4(2τs − 1)
,

(34a)

l = 0, Us = 0 ⇒ τq = 1 − 6γ + 6γ 2 − 2τs + 12γ τs

4(2τs − 1)
.

(34b)

For convenience of description, the slip velocity under l =
0 is presented temporarily to correspond to previous study
results. In the LBM algorithm, it is known that the relaxation
times should be invariant at all the computational nodes.
Because the distance ratio γ is fixed in a flat wall boundary,
this requirement can be fulfilled for the relaxation time τq

determined from Eq. (34). However, for a curved wall, it
is noted that the distance ratio γ will change its value at
different boundary nodes along different lattice directions.
Consequently, if the discrete effects are removed from curved
boundary conditions, the relaxation time τq as determined
by Eq. (34b) should be inevitably changeable without the
parameter l in previous studies. In contrast, as revealed from
Eq. (34a), the relaxation time τq in the present analysis is
jointly determined by γ and l . The degree of freedom from l
would provide us with an opportunity to obtain uniform τq. In
the following, we will provide our detailed approach to realize
this point.

As noted above, the parameter l is a function of γ . For a
concrete flow problem, the relaxation time τs corresponds to
the fluid viscosity [Eq. (12)] and thus should be a constant.
Then the numerator of Eq. (34a) is denoted as P(γ ) = 6l (1 −
2τs) + 6γ 2 + 6γ (2τs − 1) + 1 − 2τs. If the relaxation time τq

is uniform and independent of γ , P(γ ) is forced to satisfy
dP(γ )

dγ
= 0, and thus we have

dP(γ )

dγ
= 0 ⇒ (1 − 2τs)

dl

dγ
+ 2γ + (2τs − 1) = 0. (35)

The solution to the above ordinary differential equation is

l = γ 2 + γ (2τs − 1)

2τs − 1
+ C, (36)

where C is a constant irrelevant to γ . By substituting the
solved l into Eq. (34a), it is interesting but unsurprising that
we obtain the uniform relaxation time τq:

τq = −1 + 6C

4
. (37)

In summary, as the parameter l is given by Eq. (36), the relax-
ation time τq can take uniform values as expressed by Eq. (37),
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and meanwhile the discrete effect of the boundary conditions
can be successfully eliminated, i.e., Us = 0. We would like
to note that the present treatment cannot be accomplished in
previous studies noted before for curved no-slip walls.

Within the BGK model framework, the slip velocity Us

with l = 0 is then expressed from Eq. (33) by taking τs =
τq = τ :

Us = 2

3

δ2
x

H2
[8τ 2 − 2τ − 12γ τ − 1 + 6γ − 6γ 2], (38)

which is similar to those derived in Ref. [24]. Correspond-
ingly, the relaxation time τ to eliminate the discrete effect can
be solved from Us = 0:

τ = 1 − 6γ +
√

84γ 2 − 36γ + 9

8
. (39)

From Eq. (39) we clearly see that to ensure Us = 0 without
the free parameter l , the relaxation time in Ref. [24] must be
changeable with the distance ratio γ .

As for the above results, we have the following remarks.
Remark 1. Equation (34) at γ = 1

2 determines the relax-
ation time τq to remove the slip velocity of the halfway
boundary scheme. Especially, when γ = 1

2 in Eq. (34b), the
relaxation time τq corresponding to the HBB scheme takes
the uniform value as

τq = 4τs − 1
2

4(2τs − 1)
, (40)

which is consistent with those given in Refs. [10,32].
Remark 2. From Eqs. (34b) and (39), one can find that

for a curved boundary scheme without the parameter of l , a
uniform relaxation time to ensure Us = 0 cannot be achieved
even by extending from the BGK model to the MRT model.

Remark 3. According to the stability condition required in
the MRT model [33], τq in Eq. (37) should be τq > 1

2 , and
thus the constant C should satisfy C < − 1

2 . In addition, to
ensure the stability of the boundary scheme (15) as given
in Ref. [31], the constant C should be further constrained
such that the parameter l in Eq. (36) locates in the region of
max{0, 2γ − 1} � l � 2γ .

It can be speculated from Eq. (34a) that as γ is near zero,
the relaxation time τq approximates to τq = − 1+6l

4 and hence
requires that l < −0.5. On the other hand, when γ → 0, the
parameter l approaches zero to match the stability condition
as mentioned above for the scheme (15). In this case, it seems
hard for the boundary scheme (15) to possess both the numer-
ical stability and the accurate implementation of the boundary
condition. For the particular case when l = 0, because of
the stability requirements that τs > 0.5 , τq > 0.5, one cannot
eliminate the slip velocity Us [Eq. (33)] rigorously as γ is
very small. In this paper, to maintain the balance between the
twofold points, we compulsively set the parameter l = 0 once
if l < −0.4 obtained from Eq. (36) at very small γ . It is noted
that such choice of l is empirically obtained in simulations of
the aligned Poiseuille flow, as will be shown later. As will be
shown in the following numerical tests, good predictions with
the analytical solution can be unambiguously achieved from
this compromised treatment. However, as l at small values of

γ is not so smaller than zero, the above-mentioned case will
not occur.

Finally, it is necessary to give some comments about the
elimination of discrete effects from curved boundary condi-
tions. First, although the relaxation time τq can be uniform in
the HBB boundary condition (γ = 1

2 ), the midway approxi-
mation of boundary nodes essentially degrades the accuracy
for general curved geometry. Under coarse grid resolutions,
the HBB scheme with Eq. (40) may bring undesired errors,
as shown elsewhere [30,32,34]. Second, owing to the local γ

at each boundary node, curved boundary schemes can over-
come the lost fidelity of real geometry in the HBB scheme.
However, if one seeks Us = 0 without the help of l , as clearly
shown above, the relaxation time τq must be changeable with
the distance ratio γ . From a precise point of view, the slip
velocity on the curved no-slip wall cannot be removed in the
HBB scheme and previous curved boundary schemes only
including γ . Third, the proposed treatment is theoretically
derived for the Poiseuille flow in an aligned channel. However,
it may be applicable to a general flow with curved walls
if a second-order polynomial can be assumed to capture
the velocity profile locally in the near-wall region. This as-
sumption is reasonable, and the resulting satisfactory results
have been demonstrated in some previous studies [24,27,32].
Finally, only by resorting to more degrees of freedom from
the relaxation parameter in the LBE (e.g., from the BGK
model to the MRT model), it is impractical to accomplish the
uniform relaxation time when eliminating the slip velocity on
curved no-slip walls. To resolve such a significant problem,
one available approach based on our analysis is by introducing
additional parameters into the curved boundary scheme.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will carry out some numerical tests
to validate the above theoretical analysis. All the considered
problems have analytical solutions, including the aligned and
inclined plane Poiseuille flow and the cylindrical Couette flow.
In the simulations, the single-node boundary scheme (15) is
employed for the no-slip boundary condition on solid walls.
To make comparisons with previous studies, some choices of l
besides the present derivation are investigated for the discrete
effects on boundary conditions. The slip velocity resulting
from HBB boundary scheme is also estimated for curved
walls.

For the D2Q9 lattice model considered, τρ and τ j corre-
spond to the conserved moments and are set as τρ = τ j = 1.0,

FIG. 3. Schematic of the Poiseuille flow between two aligned
straight walls.
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FIG. 4. Slip velocity as a function of γ under different l at
M = 20 and Re = 10. Solid lines denote the slip velocity derived
theoretically [Eq. (33)], and symbols denote the predicted slip veloc-
ity from numerical simulations.

τs is related to the viscosity and given by Eq. (12), and
τe and τε are specified as τe = 1.1 and τε = 1.0. As noted
elsewhere [10,32], the relaxation time τq affects the accurate
implementation of the boundary condition. It is determined by
Eq. (34), and concretely Eqs. (36) and (37) in our derivations,
to ensure Us = 0. Note that the slip velocity expressed by
Eq. (33) has a second-order dependence with δx. To clearly
expose the effect of the numerical slip, numerical simulations
are performed under relatively coarse grid resolutions in all
the considered problems.

Since the boundary scheme (15) is derived incorporating
the diffusive scaling [31], the lattice spacing δx and time step
δt have the relationship δt = ηδ2

x in the simulations, which are

given by

δt = ηδ2
x , η =

(
τs − 1

2

)
3ν

. (41)

A. Force-driven Poiseuille flow

The Poiseuille flow driven by an external force between
two straight plates is simulated in this subsection. This
benchmark problem has been extensively studied by many
researchers using the LBM. Two cases of boundary configu-
rations, i.e., aligned and inclined with the computational grid,
are successively considered in the simulations.

1. Aligned channel

The schematic of the flow is shown in Fig. 3, where the
driven force is along the x direction with a constant accelera-
tion a = (a, 0). The channel has the width of H , and its inner
flow is periodic in the horizontal direction. For this classical
problem, the analytical solution is expressed as

u = u(y) = 4uc
y

H

(
1 − y

H

)
, v = 0, (42)

where y ∈ [0, H], and uc = aH2/8ν is the maximum stream-
wise velocity. The dimensionless Reynolds number Re is
defined as Re = ucH/ν.

In the simulations, the lower and upper plates are away
from boundary nodes with distance γ δx, as illustrated in
Fig. 2. Further, with the grid number M spanning in the
vertical direction, the lattice spacing is determined as δx =
H/(M + 2γ ). The simulated slip velocities as a function of γ

under different values of l are shown in Fig. 4 where M = 20
and Re = 10. Here the relaxation time is τs = 1.2, ν = 0.01,
H = 1.0, and uc = 0.1. It is clearly seen that the numerical
predictions agree well with the theoretical results given by
Eq. (33). In addition, as exhibited in the figure, computations
of the boundary scheme (15) with l = 0 will collapse as
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FIG. 5. Velocity profiles predicted from the present analysis with different lattice sizes and (a) γ = 0.1, (b) γ = 0.9. Filled shapes denote
the results obtained under Us = 0, i.e., Eqs. (36) and (37) with C = −0.55. Empty shapes denote the results obtained under Us �= 0 with
C = −0.55. Concretely, Eq. (36) and τq = 100 are employed for the case of (a) while l = 0.6 and Eq. (37) for the case of (b).
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TABLE I. Relative errors of velocity u against different values of γ for Re = 1, 10, and 20. Two cases of l (l = γ , γ 2) are adopted for
simulations with the boundary scheme (15).

×10−3 Er (l = γ ) ×10−3 Er (l = γ 2)

γ Re = 1 Re = 10 Re = 20 Re = 1 Re = 10 Re = 20

0.05 60.49436 60.52825 60.63210 56.76711 56.79822 56.89366
0.2 54.28215 54.31003 54.39570 42.61098 42.63035 42.69035
0.4 43.69338 43.71264 43.77235 27.76724 27.77637 27.80561
0.6 31.22895 31.24099 31.27916 16.69213 16.69647 16.71184
0.8 17.50761 17.51428 17.53708 8.631314 8.634100 8.646526
1.0 2.979669 2.983320 3.006780 2.979669 2.983320 3.006780

γ > 0.5. The reason for this instability is ascribed to the
nonconvex combination of the distributions in the scheme at
l = 0 [31,35]. Noteworthily, for some other different Re and
M, similar agreement results with the analytical derivation as
shown in Fig. 4 are also obtained.

The discrete effects in the boundary condition are also
investigated. As has been derived and noted previously, due
to the uniform γ equipped in the aligned channel flow,
the slip velocity can be overcome for the HBB and curved
boundary scheme while with uniform relaxation time. Next,
we concentrate on the simulation results from the present
analysis, as depicted in Fig. 5. As seen from the figure, it
is clear that if the parameter l is given by Eq. (36) together
with τq by Eq. (37), the results of the boundary scheme (15)
can agree excellently with the analytical solution even with a
very small grid number (e.g., M = 4). In contrast, if l and τq

are not simultaneously determined from Eqs. (36) and (37)
to ensure Us = 0, some grid-dependent results will deviate
apparently from the exact velocity profiles. It should be noted
that similar results about the discrete effects also occur for the
HBB scheme and the curved boundary scheme with the only
contained γ .

Based on Re and Eq. (41), the Mach number Ma, which
factors in compressibility behavior of fluids, can be expressed
as

Ma = uc

cs
= Re

(
τs − 1

2

)
√

3(M + 2γ )
. (43)

To investigate the effect of Ma on the simulation results, the
following relative L2 error of fluid velocity is used,

Er =
√∑

x |ua(x) − un(x)|2√∑
x |ua(x)|2 , (44)

where ua and un denote the analytical and numerical results,
and the summation is over the entire gird points. Different
values of Ma at one γ is obtained via Eq. (43) by varying
Re in the simulations, where τs is set to 1.2 and M = 10.
Table I presents the relative errors Er computed with three
different values of Re (Re = 1, 10, 20) under two cases of l
(l = γ , γ 2). As exposed in the table, the relative errors of
velocity u increase with the increase of Re (and Ma). This is
because that as Ma increases, the compressible effect becomes
more prominent, and thus the errors in the simulations will
increase. For the same reason, it is seen that the relative errors
become larger as γ decreases to increase the Mach number.
However, as the simulations conform to the assumption of

low Ma number, good agreement results with the analytical
solution still can be obtained.

The stability of the adopted boundary scheme is also inves-
tigated as the free parameter l is given by Eq. (36). Figure 6
shows the dependence of l0 on γ and τs, where l0 is denoted
as l0 = γ 2+γ (2τs−1)

2τs−1 and then l = l0 + C. It is seen that as γ

approaches zero, l0 will be near zero and then l approximates
C. At this point, the requirement τq > 0.5 in Eq. (37) leads
to C < −0.5 and further l < −0.5. On the other hand, the
stability of the boundary scheme (15) limits l in the range
of max{0, 2γ − 1} � l � 2γ [31], which implies l → 0 as
γ → 0. Therefore, an artificial choice of l , as noted before,
should be used to compromise these twofold points at very
small γ . Furthermore, it is deduced that the value of C cannot
be far smaller than −0.5 to preserve numerical stability at
small γ . It is also observed that l0 will decrease as τs increases,
and with C < −0.5, l may thus become negative enough to
induce numerical unstability at a small γ . In addition, as τs

approaches 0.5 and γ is close to 1.0, l0 will be very large
such that l would be considerably beyond 2γ , which means
the possible instability. To see this analysis more clearly, we
check the work status of code computations with the proposed
Eq. (36) for l under different γ and τs. In the tests, the
values of γ range from 0.1 to 1.0, and six values of τs (τs =
0.505, 0.51, 0.52, 0.55, 0.6, 0.65) are used. The measured
results at Re = 10 and M = 20 are shown in Fig. 7, where
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12

1.50.6
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1 0.5

FIG. 6. Dependence of l0 on γ and τs. The variable l0 is defined
as l0 = γ 2+γ (2τs−1)

2τs−1 .
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FIG. 7. Work status of code computations against different γ and τs at Re = 10 and M = 20 for (a) C = −0.55 and (b) C = −0.6. The
filled circles mean that the computations can converge to the steady state, and the asterisks mean that the computations collapse.

the parameter point (γ , τs) is marked when the corresponding
computation can converge to the steady state or breaks down.
As noted above, it can be observed that at a small value of
γ , the computations tend to collapse as τs increases or C is
decreasingly smaller than −0.5. These observations indicate
us that to ensure stable code computations, τs cannot be far
larger than 0.5 and C far smaller than −0.5. During the
simulations, we found that the computations will collapse
once if l < −0.4, and in this case, we hence artificially set
l = 0 as noted before to balance the simulation accuracy and
numerical stability.

2. Inclined channel

In order to test our theoretical analysis for skew boundary
geometry, the Poiseuille flow in an inclined channel is further
considered. As sketched in Fig. 8, the flat walls are inclined
with respect to the underlying grid, and the inclination angle
is θ . Here x′ and y′ are the coordinates, respectively, parallel
and perpendicular to the inclined channel wall. Same as the
aligned channel, the flow in the inclined channel is periodic
from the entrance to the exit. The velocity profiles in the

FIG. 8. Schematic illustration of the inclined Poiseuille flow with
an inclination angle θ .

inclined channel can be obtained as

u = u(y′) = 4uc
y′

H

(
1 − y′

H

)
, (45)

where y′ ∈ [0, H] and uc = aH2/8ν.
In the simulations, the computational grid number spanned

along the x direction is fixed at N = 120. With the lattice size
MAB for the segment of AB, the total grid number in the y di-
rection is thus M = MAB + N tanθ . We performed several sim-
ulations with three inclination angles, tanθ = 0.2, 0.5, 1.5,
under different values of MAB. It is stressed that different
from the aligned case, the distance ratios γ for boundary
nodes herein are not fixed at the same value any longer. For
a boundary node with very small γ , if the computed value l
by such γ from Eq. (36) is smaller than −0.4, we will, as
noted before, set the corresponding parameter l to be zero in
the boundary scheme. Figure 9 delineates the velocity profiles
of the flow in the inclined channel at Re = 20. As clearly
seen from these figures, the numerical predictions from the
boundary scheme (15) with Eqs. (36) and (37), and even with
the artificial setting for the value of l at very small γ , are
all in excellent agreement with the analytical solution. The
results obtained by the HBB scheme with Eq. (40) are also
presented for comparison. Grid-dependent deviations from
the analytical solution are clearly observed. This indicates
that even if Eq. (40) is satisfied to yield uniform τq, the
discrete effects on the HBB scheme, as noted in Sec. III,
cannot be eliminated. The intrinsic reason for this is that
Eq. (40) adhered to the HBB scheme is derived based on the
half-way bounce assumption (γ = 1/2), which is valid for
aligned channel flows but fails for inclined cases. In contrast,
by employing Eqs. (36) and (37) for the boundary scheme
(15), the discrete effect can be significantly removed with a
uniform relaxation time τq even at a coarse gird resolution.

In theory, the adjustability of l in the scheme (15) can
yield infinite boundary schemes. However, as revealed in
Eq. (33), the discrete effects of these boundary schemes will
be affected by the values of l . To examine the effect of l on
the slip velocity, we take four choices of l (l = γ , 2γ , γ 2,
and γ 2 + γ ) as well as the value of l obeying our derivation
(36). Simulations under these cases of l are conducted on
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FIG. 9. Velocity profiles of the inclined channel flow under different lattice sizes at Re = 20. Filled shapes denote the results predicted by
the boundary scheme (15) with Eqs. (36) and (37). Empty shapes denote the results predicted by the HBB scheme with Eq. (40). (a) tanθ = 0.2,
(b) tanθ = 0.5, and (c) tanθ = 1.5.

the same NAB = 10 and τq determined with Eq. (37) together
with τs = τq and C = −0.55. As shown in Fig. 10, the flow
velocities predicted by the four considered l all depart from
the analytical solution, as expected. This is because, based
on our theoretical analysis, the four values of l cannot bring
uniform relaxation times τq to ensure the slip velocity Us = 0.
By contrast, the results with the parameter l determined by
Eq. (36), and even with several artificial zero values of l
for very small γ , show the best robust agreement with the
analytical solution. Furthermore, as the inclination angle θ

(tanθ ) increases, the deviations from the analytical solution
are more pronounced when the parameter l disobeys Eq. (36).

B. Couette flow between two concentric cylinders

To validate the present analysis for more complex ge-
ometries, the Couette flow between two rotating concentric
cylinders is investigated. This classical flow has been adopted
by many researchers as a benchmark problem with curved
boundaries [35–39]. The configuration of the flow is shown in
Fig. 11, where the inner and outer cylinders have radii R1 and
R2 and rotate with angular velocities ω1 and ω2, respectively.
For this problem at steady state, the tangential velocity uθ

satisfies the following simplified Navier-Stokes equation in
cylinder polar coordinates:

d2uθ

dr2
+ d

dr

(uθ

r

)
= 0, (46)

where (r, θ ) is the polar coordinate and r is the radial distance.
Under the boundary condition specified above, the analytical
solution for this problem can be solved as follows:

uθ (r) = ω2 − ω1β
2

1 − β2
r + ω1 − ω2

1 − β2

R2
1

r
, (47)

where β = R1/R2 and R1 � r � R2.
In our simulations, the two cylinders are placed at the cen-

ter of a square region resolved by M grid cells. Obviously, the
two curved boundary geometries both bring different distance
ratios γ at boundary nodes of the inner and outer cylinders.
When the very small γ brings l < −0.4 from Eq. (36), we
will employ the artificial value of l = 0 as done in the above
problem. As the rotation of the two cylinders is concerned,
there are three cases of cylindrical flows for the problem: a
stationary outer cylinder and a rotating inner cylinder (case
I); second, a stationary inner cylinder and a rotating outer
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FIG. 10. Velocity profiles of the inclined channel flow predicted under different cases of l at MAB = 10 and Re = 20. (a) tanθ = 0.5 and
(b) tanθ = 1.5.

063307-11



WANG, TAO, MENG, ZHANG, AND LU PHYSICAL REVIEW E 101, 063307 (2020)

FIG. 11. Schematic illustration of the circular Couette flow.

cylinder (case II); and, third, rotating inner and outer cylinders
(case III). A number of simulations for the three cases are
conducted to predict the velocity profiles with different values
of M and β. The kinematic viscosity ν and the corresponding
relaxation time τs are fixed at ν = 0.01, τs = 0.65. Different
values of β are obtained by changing R1 under a fixed R2 =
1.0. In Fig. 12 the numerical results obtained by the scheme
(15) with Eqs. (36) and (37) are shown together with those
from the HBB scheme with Eq. (40) for comparison. For the
three cases with different lattice sizes, one can see that the
HBB scheme with Eq. (40) yields apparent grid-dependent
discrepancies from the analytical velocity profiles. In contrast,
good agreements with the analytical solutions are found for
the simulation results by the scheme (15) with Eqs. (36) and
(37). This again strengthens and demonstrates our theoretical
analysis to eliminate the discrete effects of curved boundary
conditions.

The parameter l are also investigated on the discrete ef-
fects from curved boundary conditions. As done before, four
choices of l besides Eq. (37), i.e., l = γ , 2γ , γ 2, and γ 2 + γ ,
are examined, and τq is equally given by Eq. (37) with C =
−0.6. As has been studied by Schlichting [40], the ratio β has

a strong influence on the variation of the velocity profile for
case I, while for case II, its effect is negligible for the velocity
profile. Thus, we simulated the cylindrical flows of case I
where ω1 = 0.02, ω2 = 0. Figure 13 compares the simulated
velocities corresponding to the above values of l at M = 18.
In contrast with the good and robust predictions achieved for
the case that l is determined by Eq. (36), it is seen again as
in Fig. 10 that the numerical predictions with other choices of
l display obvious deviations from the analytical solution. The
reason for this is due to the fact that the velocity slip Us cannot
be removed for these cases of l .

V. CONCLUSIONS

In this work, the discrete effects on boundary conditions
for curved no-slip walls have been analyzed in the framework
of the MRT model for fluid flows. Different from previous
curved boundary schemes only containing the distance ratio
γ , a single-node boundary scheme which incorporates an ad-
ditional free parameter l besides γ is adopted in the theoretical
analysis. The results clearly show that unlike previous theoret-
ical derivations, the slip velocity is affected by the free param-
eter l combined with the distance ratio γ and the relaxation
times (τs and τq). With the aid of l , we further theoretically
provide a strategy to obtain the uniform relaxation time τq

while the numerical slip can be eliminated successfully. It is
also indicated that without the free parameter l besides γ , the
discrete effects cannot be removed with a uniform relaxation
time τq for previous curved boundary conditions and the HBB
boundary condition.

Several benchmark problems, including the aligned and in-
clined channel flows and the cylindrical Couette flow, are sim-
ulated to examine the theoretical analysis in this work. In view
of the numerical stability at very small γ , the artificial zero
value is assigned for l at some boundary nodes. Consistent
with the theoretical analysis, the numerical results predicted
by our derivation show the best and robust agreement with
the analytical solution even with a coarse grid resolution. In
contrast, for the HBB scheme and previous curved boundary
schemes which contain only γ , grid-dependent deviations
from the analytical solution are clearly observed for fluid
flows with curved boundaries.

(a) (b) (c)

FIG. 12. Velocity profiles of the cylindrical Couette flow for three cases: (a) β = 0.2, ω1 = 0.02, ω2 = 0; (b) β = 0.5, ω1 = 0, ω2 =
0.02; and (c) β = 0.8, ω1 = 0.02, ω2 = −0.01. Filled shapes denote the results from the scheme (15) with Eqs. (36) and (37) (C = −0.6).
Empty shapes denote the results predicted by the HBB scheme with Eq. (40).
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FIG. 13. Velocity profiles of the cylindrical Couette flow under (a) β = 0.2, (b) β = 0.5, and (c) β = 0.8 at M = 18.

The present study also demonstrates that when eliminating
the numerical slip on curved no-slip walls, adding free pa-
rameters to the boundary condition is an effective strategy to
ensure the uniform relaxation times. Actually, in addition to
the present work, we have conducted a similar theoretical
analysis on curved boundary conditions within the MRT
model based on the lattice kinetic scheme [17,20]. It is again
found that although more relaxation parameters are included
in the slip velocity derived from a curved boundary condition
containing only γ , the relaxation time τq still changes locally
with γ to eliminate the slip velocity.

The theoretical derivations in this work show that the slip
velocity of curved boundary conditions can be successfully
eliminated by the proposed treatment with uniform relaxation
parameters. For practical problem simulations, we would note

that the numerical stability should be considered for the
free parameter l at small values of γ . Finally, the present
analysis is limited to two-dimensional flow problems, while
its extension to the three-dimensional case would not be so
difficult. Such work will be addressed in the future.
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