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Numerical simulation of knotted solutions for Maxwell equations
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In this work, we use the finite differences in time domain (FDTD) numerical method to compute and assess
the validity of Hopf solutions, or hopfions, for the electromagnetic field equations. In these solutions, field lines
form closed loops characterized by different knot topologies which are preserved during their time evolution.
Hopfions have been studied extensively in the past from an analytical perspective but never, to the best of our
knowledge, from a numerical approach. The implementation and validation of this technique eases the study of
more complex cases of this phenomena; e.g., how these fields could interact with materials (e.g., anisotropic or
nonlinear), their coupling with other physical systems (e.g., plasmas), and also opens the path on their artificial
generation by different means (e.g., antenna arrays or lasers).
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I. INTRODUCTION

Hopfions are a family of localized solutions for the elec-
tromagnetic field Maxwell equations in which field lines are
closed, forming knotted topologies which are preserved when
evolved in time [1–3]. Beyond their intrinsic mathematical in-
terest, these solutions may also contribute to several branches
of physics. Some authors have proposed that they play a key
role in the phenomena known as ball lightning [4,5] or as ex-
otic quantum mechanical solutions that describe the electron
at a fundamental level, predicting some of its properties [6–8].

In the past, hopfions have been studied exclusively from
an analytical perspective [1,9–15]. However, to the best of
our knowledge, they have never been simulated numerically.
These simulations can be of interest for several reasons: first,
because hopfions are demonstrated to exist, not only from
purely analytical arguments, but from the direct numerical res-
olution of the elemental Maxwell’s curl equations. Addition-
ally, a validated numerical approach opens many possibilities
to study more complicated variants of these phenomena, e.g.,
the study of their interactions with anisotropic or nonlinear
materials, with other hopfions [16], their coupling with other
physical equations, or the possibility of generating them by
means of antenna arrays or lasers; a technique which was
proposed as a way for their physical realization but has not
been accomplished yet [1].

The accuracy assessment of hopfion numerical solutions is
a necessary step to address certain physical problems which
are not feasible analytically. To this end, in this work we use
the finite-difference time-domain (FDTD) method [17,18], a
proven and robust method which is ubiquitous in computa-
tional electrodynamics, and which is possibly the optimal ap-
proach given the spatial and time scales involved. The input of

the method is an initial known analytical hopfion solution and
the obtained numerical evolution results are then compared
with the expected analytical solution. Different metrics are
proposed as tools to asses the validity of this approach.

This work is organized as follows: first, in Sec. II we
give a theoretical background, focusing on the construction
of hopfions and their helicity conservation property. Second,
we briefly describe the FDTD method. Next, in Sec. III we
describe the propagation of the hopfion based on the numer-
ical simulations as well as the conservation of the helicity
as a benchmark. In this context, we also introduce a metric
to quantify the error in the propagation. Finally, in Sec. IV
we summarize the main conclusion of this study along with
possible extensions and applications.

II. BACKGROUND

A. Theory

Hopfions were proposed in 1989 by Rañada [11]. In that
work, he formulated a particular solution for Maxwell’s equa-
tion in which all field lines are closed and form a torus which
deforms over time while, at the same time, preserving its
topology. This result was then extended and categorized as
part of a family of solutions characterized by an arbitrary
number of mathematical knots, i.e., embeddings of a circle
in a three-dimensional Euclidean space [1,12]. In this regard,
Rañada’s torus has a circumferential core which within this
family of solutions corresponds to the knot known as the
unknot. However, with the exception of Rañada’s hopfion,
these generalized hopfion topologies did not preserve over
time. In 2013 Kedia et al. [10] brought to light an analytical
construction which allows us to formulate a whole family of
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knotted solutions for Maxwell’s equations, where Rañada’s
torus is a particular case.

It is widely accepted that light knots must be null fields as a
necessary condition to preserve helicity [10,19], whereas only
hopfions preserve the topology at every time [13,20,21]. The
properties of the null fields are

(1) Electric and magnetic fields are perpendicular at every
point: E⊥B.

(2) They have the same magnitude: |E| = |B|.
Assuming this hypothesis, we may apply Bateman’s method
to build null fields. First, we define the Riemann-Silberstein
vector F,

F = E + iB, (1)

where B and E represent the magnetic and electric fields,
respectively. Note that we use the electromagnetic natural
units in which the vacuum electric permittivity, magnetic
permeability, and speed of light (ε0, μ0, and c, respectively)
are equal to 1.

Bateman’s method proves that every Riemann-Silberstein
vector corresponding to a null field can be written as

F = ∇α × ∇β (2)

where α and β can be any complex functions as long as they
meet the following condition:

∇α × ∇β = i

(
∂α

∂t
∇β − ∂β

∂t
∇α

)
. (3)

Kedia et al. [10] found these specific expressions for α and β:

α =
(

r2 − t2 − 1 + 2iz

r2 − (t − i)2

)p

, (4)

β =
(

2(x − iy)

r2 − (t − i)2

)q

, (5)

where p and q must be positive coprime integers which lead
us to different kinds of knots. Note that the expressions (4)
and (5) have been obtained assuming an arbitrary distance (l0)
and time (t0 = l0/c) units which set the hopfion scale.

The knotness of a hopfion can be characterized by its
magnetic and electrical helicities, hB and hE respectively
[1,22], defined as

hB(B) =
∫

D
A · B d3r, hE (E ) =

∫
D

C · E d3r, (6)

where B = ∇ × A, E = ∇ × C, and D represents the domain.
Note that as the helicity is a measurable quantity, it must be
gauge independent.

Let us prove that the magnetic helicity is invariant under
gauge transformations, i.e., the magnetic helicity for A + ∇ f ,
noted as h̄B(B), is equal to hB(B). We compute h̄B(B) using
Eq. (6):

h̄B(B) =
∫

D
(A + ∇ f ) · B d3r = hB(B) +

∫
D

∇ f · B d3r

= hB(B) +
∫

D
∇ · ( f B) d3r −

∫
D

f ∇ · B d3r

= hB(B) +
∫

∂D
f · B dS = hB(B), (7)

where we have used ∇ · B = 0 and imposed the condition
that the magnetic field vanishes in the boundary of D, i.e.,
B|∂D = 0. Using a similar procedure, we obtain the result that
the helicity of the electric field is also preserved.

Now, we prove that hB and hE do not change in time for
null fields. The time derivative of the magnetic helicity is

∂t hB(B) =
∫

D
∂t AB d3r +

∫
D

A∂t B d3r

= −
∫

D
E · B d3r +

∫
D

A∇ × ∂t A d3r; (8)

then, we use [23]

∇(U × V ) = (∇ × U ) · V − (∇ × V ) · U (9)

and we set U = A and V = ∂t A. Thus, Eq. (8) reads as

∂t hB(B) = −
∫

D
E · B d3r −

∫
D

∇(A × ∂t A) d3r

+
∫

D
∂t A∇ × A d3r

= −2
∫

D
E · B d3r −

∫
∂D

A × ∂t A dS = 0, (10)

where we have used the conditions that the null fields fulfill
E · B = 0, that ∂t A = −E − ∇ϕ vanishes in the boundary ∂D
and

∫
D B∇ϕ d3r = ∫

D ∇(ϕB) d3r − ∫
D ϕ∇B d3r = 0. Using a

similar procedure we can prove that the electric helicity is
constant over time.

B. The finite differences in time domain method

The Yee FDTD scheme [17] numerically solves Maxwell
curl equations by replacing the space and time derivatives
by finite differences. Any unknown field component can be
advanced a time step using the ones at adjacent space posi-
tions. To obtain an optimized algorithm, fields are arranged
strategically on the center of the edges and faces of a cubic
cell of size �; a configuration known as Yee’s cell [17]. For
instance, to evolve the Ez component a time step �t we obtain
the following formula in free-space:

Ez

∣∣n̄

ī, j̄,k
= Ez

∣∣n̄−1
ī, j̄,k

+ �t

�

(
Hy

∣∣n

i, j̄,k
− Hy

∣∣n

i+1, j̄,k

− Hx

∣∣n

ī, j,k + Hx

∣∣n

ī, j+1,k

)
, (11)

where i, j, k are integer numbers identifying each cell and
time step at a time step n; barred indices indicate the addition
of a half step, e.g., ī = i + 1/2, and B = μH . For problems
solved in free space, like the ones addressed in this paper, this
scheme is demonstrated to have second-order error conver-
gence with respect to a � refinement [18]; i.e., the numerical
error decays as O(�2).

In order to compute a simulation, Maxwell’s equations
are propagated inside a finite box endowed with boundary
conditions. As our aim is to simulate a hopfion which is
assumed to be isolated in an infinite space, we must set
transparent boundary conditions absorbing all the energy ex-
iting the domain. The most widely used ones in FDTD, for
this purpose, are those of Berenger’s perfectly matched layer
(PML) method [24].

063305-2



NUMERICAL SIMULATION OF KNOTTED SOLUTIONS FOR … PHYSICAL REVIEW E 101, 063305 (2020)

FIG. 1. Analytical (first row) and computed (second row) electric
field lines for hopfion {1,1}. Dark lines correspond to the only field
line that does not close on itself.

The PML method employs a nonphysical reflectionless
anisotropic medium [25] surrounding the physical one, with
an impedance matched to that of the surrounded medium for
all angles of incidence and all frequencies.

The numerical PML is implemented as a finite-thickness
slab, backed by perfect electrically conducting conditions.
The conductivity σ inside it is usually taken with a polynomial
growth away from the physical-PML interface, according to

σ (d ) =
(

d

l

)m

σmax, (12)

with d being the distance from the interface and l the PML
thickness. The PML slab is demonstrated [18] to present a
normal arbitrarily small reflection coefficient R0, from which
σmax is found in turn by

σmax = − (m + 1) log10(R0)

2l
. (13)

All the cases described in this work were performed using
m = 2, R0 = 0.001, and ten FDTD cells of PML, each one
with the same spatial increment used for the interior medium,
� = 0.025 (l = 10�).

FIG. 2. For hopfion {1,1}, analytical (first row) and computed
(second row) magnetic field lines. Dark lines correspond to the only
field line that does not close on itself.

FIG. 3. For hopfion {2,3}, analytical (first row) and computed
(second row) electric field lines.

III. RESULTS AND VALIDATION

In this section, we study the time propagation of the numer-
ical hopfion solutions, cross-validated with analytical results.
The time-domain nature of the FDTD method allows us to
visualize different snapshots of the time evolution. The initial
time step is set to t = −1.5t0, the computational domain is a
cubic box of 17.5l0 × 17.5l0 × 17.5l0, with a spatial step � =
0.025 l0 and a temporal step of �t = 0.8�/

√
3. All the results

shown in this work were obtained using an Intel(R) Core(TM)
i7-4710MQ personal computer with 16 GB of RAM. We focus
our discussion on two types of hopfions obtained by setting
{p = 1, q = 1} and {p = 2, q = 3} in expressions (4) and (5).

A. Hopfion’s dynamics

First, we analyze the hopfion {1,1}, also known as
Rañada’s torus or the unknot. In Figs. 1 and 2 we show the
analytical and numerically computed electric and magnetic
field lines, respectively, at three different times. Let us remark
that the toruslike shapes of field lines are similar for the
electric and magnetic fields. Furthermore, the computational
results reproduce very accurately the analytical ones, and are
indistinguishable in the scale of the figure. On the other hand,
in Figs. 3 and 4 we show the analytical and computed hopfion
{2,3} solution for the electric and magnetic fields as a function
of time. As in the previous case, its topology structure, i.e.,
the trefoil knot, is preserved during the time propagation.
However, we see that the field lines of the simulated hopfion at

FIG. 4. For hopfion {2,3}, analytical (first row) and computed
(second row) magnetic field lines.
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FIG. 5. For hopfion {1,1}, analytical (first row) and computed
(second row) Poynting field lines. Dark lines correspond to the only
field line that does not close on itself. Red surfaces correspond to an
area in which the Poynting vector has a constant magnitude (half of
its maximum value).

t = 1.5t0 are closer than in the theoretical simulation; i.e., this
simulation tends to stick to the field lines. This error occurs
because of the complexity of hopfion {2,3}, whose structure
is more tangled than hopfion {1,1}. However, this error can be
suppressed by using a more dense computational grid. Even
so, this error is not remarkable, as we will discuss in more
detail in Sec. III B.

In Figs. 5 and 6 we shown Poynting vector field lines
for hopfions {1,1} and {2,3}, respectively. Interestingly, in
both cases we can appreciate that they correspond to the
unknot, even for hopfion {2,3}, whose electric and mag-
netic fields correspond to the trefoil knot. Moreover, for
both hopfions we may note that the torus defined by the
Poynting vector field moves from bottom to top of the
Z axis without deformation while the electromagnetic en-
ergy moves from top to bottom. The main difference we
appreciate is the energy distribution. If we now compare
the simulated and theoretical results we may see that they
are virtually identical, even considering that interpolations of
the simulation results were necessary to obtain these field
lines.

FIG. 6. For hopfion {2,3}, analytical (first row) and computed
(second row) Poynting field lines. Red surfaces correspond to an area
in which the Poynting vector has a constant magnitude (half of its
maximum value).

FIG. 7. Representation of normalized ∂t hB over time for hopfions
{1,1} and {2,3}.

At first glance, the knotness is conserved during the nu-
merical propagation, as in the theoretical solution. In order to
quantify the conservation of knotness, we now investigate the
helicity, which is related to the topology of the solution, since
it only takes a nonzero value if the topology of the magnetic
(electric) field lines are not trivial [8]. In particular we analyze
the time propagation of the magnetic helicity, hB, without loss
of generality, since the results are equivalent for hE . To do so,
we define the normalized derivative of hB as

(∂t hB)norm. = ∂t hB∫
D |E| · |B| d3r

. (14)

As we have proved in Eq. (10), the helicity associated with
the magnetic and electric fields is a conserved quantity in
a hopfion, thus, we expect that (∂t hB)norm. = 0 during the
propagation.

In order to validate our method, we plot (∂t hB)norm. as a
function of time in Fig. 7. Note that we compute (∂t hB)norm.
for an inset with a side of 10l0 centered in the computational
domain. For both cases we find that (∂t hB)norm. at t = −1.5t0
is slightly different from zero and continues oscillating before
converging to zero exponentially. This behavior at initial times
is associated with modes unsupported by FDTD, caused by
the discretization of the analytical hopfion used as the initial
condition. However, these modes do not play a role in long
term dynamics as FDTD makes (∂t hB)norm. converge to zero
after a few oscillations. This process takes around 2t0, which
is a short interval compared to the temporal scale associated
with the size of the simulation box.

B. Error propagation

In this section, we use the following metric to assess the
numerical error of our methodology:

Err(U )
∣∣n

i, j,k =
∣∣∣∣
Utheor

∣∣n

i, j,k
− Usim

∣∣n

i, j,k

Utheor

∣∣n

i, j,k

∣∣∣∣, (15)
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FIG. 8. For the hopfion {1, 1}, simulation error of the Ey component at the cross section Y = 0.

where U corresponds to a field, i, j, k to a point in the grid,
and n to the nth time step.

In Figs. 8 and 9, we show Err(U )|ni, j,k on the plane Y = 0
for the y component of E for the hopfions {1, 1} and {2, 3},
respectively. Note that we represent the error only for one
vector component in order to avoid any numerical artifact
which could be caused by the interpolation necessary due
to the staggered nature of the FDTD algorithm. This metric
evaluates the relative error with respect to the theoretical
value of each component at every point, which allows us to
obtain the percentage error. This is expected to be higher
where the theoretical value is zero. In these points, the most
tiny differences can cause the relative error to go up to
infinity. For visualization purposes, we have chosen to show
the numerical error for a component in which the theoretical
value is never zero, this being Ey at plane Y = 0. The figures
correspond to an inset of 10l0 from a computational domain
of 17.5l0.

First of all, we realize that the error for hopfion {1,1}
is smaller than for hopfion {2,3}, which can be attributed
to the numerical dispersion due to the higher spatial and
temporal variations of the latter solution. We observe that
the error propagates in every direction, being negligible
at t = −1.5t0 since it corresponds to the first iteration.
After that, the error increases, spreading around the cen-
ter of the grid, as we see for instance in Fig. 8(b). At
t = 1.5t0 the error is less that 2% for hopfion {2,3} and
even lower for hopfion {1,1}, with a maximum value
of 0.3%.

The numerical dispersion error has no impact
on the helicity, a basic property of hopfions, which
demonstrates the suitability of the FDTD to propagate
this type of solution. Specifically, the FDTD preserves
the component E · B by construction, making it an
ideal method to simulate null fields, as in the present
case.

IV. CONCLUSIONS AND OUTLOOK

We have demonstrated that FDTD is a viable alternative
to simulate different kinds of light knots. Specifically, taking
hopfion {1,1} as a benchmark, we have shown that the FDTD
is an efficient and accurate method to propagate this solution
of Maxwell’s equation. Using the same grid we have repro-
duced accurately the dynamics of a more tangled hopfion, in
particular hopfion {2,3}, which shows that FDTD is suitable
to simulate this kind of structure. Besides, we have shown
that the helicity variation converges to zero in a short time,
which is a proof that the topology is preserved during the
propagation. Furthermore, it is important to note that the
FDTD method would allow for improved results, if necessary,
by using a finer discretization.

This work opens new lines of investigation, since it paves
the way to investigate the hopfions beyond the analytical ex-
pressions (4) and (5), which are too complex to solve analyti-
cally in many physical systems. For example, the FDTD will
allow us to investigate their generation and confinement as
well as the interaction of hopfions among them or with other
structures such as metal, metamaterials or plasma, among
many others. Moreover, the numerical simulations can be
used to design experimental setups to produce hopfions in the
laboratory. Such experiments are of great interest, since they
may measure ball lightning, which has been hypothesized to
be hopfions or hopfions linked to plasma.
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