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Multibranch multifractality and the phase transitions in time series of mean interevent times
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Empirical time series of interevent or waiting times are investigated using a modified Multifractal Detrended
Fluctuation Analysis operating on fluctuations of mean detrended dynamics. The core of the extended multifrac-
tal analysis is the nonmonotonic behavior of the generalized Hurst exponent h(q)—the fundamental exponent in
the study of multifractals. The consequence of this behavior is the nonmonotonic behavior of the coarse Hölder
exponent α(q) leading to multibranchedness of the spectrum of dimensions. The Legendre-Fenchel transform
is used instead of the routinely used canonical Legendre (single-branched) contact transform. Thermodynamic
consequences of the multibranched multifractality are revealed. These are directly expressed in the language
of phase transitions between thermally stable, metastable, and unstable phases. These phase transitions are
of the first and second orders according to Mandelbrot’s modified Ehrenfest classification. The discovery of
multibranchedness is tantamount in significance to extending multifractal analysis.
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I. INTRODUCTION

The concept of extended scale invariance, referred to as
multifractality, has become a routinely applied but still inten-
sively developing methodology for the study of both complex
many-body systems [1–6] and nonlinear (e.g., chaotic with a
low degree of freedom) dynamical systems [7]. It is a rapidly
evolving and inspiring approach to nonlinear science in many
different fields, stretching far beyond traditional physics [8].

A. Remarks on multibranched multifractality

Only two sources of true multifractality have been
identified to date [9]: (i) the presence of a broad (long/heavy
tailed) distribution in the system and/or (ii) the presence of
long-term/range dependence (e.g., nonlinear long-term/range
correlations), leading to the hierarchical organization of many
scales. Moreover, there is a widespread belief that some
stochastic or deterministic nonlinear mixture of monofractals
should produce multifractals [7,10,11]. All of them can
create cascades that lie at the heart of multifractality [12,13].
The (true) multifractality occurs where fluctuations and/or
dependencies arise in many different spatial and/or temporal
scales under different scaling laws, i.e., defined by various
scaling exponents, which create a multiscaling phenomenon
[14]. Unfortunately, the physical origin of multifractality is,
in fact, rarely identified.
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The direct inspiration of the present work is drawn from
our earlier results presented in Refs. [15,16]. In these works,
we found left-sided multifractality on financial markets as a
direct result of nonanalytic behavior of the Rényi exponent.
We encounter left-sided multifractality when the spectrum of
dimensions (or singularities) extends only to the left of its
extreme value. This implies that the spectrum of dimensions,
which in the standard case is roughly the shape of a horseshoe
with arms turned down, has only the left arm. Previously, we
found that a specific complex, broad distribution of interevent
times is responsible for the existence of left-sided multifrac-
tality. It is a result of the mixture of distribution hypothesis
in finance [16] (and references therein). In the present work,
we suggest, however, that nonlinear long-term autocorrela-
tions bear the primary responsibility for the multifractality
observed.

Two essential elements of the multifractality considered in
the present work are: (i) the dominant left-hand asymmetry
of the spectrum of dimensions, i.e., the so-called left-sided
multifractality, favoring large fluctuations, and (ii) a concept
of multibranched multifractality. We deal with multibranched
multifractality when the spectrum of dimensions is multi-
branched where the concept of “branch” is to be further
defined below. We can now clarify that in this case, the term
“left-sided” refers to the dominant branch (i.e., the one on
which the contact point lies). A detail definition of the dom-
inant, main branch is given in Sec. III, where we illustrate
this concept in Fig. 5(b). Item (i) is discussed in Sec. I A
below, while item (ii) is discussed in Sec. I B. Therefore, in the

2470-0045/2020/101(6)/063303(19) 063303-1 ©2020 American Physical Society

https://orcid.org/0000-0002-5164-6931
https://orcid.org/0000-0002-4949-8781
https://orcid.org/0000-0002-5184-9202
https://orcid.org/0000-0002-1352-8897
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.063303&domain=pdf&date_stamp=2020-06-08
https://doi.org/10.1103/PhysRevE.101.063303


KLAMUT, KUTNER, GUBIEC, AND STRUZIK PHYSICAL REVIEW E 101, 063303 (2020)

present work, we are considering multibranched multifractal-
ity with dominant left-sided character.

Attention was first drawn to the existence of left-sided
multifractality by Mandelbrot and coauthors [17,18]. They
discovered the existence of a spectrum of dimensions with
only one, left-side branch (or arm). This left-sided multifrac-
tality was generated by the binomial cascade, which produces
singularity in the Rényi exponent or stretched exponential
decay of the finest coarse-grained probability.

Blumenfeld and Aharony [19] discovered an exciting
breakdown of multifractality in diffusion-limited aggregation
(DLA). They found strongly asymmetric left-sided spectra of
singularities depending on the size of the growing aggregate
in DLA. Their spectrum shows an apparent tilt to the left
as a signature of the phase transition to nonmultifractal-
ity.

Earlier, multifractals with the right part of the spectrum of
singularities not well defined (effect caused by a phase transi-
tion), were mimicked by a random version of the paradigmatic
two-scale Cantor set and also in the domain of DLA [20–23]
(and references therein).

B. Remarks on identification of multifractality

In recent years much effort has been devoted to reliable
identification of the true multifractality in real data. These
data are coming from various fields such as geophysics [10],
seismology [24] and hierarchical cascades of stresses in earth-
quake patterns [25,26], from atmospheric science and clima-
tology (e.g., turbulent phenomena [27,28]), financial markets
[11,29], neuroscience [30] (e.g., neuron spiking [31]), from
cardiac science or cardiophysics [32] (e.g., physiology of the
human heart [33] and references therein), and from further
works investigating complexity in heart rate [34,35] and phys-
iology [36]. However, the identification of true multifractality
is still a challenge.

Specifically, the verification of multifractality in empirical
data requires caution due to strong nonstationarities, such as
crashes [37], and also because of the presence of spurious
[38] and/or corrupted multifractality [39]. There are also other
difficulties with the identification of the true multifractality,
primarily when nonlinear properties of the time series are
studied. A spurious multifractality can also arise as a result
of slow crossover phenomena on finite timescales [40]. Fur-
thermore, pollution of a multifractal signal with noise (white
or colored) as well as the presence of short memory or peri-
odicity can significantly alter the properties of the multifractal
signal.

Further, the limited amount of empirical data available
and the resulting limited range of physical multifractality is
a serious technical challenge. The limited range and amount
of empirical data can be the source of finite size effects [41].
Fortunately, because multifractality is extremely sensitive to
these contaminating effects, they can be appropriately iden-
tified and eliminated or at least minimized. In our case we
deal with the situation where the role of the finite-size effect
is small compared to other factors.

Last but not least, identifying true multifractality is difficult
because we are not sure that all the sources of multifractality
have been discovered to date [9].

Clearly, the situation is complicated. Nevertheless, in our
work we demonstrate, by studying the time series of interevent
times, that the extraction of true multifractality is possible.
The above-mentioned difficulties in detecting true multifrac-
tality are a call to action for developing powerful multi-
fractality detection methods such as the method presented
here. We also aid under-researched interevent times analysis
methodologies gaining importance as an essential element of
the modern continuous-time random walk formalism [42–44].

C. Work purpose overview

The use of the empirical series of interevent times by us
is of a generic nature. It is a characteristic example of the
time series for which generalized Hurst and coarse Hölder ex-
ponents, as well as Rényi dimensions, exhibit nonmonotonic
behavior versus order of scale. The study of the consequences
of this nonmonotonicity is one of the exciting subjects of this
work.

Financial markets fluctuate, sometimes strongly by in-
creasing the risk level to maximize profit. This finds its
reflection in the interevent times’ patterns acting as a direct
reflection of the systems’ activities—their various properties
were studied in the last decade [1,15,16,45–50]. Among them,
the key observation is that quite often the dependence between
waiting times dominates that between spatial increments [51]
defining the process, which cannot be considered as a re-
newal process [52]. Without examining the role of interevent
times, we are not able to describe the dynamics of financial
markets—this examination is still at an early stage of de-
velopment. This situation is the motivation and inspiration
for our work, emphasizing the crucial role as mentioned
above of interevent times. It is essential, however, to realize
that the generic goal of the work is to significantly expand
the multifractal methodology to be capable of inferring true
multifractality. This capacity of our methodology achieved
here motivates us to label it as a “new face” of multifractality
and formalisms of its investigation. Indeed, our contribution
is primarily of such neoteric methodological character.

To this aim, we study empirical fluctuations of interevent
times and their mutual dependencies by relying on their abso-
lute central moments and autocorrelations of fluctuations’ ab-
solute values. In the case of financial markets, the fluctuations
are generally speaking a consequence of the double-auction
mechanism [53–55], where different types of orders compete
with each other. This approach allows ordering the fluctua-
tions according to the degree of their corresponding moments
(cf. the Lyapunov inequality in Ref. [56]). It is essential in a
multiscaling analysis in many branches of science.

The canonical multifractal detrended fluctuation analysis
(MF-DFA) is a reference approach. However, our approach
differs from it in several essential points. For example, we
correctly take into account the normalized partition function
(which is guaranteed to be nonnegative in our approach, as
it should be). This partition function is built based on the
normalized fluctuation function.

We reveal multibranched multifractality, where the first
and second-order phase transitions exist together with both
thermal stable and unstable phases. The stable phase is defined
by the positive value of the specific heat, and the unstable
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phase by its negative value. This is discussed in Sec. III and
illustrated in Fig. 5. It remains a challenge to find microscale
physical mechanisms (or at least surrogates) underlying multi-
branched multifractality discovered. We expect this discovery
to play a significant role in the future analysis of the real-time
series of different origins, e.g., geophysical, medical, and
financial time series.

More specifically, the nonmonotonic behavior of the gen-
eralized Hurst exponent which we found results in turning
points in the plot of the coarse Hölder exponent. It is directly
responsible for the multibranched spectrum of dimensions
and for the first and second-order phase transitions together
with thermally stable and unstable multifractal phases. For
the analysis of the multibranched spectrum of singularities on
the financial market, the application of the Legendre-Fenchel
contact transform is necessary (in a way complementary to
that used in Refs. [15,16]). This transform is a generalization
of the canonical Legendre contact transform routinely used to
extract usual single-branched multifractality from empirical
data. Generally speaking, the Legendre-Fenchel transform al-
lows many solutions, rather than the single solution permitted
by the Legendre transform. Interestingly in this context, a
slight nonmonotonic behavior of the generalized Hurst expo-
nent has recently been observed on the Bitcoin (BTC) market
for BTC prices [57].

It needs to be highlighted and motivated that we decided
to develop an analysis method belonging to the DFA group
(see review Ref. [6] and references therein) and not to the
coarse-graining group for reasons presented in Refs. [1,58].
These works compare the effectiveness of MF-DFA both
with wavelet transform modulus maxima (WTMM) and with
detrended moving average (DMA), two canonical representa-
tives of coarse-graining methods. Ref. [1] concludes, that in
the majority of situations in which one does not know a priori
the fractal properties of a process, choosing MF-DFA should
be recommended instead of the WTMM. However, Ref. [58]
corroborates that the DMA method gives an overestimation
of the Hurst exponent in comparison with the DFA technique.
However, our method involves preprocessing based on aver-
aging which is equivalent to the coarse graining approach.

It is worth paying attention to one more matter. For data
containing intrinsic trends, DFA methods are usually required.
The time series of intraday interevent times used in this work
contain trends of this type. Such intrinsic trends are, among
others, caused by the so-called lunch effect [59]. From these
increments, the profile, or walk, is built to which DFA tech-
niques can be directly applied, as was done, e.g., in Ref. [1].
More specifically, the extended MF-DFA method is developed
in this work, exploring the multibranched multifractal charac-
ter of long-term autocorrelated intraday time intervals. The
multibranched multifractal is a concept expressed in terms
of both continuous and discontinuous phase transitions and
summarized and termed as “the new face of multifractality.”

The organization of the work is as follows. In Sec. I, we
give the motivation of our work and its goal, indicating a
possibility of extension of our approach to research areas far
beyond the specific example of financial time series used here.
In Sec. II, the extension of the canonical MF-DFA is devel-
oped and applied to the description of the to date insufficiently
exploited empirical time series of interevent times. In Sec. III,

we reveal the existence of the first and second-order phase
transitions in this type of multifractality and examine the
main thermodynamical consequences. Finally, in Sec. IV, we
discuss critical results of the work, indicate their importance,
and summarize the whole work. The main body of the work is
supplemented with Appendices A through H, providing addi-
tional discussion of the selected points deserving attention.

II. NORMALIZED MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS

The main subject of this work is the analysis of the true
multifractality generated by the nonmonotonic behavior of the
generalized Hurst exponent. This nonmonotonicity manifests
itself in the multibranch spectrum of dimensions. Specifically,
the multibranch spectrum of dimensions we identify belongs
to the class of multifractality with a dominant left-sided
branch.

Our approach combines statistical-physical analysis, based
on the generalized statistical-mechanical partition function,
with that based on the multiscale fluctuation function. It takes
us from the absolute moments of arbitrary orders through the
partition function to multifractality.

The central role in the analysis we develop is taken by
the generalized Legendre transform—the Legendre-Fenchel
transform, which is also referred to as the generalized contact
transform. The weak nonmonotonic q-dependence of the
generalized Hurst exponent was already observed in both
real and spurious multifractality contexts in Ref. [60] (and
references therein); however, its consequences have not been
studied to date.

Further, we develop a normalized extension to the standard
multifractal detrended fluctuation analysis (NMF-DFA) ready
for the study of both stationary and nonstationary detrended
time series. In particular, we allow that after detrending, time
series may still contain some higher-order nonstationarities
which are then properly addressed. This is possible due to the
consistent definition of the probability of fluctuations intro-
duced in Sec. II B by Eq. (6). This probability of fluctuations,
to be referred to as escort probability, is more adequate than
the nonnormalized and sometimes even negative probability
given by Eq. (12) in Ref. [9].

We are dealing only with the analysis of detrended absolute
values, i.e., those bereft of dichotomous noise. The motivation
is that these types of nonlinear quantities can be long-term
autocorrelated as opposed to the (usual) bilinear autocorre-
lations. In our case, the autocorrelations which are studied
point to the existence of a distinct antipersistent structure of
fluctuations behind them. We hypothesize that this structure
reflects the fact that after a period of high market activity, there
is a period of significantly lesser activity and so on in an alter-
nating fashion, leading to the effect of volatility clustering.

A. Intraday fluctuations of interevent times:
Preprocessing of our formalism

The entire time series of interevent times is naturally
divided into Nd trading days or sessions of equal duration T .
Durations of weekends are not included in the time series. The
end of the trading week is on Friday and the trading week
starts again the following Monday. Similarly, the duration
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FIG. 1. Schematic diagram defining interevent times, time win-
dows, and corresponding means. The mean for ith time window,
[i, i + 1[, 1 � i � s (of i-independent width �) is given by the
corresponding time average �t ν

i . We define the interevent time �t ν
i,l

as belonging to ith time window [i, i + 1[, when at least the left
border of interevent time �t ν

i,l belongs to it (obviously, we have 1 �
l � nν

i ). Hence, the interevent time between the final transaction on
Friday and the first transaction on the following Monday is assigned
to the last time window on Friday. Similarly, we exclude weekend
closing time and nights between successive trading days. Focusing
on ranges of s � 1 (keeping nν

i � 1 for any i and ν) we can write
�t ν

i ≈ �/nν
i . In the particular example of this schematic diagram,

nν
i = 4. Thus, our time series consists of local average values shown

by red (online) time intervals in the enlarged bottom plot of the time
interval �.

times of night breaks are not included. Further, each trading
session is divided into s nonoverlapping daily time windows
of equal duration �. The dimensionless number s defines the
daily timescale in our approach. Hence, we have T = s�,
where both Nd and T are independent of the scale s.

The rudimentary Fig. 1 shows the construction of the
interevent time series in detail. Our time series consists of
local average values �tν

i defined below—red (online) time
intervals shown in the enlarged bottom drawing of the time
interval �. In the original work introducing the MF-DFA [9],
the authors used a different notation because the entire time
series was there segmented differently.

Our division of the time series essentially distinguishes
our approach from the standard MF-DFA used so far (cf.
Appendix A). The time series we use have double indexation
compared to their indexation under the canonical MF-DFA
method. This is the basic difference between our method and
the standard canonical MF-DFA. We consider its important
consequences in Sec. II B. These consequences relate to intra-
day properties of time series.

The intraday (nonlinear) autocorrelation of the absolute
additively detrended profile is defined for a single trading day
ν, 1 � ν � Nd , and within a timescale s,

F 2( j; ν, s) = 1

s − j

s− j∑
i=1

|Uν (i) − yν (i)|

×|Uν (i + j) − yν (i + j)|, ν=1, . . . , Nd , (1)

where dimensionless index i(=1, 2, . . . , s) enumerates the
current time window of length �. The dimensionless index
j(=0, . . . , s − 1) defines time-step distance or the number
of time windows of width � between absolute deviations
(detrended fluctuations) |Uν − yν | present at day ν at time
windows i and i + j; function yν is the detrending polynomial,
while daily profile Uν is defined by Eq. (3) below.

As is evident from Eq. (1), we take into account only
intraday absolute autocorrelations, separately for each day.
This implies that detrending polynomials are fitted separately
for each trading day of a fixed duration time for any timescale.
This is an essential difference from the canonical MF-DFA,
where the duration times of the segments change with the
timescale. Our way of detrending avoids possible artificial
fluctuations at the ends of any segment inside trading days.
The average values obtained within the statistical ensemble
of the trading days are subject to a relatively small statistical
error. This approach allows us to analyze the subtle effect of
the nonmonotonic characteristics of multifractality.

Note that

yν (i) =
M∑

m=0

Am
ν iM−m, M � 0, (2)

where in all our further considerations we assume M = 3.
This degree of the polynomial enables us to reproduce the
inflection point present in the overwhelming majority of em-
pirical daily profiles, Uν, ν = 1, 2, . . .—see, for example, the
red empirical curve (small red triangles) in plot Fig. 2(b). This
is the result of (intraday) lunch effect—cf. plot Fig. 2(a). The
situation is even more complicated, because we observe two
rather than one maximum at lunchtime. We emphasize that
the detrending polynomial is fitted to the every-single-day (or
νth day) empirical data individually. Therefore, we identify
single-day trends, which allows us properly to analyze single-
day fluctuations.

For j = 0 the detrended autocorrelation function (in such a
case usually referred to as the detrended self-correlation func-
tion) becomes our “detrended fluctuation function.” Hence,

the simplified notation F 2(ν, s)
def.= F 2( j = 0; ν, s) can be

used.
The single-day profile Uν (i) for νth day at time window

number i is given in Eq. (3) by the corresponding difference
between subsequent multiday profiles Y s. We assume that
this difference equals the cumulation of the mean interevent
times, �tν

i′ , over time windows (indexed by i′) within a single
ν-day. The precise definition of this mean, i.e., the mean
for ith time window, [i, i + 1[, 1 � i � s, (of i-independent

width �) is given by the corresponding time average �tν
i

def.=
1
nν

i

∑nν
i

l=1 �tν
i,l , of interevent times, �tν

i,l , where nν
i � 1 is the

number of subsequent interevent times belonging to time
window number i and trading day number ν = 1, 2, . . . , Nd .
Please refer to Fig. 1 for illustration.

The mean interevent times, �tν
i′ , are displayed, in the form

of a random comb in Fig. 2(a) (in our considerations we deal,
in fact, with �tν

i′ � �). Hence, we can write

Uν (i) = Y [(ν − 1)s + i] − Y [(ν − 1)s] =
i∑

i′=1

�tν
i′ , (3)
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FIG. 2. Intraday patterns for the 14th January 2011 (ν = 9, Friday): typical dependencies of significant characteristics vs. time window
number i. (a) The basic empirical quantity in the form of hierarchical comb-like structure, that is the mean interevent times �t ν

i , i = 1, 2, . . . , s
(see Fig. 1 for the definition). (b) The empirical single-day profile Uν (the monotonically increasing fluctuating (red online) curve consisting
of small inverted triangles) defining a formal, directed random walk, together with the fitted smooth thin black curve. This curve represents
the best fit by the third-degree polynomial, yν , well reproducing the inflection point present in the profile. This plot has been supplemented
with the plot (c) clearly showing the fluctuating hierarchical structure of the absolute deviations |Uν (i) − yν (i)| vs. i. Horizontal dashed lines
roughly mark their amplitude levels.

where for the first trading day (ν = 1) we have Y [(ν −
1)s = 0] = 0 and Uν=1(i) = Y [i] = ∑i

i′=1 �tν=1
i′ . Therefore,

the multiday profile Y and hence the single-day profile U
are based on mean interevent times, �tν

i′ , instead of actual
interevent times, �tν

i,l themselves. In this sense, these profiles
are obtained through a preprocessing stage of coarse-grain
type.

Notably, Eq. (3) makes it possible to determine the multi-
day profile recurrently,

Y [(ν − 1)s + i] =
ν−1∑
ν ′=1

s∑
i′=1

�tν ′
i′ +

i∑
i′=1

�tν
i′ , ν � 2. (4)

Equations (3) and (4) can be formally interpreted in terms
of the directed (persistent or climbing) random walk—see the
monotonically increasing empirical (red online) broken curve
drawn in the plot in Fig. 2(b). If there were such a need
(e.g., generalized Hurst exponent would be close to zero), then
it would be possible to integrate the time series before the
procedure, similarly to what is done in the canonical MF-DFA
method (cf. Eqs. (7) and (8) in Ref. [9]).

Figure 2 is intended to show the intraday structure of the
empirical data. Especially the absolute detrended data shown
in the plot in Fig. 2(c) well illustrates the leading but a bit
noisy hierarchical structure of amplitudes. The levels of this
structure are roughly expressed by the series of amplitudes
20×20, 20×21, 20×22—the dashed horizontal lines mark
their levels.

The typical intraday pattern of single-day mean interevent
times, �tν

i , of transactions falling into the ith time window
(i = 1, 2, . . . , s) of a given day (ν = 1, 2, . . . , Nd ) for fixed ν

is shown with respect to i in Fig. 2(a). Other plots in Figs. 2(b)
and 2(c) are also plotted versus i. Data bursts and explosion of
spikes containing hierarchy of singularities are seen well. If
such a fluctuation structure were not there, then we would not
be able to identify multifractality.

To extract the intraday structure of fluctuations for a given
day we fitted the ν-dependent polynomial yν (i) given by
Eq. (2) [see the black curve in plot Fig. 2(b)]. This approach is

more subtle than the one based on the ν-independent average

over statistical ensemble of days 〈�ti〉 def.= 1
Nd

∑Nd
ν=1 �tν

i .
For all the trading days the patterns shown in the plots

in Figs. 2(a) and 2(c) look similar, although the correspond-
ing local minima and maxima are somewhat differently dis-
tributed having slightly different amplitudes.

All the plots in Figs. 2 and 8 are prepared for a typical time
window of length � = 300 [sec]. Hence, the daily total num-
ber of time windows s = 28 200/300 = 94. This is because
the duration of a daily stock market session of the Warsaw
Stock Exchange, which we consider here, equals T = 7 [h] 50
[min] = 28 200 [s]. It is worth knowing that the mean number
of transactions within a single time window � = 300 [s]

is about 〈〈n〉〉 def.= 1
Nd

1
s

∑Nd
ν=1

∑s
i=1 nν

i = 20 as the empirical
mean time distance between subsequent transactions approx-

imately equals 〈〈�t〉〉 def.= 1
Nd

1
s

∑Nd
ν=1

∑s
i=1 �tν

i = 15 [s] and

� = 〈〈n〉〉〈〈�t〉〉.
Thus, we introduce the averaging over both timescales: in-

traday s and interday Nd ones. The independent detrending of
time series segments in the canonical Multifractal Detrended
Fluctuation Analysis, we replaced by detrending on a daily
timescale combined with averaging over days. In this way,
we significantly reduce the statistical error of the results. The
triple average introduced above can be a deterrent, but is easily
implemented being the repeated simple arithmetic mean.

It is worth noting that the local clusters of spikes around
their local maxima are visible in Fig. 2(a) (to a good approx-
imation) four times a day thus not only close to lunchtime.
These clusters are separated by the corresponding three in-
terludes of high system activity, where the shortest lengths
of interevent time intervals are present. Therefore, approxi-
mately every 100 min [=20 time windows×� (=5 min)] we
see spikes of locally longest lengths. Such a long-term pat-
tern constitutes one of the dominant sources of the volatility
clustering effect within the mean interevent time series. It is
a likely result of the existence of long-range autocorrelations
between subsequent interevent times (cf. [51] and references
therein). These autocorrelations we presume to be the source
of the true multifractality investigated in this work.
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Figure 2 demonstrates the preparatory (preprocessing)
stage of our multifractal procedure. Not only this stage differs
in essence from the corresponding preprocessing stage of the
MF-DFA, but as will become apparent below, other stages also
show significant differences. The results presented in Fig. 2
(and also in Fig. 8 in Appendix B) constitute the rationale for
the subsequent stages of the procedure.

B. Nonmonotonic multiscale generalized partition function

The generalized q-dependent or q-filtered statistical-
mechanic partition function can be defined as usual by the
sum

Zq(s)
def.=

Nd∑
ν=1

[p(ν, s)]q; (5)

hence, Zq=0(s) = Nd and it is independent of s. This indepen-
dence and division of the full time series into days distin-
guishes our approach from the multifractal analyzes used so
far. It is an important modification which uses the intraday
scaling and fluctuations within the statistical ensemble of
days.

The probability p(ν, s) present in Eq. (5) specifies the
chance of occurrence of a specific fluctuation value for a
given day ν within the scale s. This probability, which could
be referred to as escort probability as it is escorting the
fluctuations, is constructed in the form

p(ν, s) = [F 2(ν, s)]1/2

Norm(s)
, Norm(s) =

Nd∑
ν=1

[F 2(ν, s)]1/2, (6)

that is, it is based on the fluctuation function defined
by Eq. (1) for j = 0. Hence, the mean value, 〈p(s)〉 =
1/Nd

∑Nd
ν=1 p(ν, s) = 1/Nd , is fixed (as a result of normaliza-

tion). An even more refined approach based on a q-zooming
escort probability has been established in Ref. [61].

We introduce the scaling hypothesis in the usual approxi-
mate form [9], which we verify in Fig. 3,

Nd∑
ν=1

[F 2(ν, s)]q/2 ≈ Nd Aqsqh(q), (7)

where the prefactor Aq, and the generalized Hurst exponent
h(q) are s-independent quantities. Besides, by putting q = 0,
one directly obtains the constrain Aq=0 ≈ 1 from the scaling
hypothesis Eq. (7).

Note, that Eq. (7) allows the presentation of Norm(s)
[given by the second equality in Eq. (6)] in the form

Norm(s) =
Nd∑

ν=1

[F 2(ν, s)]1/2 ≈ Nd Aq=1sh(q=1), (8)

by putting q = 1.
Indeed, Appendix C uses Eqs. (5)–(8) for the presentation

of significant properties of Zq(s) and related quntities. The
point is that with Eqs. (5)–(8), we obtain a scaling exponent
τ (q) defined with Eq. (C5). Alongside the generalized Hurst
exponent, this is another pillar of multifractality. We consider
exponents h(q) and τ (q) as well as other multifractality
characteristics below.

FIG. 3. Plots of the function Fq(s) [defined by Eq. (10)] vs. s
within the log-log scale for the extended range of −10 � q � 10.
Vertical dashed lines define the common region of the best fit of
all the straight lines—the first one at s = 24 or 19 min 35 s and the
second one at s = 120 or 3 min 55 s. The upper and lower sloped thin
black straight lines define the boundaries (here, between 0.80 and
1.07, still far beyond statistical errors) in which the slope of the fitted
lines is included. Empirical curves (marked by small circles) are
indexed from below by successive values of q shown in the legend.
Between q = −5 (straight brown (online) line fitted to the empirical
data) and q = 5 (the fitted straight red (online) line) lie straight lines
(purple and green (online)) fitted to the empirical data, the slope of
which is slightly greater than the slope of the two mentioned above
lines. This indicates nonmonotonic dependence on q of the slope
considered.

C. Legendre-Fenchel transformation
and multibranched multifractality

In this section, we carry out our multibranched multifractal
analysis on the example of the time series of interevent times.

Equation (7) can be written in an equivalent form more
convenient for application to empirical data,

lnFq(s) ≈ h(q) ln s + B(q), (9)

where q-dispersive

Fq(s)
def.=

{
N−1

d

Nd∑
ν=1

[F 2(ν, s)]q/2

}1/q

(10)

and B(q)
def.= q−1 ln Aq.

Using the dependence of Fq(s) on the scale s (see Fig. 3 for
details) for values of q from its extended range (that is −10 �
q � 10), we have determined all the essential multifractal
characteristics. These are: the generalized Hurst exponent
h(q), its spread �h(q) = h(−q) − h(q), significant prefactor
B(q) present in Eq. (9) related to reduced Rényi information,
related signatures of multifractality such as Rényi scaling
exponent τ (q), Rényi dimensions D(q), and the coarse Hölder
exponent α(q) (see plots in Fig. 4 for details). In the range of q
considered, we observed nonmonotonic behavior of the slopes
of the respective curves versus q which is crucial for this work.

The fitting in the narrower area of 10 � s � 120 is char-
acterized by a small statistical error that makes it possible to
observe the nonmonotonicity mentioned, in which the statis-
tical error of fitting is substantially lower than the statistical
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FIG. 4. We present the q-dependence of key empirical characteristics of multifractality. The nonlinear dependence of these characteristics
on q is visible in all the plots (black curves, while dotted curves designate corresponding one-standard-deviation error bounds; in addition,
fragments [B1, A1] and that starting from point C of the curve α(q) are blue). Plots (a)–(f) present dependence on q of the generalized Hurst
exponent h(q), its spread �h(q) = h(−q) − h(q), prefactor B(q) related to reduced Rényi information, Rényi scaling exponent τ (q), Rényi
dimensions D(q), and the coarse Hölder exponent α(q), respectively. The straight vertical dashed lines a and c define the range of q-support
located between the absolute maximum A1 and absolute minimum C of curve α(q) shown in plot (f) vs. q. A similar line b indicates the location
of the second minimum B1 of the curve α(q). Analogous lines we also applied to the remaining plots. The tangent dashed straight line visible
in the plot (c) we fitted to the linear section of the curve B(q) vs. q. The additional thin (green) solid curves present in all the plots we obtained
from the time series (of the same size as the empirical ones) generated from the Poisson distribution. Their variations are negligible. Therefore,
the influence of finite size effects on time series of the size considered is negligible.

error of empirical points. This is further considered in the text
below.

Our analysis in the range −10 � q � 10 shows not only
the nonlinear behavior of the scaling exponent τ versus q
(and dependencies of the related characteristics) but also what
the asymptotes of the scaling exponent τ (q) look like. This
is visualized in the plot in Fig. 7 (the range of the variable
q is a bit narrower −5 � q � 7 here, to better show the
nonlinear relationship in the central part). However, only the
finer analysis shown in Fig. 4 shows the correct range of
the variable q. This is a more subtle (local) analysis because
it operates using functions based on the derivative of τ (q)
relative to the variable q. It can be seen, e.g., in Fig. 4(f),
that the extended range of the variable q selected above is
appropriate due to the presence of nonmonotonicity. It is this
extended range of q that distinguishes our analysis from the
standard MF-DFA.

Let us emphasize that all these quantities and their stan-
dard deviations, together with the multifractal spectrum f (α)
considered below, were obtained from empirical data using
Eq. (9) for direct estimation. Other quantities were obtained
indirectly.

By taking the scaling exponent τ (q) from Eq. (C5), the
coarse Hölder exponent α(q) and multibranched multifractal
spectrum f (α) can be found. We define below the Legendre-

Fenchel (LF) transformation which we use instead of the
standard Legendre transform. Although formally both look
the same, LF transform allows a multibranch solution (see
Appendix G for additional information). We have

α(q)
def.= dτ (q)

dq
, f (α)

def.= qα(q) − τ (q), (11)

hence

q = df [α(q)]

dα
and f = −d[τ (q)/q]

d (1/q)
, (12)

where α is a local dimension [singularity or coarse Hölder
exponent—its q-dependence is shown in Fig. 4(f)], while f (α)
is its distribution shown in the plots in Figs. 5(a) and 5(b). As
usual, for a monofractal structure the scaling exponent τ (q) is
a linear function of q, while for a multifractal the dependence
is nonlinear.

We are considering the multibranch function only of the
type shown in Figs. 5(a) and 5(b). Specifically, we consider
a function consisting of a concave main branch—between the
points A1 and C—and smoothly attached lateral side branches.
The term ‘smoothly’ here means that at the turning points the
derivatives calculated along the separate branches are equal at
the points where the branches meet. That is, our multibranch
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FIG. 5. Two plots (a) and (b) [where (b) is an enlarged part of plot (a)] show complementary views of the spectrum of dimensions f (α)
[given by Eq. (11)] vs. α. In these plots the main branch of the spectrum f (α) is an increasing black curve. Plot (c) shows the specific heat c(q)
[given by Eq. (14)] vs. q, used clearly to define thermal stable and unstable phases. The unstable phase area is defined by the negative specific
heat. The shorter vertical dashed straight line displayed in the plot (b) at the point α(q = 1), determines the position of the single contact point
of the tangent dashed straight line with a slope of 1.0 for the main branch. It is a verification of the contact property of the L-F transform. Other
dashed lines are described in the main text, while a pair of points X1, X2 and D1, D2 are further addressed in the context of Fig. 6 below. The
dotted curves designate corresponding one-standard-deviation error bounds.

(multivalued) function (mapping) is differentiable at any
point.

Thus, formulated above is the operational definition of the
multibranch spectrum of dimensions. Formally, multibranch
spectrum is defined as a spectrum for which the second deriva-
tive of f (α) with respect to α is discontinuous. A branch of the
spectrum is, therefore, defined as a segment of the spectrum
f (α) for which the second derivative with respect to α is
continuous. Each branch is, therefore, bounded by the points
of discontinuity of d2 f /dα2. Further discussion of the role
of the discontinuities in d2 f /dα2 is carried in the context of
phase transition phenomena in Sec. III.

From Eq. (C5) and the first equality in Eq. (11) we obtain
the expression

α(q) = h(q) + q
dh(q)

dq
. (13)

Hence, at q = 0 and q = q1
extr, q2

extr we obtain α(q) = h(q),
where q j

extr, j = 1, 2, defines q-positions of local extrema of
h(q) function (which are not marked in Fig. 4(a) because they
are clearly visible). However, these do not imply the extrema
of α(q) function (see Appendix D for details).

Figures 4(a), 4(f), 5(a), and 5(b) form the graphical basis
of this work.

It is worth emphasizing that aggregating events into time
intervals of the same length (�, see Fig. 1 for details) may
influence the analysis. Namely, if the intervals are too short,
then too many of them will be empty. However, if the intervals
are too long, then aggregation of too many points may lead to
the loss of information on the time structure of the process.

The analysis shown in Fig. 3 proposes a solution to this
problem. This is based on selecting an appropriate range of
� in which the scaling effect is observed. Here, for Fq(s)
versus s = T/�, where T = 7 h 50 min or 470 min and for the
all considered values of −10 � q � 10 we have a common
range 3 min 55 s � � � 19 min 35 s. For this range of s, the
measure χ2 per degree of freedom reaches the smallest value.
This quantity is only marginally larger when the left border
of s is extended to s = 10 or � = 47 min, while the right one

is still kept at s = 120 or � = 3 min 8 s. However, it is then
burdened with a larger fitting error which we wanted to avoid.
In addition, we wanted the fit within the s range to be common
to all considered curves.

We could, of course, vary the upper edge of the fit intervals
(e.g., for q = −5, it could be s ≈ 500 instead of 120), but
this would also increase the fitting error. The natural limits of
the fitting range from smin ≈ 1 to smax ≈ 1000 and exceeding
these limits would pose problems. Below smin ≈ 1 we would
have a situation where the mean masks any variation (since
then � ≈ T ). Above smax ≈ 1000, there are time intervals of
width � that do not contain any transactions. In this way, we
determine the natural boundaries of the scaling area.

It must be clearly stated that due to the nonmonotonic
dependence of the generalized Hurst exponent h(q) versus q,
the spectrum of dimensions f (α) is a multibranched function
of the Hölder α exponent [see plots Figs. 5(a) and 5(b) for
details].

Recall that the Legendre transformation only deals with
monotonous functions h(q). From this point of view, Eqs. (11)
and (12), although formally identical to the Legendre trans-
form, are its generalization. The Legendre transform is limited
here only to the main branch of the spectrum f defined by its
contact relations:

(i) f [α(q = 1)] = α(q = 1)
(ii) df

dα(q) |α(q=1) = 1.
The inset plot present in Fig. 5(b) illustrates this contact
character. This is emphasized by a dashed straight line with
directional coefficient (slope) of 1.0 tangent to spectra of
singularities at the point {α(q = 1), f [α(q = 1)]}. Breaking
the contact character of the Legendre transformation results
in the wrong location of the spectrum of singularities.

Put more generally, the contact relations given above
(for q = 1) provide an unambiguous location of the full
multibranched spectrum of dimensions obtained using the
Legendre-Fenchel transformation. Our multibranched multi-
fractal contains a single contact point which implies that we
are dealing with a multibranched multifractal. Figures 5(a)
and 5(b) illustrate an important result, namely a necessary
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FIG. 6. The schematic illustration of the modified Ehrenfest or Mandelbrot classification of phase transitions [62]. The first (black and blue
(online) fragments of a single solid curve) and second (four separated red (online) solid curves) order derivatives of f over α showing three
two-branched second-order singularities of f vs. α. Three dashed vertical straight lines (vertical asymptotics) marked by c, b, and a located at
α coordinates of these singularities that is defined by points C, B1, and A1. In the main text of this section, we provide a detailed discussion of
this figure.

(not sufficient) requirement for finding true multifractality in
empirical time series.

Finally, thanks to the above consideration, we can clarify
the key term “multibranched multifractality” with a dominant
left-sided branch. We are dealing with this type of multifrac-
tality if the location of the main branch of the spectrum of
dimensions is fully determined by q > 0. The main branch of
the spectrum is the one that meets the condition of contact.
This is visible in Fig. 4(f), depicting the relationship between
α and q.

In Fig. 5(b), we mark with α(q = 1) and with a vertical
dashed line, the location of the contact point with straight
line—the dashed line having a slope equal to 1. The right
border of this main branch is at point A1, whose coordinate
q is slightly greater than zero, and the left border is at point C
[see again Fig. 4(f) for details].

III. FIRST- AND SECOND-ORDER
PHASE TRANSITIONS

The multibranched multifractality obtained by us has a
useful, fundamental thermodynamical interpretation. Study-
ing a thermodynamical interpretation is a standard way to
analyze the properties of multifractals. The indicator used
for thermodynamical classification is the specific heat of the
multifractal structure [16] (and references therein).

From Eq. (11) one can obtain a useful expression for the
specific heat of the multifractal structure in the form

c(q) = dα(q)

d (1/q)
= −q2 dα(q)

dq
; (14)

its q-dependence is shown in Fig. 5(c).

Only two regions are visible in which the system is ther-
mally stable, i.e., fulfilling inequality c(q) � 0 (or dα(q)

dq) � 0).
The first of them is located between dashed vertical straight
lines a and c or points A1 and C [the same as shown in
Fig. 4(f)]. Thus, we defined the q-range of the main branch of
the spectrum of dimensions. We show this branch in Figs. 5(a)
and 5(b) (the monotonically increasing black curves in both
plots).

The second region is limited to the range of q preceding
vertical dashed straight line b presented in plots Figs. 4(a),
4(c)–4(f) or point B1 in plot Fig. 4(f). In this way we get
q-support of the side-branch spectrum of dimensions (the
decreasing black curve in plot Fig. 5(b) starting at point B1

and passing through points X1, X2, and A2).
Moreover, between points X1 and X2 located in thermally

stable phases, the first-order phase transition occurs. It is
considered below in the context of Fig. 6.

A peculiar characteristic of our multifractal is the presence
of a negative spectra of dimensions, in the vicinity of the
turning point C, in Fig. 5(a), which could be justified by
the appearance of events that occur exceptionally rarely (see
Ref. [22] for some suggestions).

We deal with thermally unstable phases for the oppo-
site case c(q) < 0 (or dα(q)

dq) > 0). They range between turning
points B1, A1 and after the point C, presented in Figs. 4(f)
and 5(c). In Fig. 5(b) this range of q is clearly visible. It is
the q-support of the bifurcating branch of our multibranched
multifractal (the solid blue curve stretching between points
B1 and A1; in Fig. 5(a) the highest placed short blue curve
represents it stretched between dashed vertical lines a and
b). In points B1, A1, and C, there are phase transitions of the
second order between thermally stable and unstable phases,
which is consistent with specific heat vanishing there. This
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is discussed below in the context of Fig. 6 (together with a
description of the role of points D1 and D2).

To prove the statements above concerning the order of
phase transitions, we study the behavior of the first, df /dα,
and second, d2 f /dα2, derivatives versus α, based on the
results presented in Fig. 4(f). Using the Taylor expansion of
α(q) function in the vicinity of its local extremes, we obtain

α(q) ≈ α(qextr ) + 1

2
(q − qextr )

2 d2α

dq2

∣∣∣∣
q=qextr

, (15)

where qextr is a q-position of the local extremum or turning
point of α(q) function. There are three such local extrema:
one maximum A1 and two minima B1,C.

Inverting Eq. (15) and using the first equation in Eq. (12),
after simple algebraic calculations, we obtain useful two-
branched formulas,

df

dα
≈ ±

√
2

∣∣∣∣α − αs

α̈s

∣∣∣∣ + qextr,

d2 f

dα2
≈ ± 1√

2|α̈s|
1√|α − αs|

, (16)

where we use the abbreviated notation: αs = α(qextr ) and α̈s =
d2 f
dα2 |q=qextr . The spectrum of dimensions f has singularities of
the second order at its turning points (see Figs. 5(a), 5(b), and
6 for illustration).

Moreover, by substituting the expansion given by Eq. (15)
to Eq. (14), we obtain

c(q) ≈ −q2(q − qextr )α̈s, (17)

i.e., it linearly vanishes at the turning points, which can be
considered to be spinodal decomposition points (see Fig. 6
for details).

Figure 6 shows the behavior of the first (df /dα) and second
(d2 f /dα2) order derivatives of spectrum of dimensions ( f )
versus Hölder exponent (α). In combination with the plots in
Figs. 5(a) and 5(b), this allows us to classify phase transitions
at points A1, B1, and C and at a point marked twice by X1, X2.

The modified Ehrenfest or Mandelbrot classification of
phase transitions which we consider here, is based on the
spectrum of dimensions f , which we treat as the analogon
of entropy [7,16]. Therefore, the classification suggested by
Mandelbrot [17,18] can be considered as merely inspired by
Ehrenfest’s which uses chemical potential and not entropy.
Although both quantities are functions of the thermodynamic
state of the system, the Mandelbrot classification is by one
order of magnitude lower than the Ehrenfest classification—
this is because entropy is a partial derivative of the chemical
potential.

Although both quantities are functions of the thermody-
namic state of the system, they are not equivalent. In the
case of the Ehrenfest classification the order of phase tran-
sition is determined by the highest possible order of the
derivative of the chemical potential versus temperature. In
the Mandelbrot classification this order of phase transition
is similarly determined by the highest possible order of the
derivative, however, in this case the derivative of entropy with
respect to temperature—which in the case of multifractality
is played by 1/q. The use of the Mandelbrot classification in

the case of multifractals is more convenient from a technical
point of view since entropy is obtained directly from the LF
transformation given by Eq. (11) in contrast to the chemical
potential.

Both f and df /dα are continuous functions of α as op-
posed to d2 f /dα2 (see Figs. 5 and 6 for details)—both deriva-
tives are calculated numerically as the numerical dependence
of f (α) from α is known (cf. Fig. 5). All these functions are
multibranched but only the second order derivative consists of
separated branches (cf. red curves in Fig. 6). The discontinuity
of d2 f /dα2 serves as the formal definition of multibranching
effect as introduced in Sec II C.

All except one, these separated branches diverge asymptot-
ically to ±∞ in turning points A1, B1, and C (the correspond-
ing vertical asymptotics denoted by the dashed lines a, b, c
are presented in Fig. 6 and also in Figs. 4 and 5). These
asymptotic divergences happen according to the power-law
with an exponent equal to −1/2—see the second equality
in Eq. (16). Therefore, in these points, there are identical
phase transitions of the second order according to our clas-
sification, i.e., belonging to the same universality class)—
this is confirmed by the behavior of specific heat given by
Eq. (17). That is, at the points of the second-order phase
transition, specific heat, susceptibilities and other appropriate
order parameters either diverge (obeying a nontrivial scaling
law), or go to zero—which case happens in our situation
[cf. Fig. 5(c)].

The main branch of the derivative df /dα is represented
by the black curve (C, D2, B2, X1, A1) containing the inflec-
tion point IP3 [the corresponding curve in Fig. 4(f) has a
less detailed description]. The corresponding second order
derivative d2 f /dα2 (red curve containing a replica of point D2

and inflection point IP3—where “replica” identifies inflection
point of the first derivative) diverges to −∞ at asymptotics
c and a. Therefore, this curve is singular at turning points:
its left arm at α coordinate of point C and the right one at α

coordinate of point A1.
The other three separated singular curves (also in red) are

associated with three side branches of the first-order derivative
df /dα. The most upper one (located in the left part of the
figure, ending at a replica of point D1), has its local minimum
at a replica of the inflection point IP4. This curve is bound to
side branch (C, D1) (short blue curve) of the first derivative,
containing the inflection point IP4. This branch is thermally
unstable [see the plot in Fig. 5(c) for details] as heat capacity
is negative. The upper curve (placed at the right part of
the figure), having its local minimum at a replica of the
inflection point IP2 (also marked by IP2), is bound to branch
(A1, IP2, B1) (short blue curve) of the first-order derivative.
We consider points A1 and B1 as spinodal decomposition
points—there is a thermally unstable territory between them
[see plot in Fig. 5(c) for details again]. The third singular
solid curve, having its local maximum at a replica of the
inflection point IP1 (also denoted by IP1), is bound to branch
(B1, IP1, A2). Its left branch has asymptotics at point B1, while
its right branch has no asymptotics at the point A2.

Of course, all the branches of the first derivative we as-
sociate with the corresponding branches of the spectrum of
dimensions, f versus α, clearly shown in plots Figs. 5(a)
and 5(b).
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Let us note that short black (X1, A1) and (B1, X2) curves
define the thermally metastable phases, while the short blue
curve (A1, B1) defines the unstable mixture of phases—
i.e., phases that are described by the black B2, X1, A1 and
B1, X2, A2 curves. If the system is found to be in a mixture
phase, then it will spontaneously evolve towards a state, which
favors either higher fluctuations (defined by q larger than that
for point A1) or smaller fluctuations (defined by q lower than
that for point B1). The probability of choosing one of these
two options depends on how closely the state of the system is
located to the edge of the phase.

For the unstable phase defined by the short blue curve
(C, D1) containing the inflection point IP4, we develop a
simplified interpretation. It is because we did not locate it
between two metastable phases, although d2 f /dα2 diverges
at transition point C in the same way as at points A1 and B1.
We can only say that the system left alone in this phase will
spontaneously evolve into a stable phase.

In Fig. 6 we present the first-order (discontinuous)
phase transition between single phases by the short verti-
cal dashed line connecting X1 and X2 points. Notably, in
Fig. 5(b) this first-order phase transition point is marked
twice by X1 and X2—this defines a single point of branch
intersection.

IV. CONCLUDING REMARKS

This work concerns problems of long-term dependence,
long-term memory, and long-term/range correlations in time
series [63]. By using the Legendre-Fenchel (or generalized
Legendre) transform we have examined multibranched, non-
spurious multifractal properties of time series of interevent
times. We have chosen interevent times for our research be-
cause they are a crucial measure of the dynamical activity for
many systems (not necessarily complex)—the research into
which is only at the initial stage. The relationships between
interevent times form the foundation of other dynamic rela-
tionships occurring in evolving systems, for example, between
interevent times and stochastic process. The time series of
interevent times gives insight into the nonmonotonic behavior
of the generalized Hurst exponent—the principal subject of
our study.

Our research focuses on the search for multifractality be-
cause it is the most general, characterization of time series
as of yet. It enables the study of the universal properties
from an extended point of view, allowing their classification
by using their singularity spectra or spectra of dimensions.
However, deriving a microscopic model from the knowledge
of the multifractal structure of series of interevent times is still
under consideration. We proposed in Ref. [16] a step in this
direction, where the surrogate model was the continuous-time
random walk with a waiting-time distribution weighted by
stretched exponential, i.e., defined by some superstatistics. It
is an approach sufficient to describe multifractality generated
by a broadened distribution, but in the case of multifractality
caused by long-term auto-correlations of interevent times, it is
still a significant challenge.

As is known, the search for nonspurious/true multifrac-
tality first requires the resolution of the role of at least the
main factors: (i) main nonstationarity, (ii) finite-size effect,

FIG. 7. Comparison of three particular types of Rényi scaling
exponent τ (q) vs. q. (i) The black solid curve [taken from Fig. 4(d)]
obtained directly from empirical time series of interevent times
by using our NMF-DFA. (ii) The blue (online) almost linearly
increasing solid curve was derived from the Poisson distribution. (iii)
The solid red (online) curve shows the shuffled empirical interevent
time series. The red (online) dotted curves define its one-sigma error
bound, where sigma is a standard deviation.

and (iii) the broadened distribution. The detrending proce-
dure described in Sec. II A solved point (i), while points
(ii) and (iii) are resolved in Fig. 7, where the Rényi scaling
exponent τ (q) is presented versus q for three characteristic
cases.

The blue, almost linearly increasing solid curve (shown in
Fig. 7) was obtained from the Poisson distribution. For this
distribution, we have drawn several transactions in each time
interval (numbered by index i for each day ν). Based on this,
the local mean time of interevent times between them, �tν

i ,
was determined (see Fig. 1 for a detailed analysis). These local
mean times formed a multiday time series of length equal
to the whole empirical time series of interevent times. We
achieved this by introducing a limitation that the last element
(interevent time) of the time series must be truncated so that
the entire synthetic time series is equal to the number of days
Nd multiplied by the length of a single session s�.

The presence of possible spurious multifractality here is
caused only by the finite size of the time series of interevent
times of the same size as the empirical time series. The
spurious multifractality of the Poisson time series caused only
by finite-size effect is negligible in this case as τ (q) is almost
a linear function of q. Therefore, we can also expect the
influence of the finite size effect on the real multifractality to
be negligible. The finite-size effect for the red curve in Fig. 7
is further addressed below.

The origin of the solid red (online) curve in Fig. 7 needs an
explanation. We create it in the following three steps:

(i) We construct the statistics from the empirical series of
interevent times.

(ii) A new time series is drawn from the statistics thus built
by means of shuffling. In this way, all-time correlations are
destroyed if shuffling is performed sufficiently many times.

(iii) Finally, the exponent τ (q) is determined from this
shuffled time series by our NMF-DFA method.
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FIG. 8. The comparison of two intraday nonlinear autocorrelation functions 〈F 2( j; s)〉 vs. lag j averaged over statistical ensemble of Nd

days (for instance, for s = 94). (a) The power-law (dashed curve) satisfactorily suites the decay of the averaged empirical autocorrelation
function 〈F 2( j; s)〉 (solid curve). Note that the upper dashed-dotted horizontal line represents 〈(U − y)2〉, while the bottom one 〈U − y〉2.
The dotted horizontal line represents the vertical, constant shift of the power-law. Presumably, location of this autocorrelation function above
〈U − y〉2 is due to the existence of a pattern within the time series of interevent times (see Fig. 2 for details). Plot (b) shows the decaying of
the nonlinear autocorrelation function for the time-series of interevent times generated by the Poisson process. This process is based on the
empirical mean interevent time separately for each day. The exponential function is fitted quite well here to the data (dashed curve).

The black solid curve (presented in Fig. 7) obtained from
the empirical time series of interevent times by using the
NMF-DFA, is sufficiently nonlinear to generate multifractal-
ity. However, in Fig. 8, we are unable to see the subtle effects
in the empirical data. This can only be seen in Figs. 5(a), 5(e),
and 5(f) in the form of nonmonotonic curves, since they depict
the derivative dτ (q)

dq .
Thus we suggest, by using the NMF-DFA, that an em-

pirical series of the interevent times yields a true multifrac-
tal located far beyond the finite size component and other
multifractal pollutions. We suggest that the long-term auto-
correlations between absolute values of detrended interevent
time profiles caused the real multifractality in this. These
autocorrelations create some true antipersistent structure of
fluctuations’ clusters of the interevent times. They are clearly
seen in Figs. 2(c) and 8(a), defining the volatility clustering
effect. Interestingly, intraday empirical data are sufficient to
detect true multifractality, even though the autocorrelations of
the interevent times mentioned are long-term, stretching for
many days.

This work is based on two main pillars. First of all, on
the NMF-DFA approach constructed in work, which was
inspired by the canonical MF-DFA. Using the NMF-DFA-
based approach, we have here proved that the time series
of interevent times can have a multibranched multifrac-
tal character. Second, we have demonstrated that this type
of multifractality can lead to phase transitions of the first
and second orders according to the Mandelbrot classifica-
tion. We want to draw attention to the high similarity of
both phase transitions to the corresponding phase transitions
of the first and second orders according to the Ehrenfest
classification.

In the case of traditional multifractality, the phase tran-
sition of the first order disappears, which reduces the area
of metastable and unstable phases to zero. This implies that
canonical multifractality corresponds to critical or supercrit-
ical states of the system. Multifractality presented in this
work is subcritical, where stable, metastable, and unstable
phases are all present. From the perspective of this work,

traditional multifractality can be regarded as only one of
several classes of the full classification. Therefore, the concept
of multifractality has been substantially broadened.
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APPENDIX A: REMARKS ON PREPROCESSING
AND COARSE-GRAINING

We compare the preprocessing of our approach with the
seminal work by Kantelhardt et al. [9], emphasizing the
differences between the two.

In both approaches the number of points or empirical
data is determined once. The length of the time series N is
measured herein by the product T Nd = N , where segment
T is the fixed daily length of the time series (or duration
of the session measured by time) and Nd is the set number
of days (or sessions). The scale s, the same for each day,
is introduced herein by equality T = s�, where � is the
length of the time window or subsegment and s the number
of these subsegments within the segment. Thus, two separated
timescales are present here: one, a more microscopic defined
by s and the other one by Nd (cf. Fig. 1).

Above we give a different approach than that presented
in Kantelhardt et al. work [9], where a single timescale s is
present for a given number of segments or windows n. That
is, s = N/n, where s and N define herein the length of the
window or segment and the entire time series, respectively,
measured in the number of empirical data points and not in
time. Apparently, s introduced herein is different from the one
used by us.

Our approach distinguishes between individual sessions
(each with the same duration of T ) as opposed to the method
of Kantelhardt et al. [9]. This distinction is natural, and
we cannot ignore it. For example, our approach allows to
distinguish possible jump of quotation at the opening of each
session. In general, this may be different from intrasessional
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(intraday) jumps. The approach of Kantelhardt et al. equates
intersessional with intrasessional jumps—it does not make it
possible to distinguish them. It loses a piece of information
that is perhaps important, and we cannot mask it. It has its
consequences in multiscale divisions of the time series.

Figure 1 in Kantelhardt et al. and Fig. 1 in our work
illustrate the way of introducing scales in both approaches.
In the approach of Kantelhardt et al. there is a division of
the time series into segments of length s each. Hence, there
is Ns = [N/s] such segments, where [. . .] means truncation to
a natural number. These segments are detrended individually,
which leads (most often) to the nonphysical jumps of the trend
on the borders of subsegments.

Our approach is devoid of the above-mentioned disadvan-
tage, as detrending is conducted for each session separately.
The possible trend jump at the opening of each session
here is consistent with the spirit of quotations allowing such
increases. No other trend jumps occur in our approach. There
is no separate detrending inside any time window �, only de-
trending the entire session. Such an approach does not destroy
or remove any fluctuations, nor does it produce artifacts in the
form of the trend changes.

The way the scale is introduced is the crucial technical
element of both approaches. As one can see, we enter the con-
crete scale through time window � or (equivalently) through
the number s of time windows. Inside each window �, we
build the time average of interevent time intervals. That is, we
replace the intrasegment detrending present in the approach of
Kantelhardt et al. by an intrawindow average value and one-
session detrending or intraday detrending. It now detrends
a series of these (local) average values, removing intraday
nonstationarities, e.g., the lunch effect.

The average of the power-law dependence within the �

interval does not change its exponent as long as it is at most
a slowly-changing function of variable x and � � x. These
results from the following integration,

1

�

∫ x+�

x

1

y1+α
dy ∝ 1

�

1

xα

[
1 −

(
1 + �

x

)−α
]

≈ 1

�

1

xα

[
1 − exp

(
−α

�

x

)]
≈ α

x1+α
. (A1)

The time series consisting of the average values (built inde-
pendently in each time window �) does not lose fluctuations
but only decreases their amplitude by the standard factor

√
nν

i .

APPENDIX B: AUTOCORRELATION FUNCTIONS

The plots in Fig. 8 present the results which are meaningful
for our further considerations.

It seems that the empirical autocorrelation function

〈F 2( j; s)〉 def.= 1
Nd

∑Nd
ν=1 F 2( j; ν, s) shown in plot Fig. 8(a) (by

solid curve) is a very slowly converging (and waving) func-
tion. It is roughly approximated by the (shifted) power law,
〈F 2( j; s)〉 = A/(a + j)α + const (dashed curve), where the
fitted shape exponent α = 0.49 ± 0.43 is definitely smaller
than 1, fitted amplitude A = 1049 ± 387, while the back-
ground parameter const = 1519 ± 234 > 〈U − y〉2 = 1190.
Hence, shift parameter a = A1/α (〈(U − y)2〉 − const)−1/α =
1.0 ± 0.90, where 〈(U − y)2〉 = 2556. This expression for the

shift parameter is vaild because we used equality 〈F 2( j =
0; s)〉 = 〈(U − y)2〉, which we have directly from Eq. (1) and
definition of 〈. . .〉.

The slow convergence of the autocorrelation function to
positive values result from its construction based on abso-
lute values of deviations (fluctuations), which are always
nonnegative. In addition, its wavy behavior contains some
information about the existence of a long-term fluctuation
structure. We have grounds to suppose that this structure
is the result of the presence of the long-range correlations
between fluctuations—they are the reason for the creation of
this structure and not the other way round.

The autocorrelation function for the canonical Poisson
process is presented (solid curve) in Fig. 8(b) as a
reference case. The exponential function (dashed curve)
g( j) = A exp(−a j) + const well fits the data, where
A = 12.06 ± 0.08, a = 0.496 ± 0.031, const = 23.12 ± 0.08.
The fact that the dotted line does not coincide with the
dashed-dotted line is considered to be a manifestation of
the finite size effect. Because the relative difference is of the
order of one percent, we have reason to believe that in the
case of Fig. 8(a) (where this difference is of the order of ten
percent) the role of this effect is negligible. The solid curves
presented in plots in Fig. 8 represent average values (over the
statistical ensemble of days). Therefore, these curves obtained
with higher accuracy.

APPENDIX C: PARTIAL PARTITION FUNCTIONS

We start this section with the introduction of reduced
(relative) auxiliary quantities. It helps us define the partial
partition functions that are crucial to this work.

By substituting both equalities in Eq. (6) to Eq. (5) and us-
ing scaling hypothesis given by Eq. (7) supported by Eq. (8),
we get

Zq(s) ≈ 1

Nq−1
d

Arel
q sqhrel (q) = 1

Nq−1
d

Arel
q sτ rel (q)

= 1

Nq−1
d

Arel
q s(q−1)Drel (q), (C1)

where the relative (or reduced) prefactor Arel
q

def.= Aq/(Aq=1)q

hence Arel
q=0 ≈ 1, Arel

q=1 = 1, the relative (or reduced) gener-

alized Hurst exponent hrel(q)
def.= h(q) − h(q = 1) is vanish-

ing at q = 1, and the relative (or reduced) scaling exponent

τ rel(q)
def.= qhrel(q) is vanishing at q = 0 and 1. Having a

well-defined reduced scaling exponent, we introduce a formal
analog of Rényi dimensions, Drel(q) = τ rel(q)/(q − 1), that is
relative (reduced) ones, vanishing at q = 0. As you can see,
in this representation you do not need any information about
the Hausdorff dimension of the time series support. The in-
formation Drel(q = 1) and correlation Drel(q = 2) dimensions
have formally the same forms as the corresponding canonical
Rényi dimensions (see Appendix F for details).

Finally, we can write Eq. (C1) in the form of the product
of the partial partition functions, key for our further consider-
ations,

Zq(s) ≈ 1

Nq−1
d

Arel
q sτ rel (q) = Z lin

q (s)Z̃q(s), (C2)
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FIG. 9. Behaviors of h(q), q h(q)
dq , and α(q) depending on q. The

shape similarity of all three curves is clearly visible.

here

Z lin
q (s) = 1

Nq−1
d

Arel
q s−(q−1)D(q=0), Z̃q(s) = sτ (q), (C3)

where we have to define

D(q = 0)
def.= h(q = 1) (C4)

for self-consistency (without more profound analysis of this
fact herein), while scaling exponent

τ (q)
def.= qh(q) − D(q = 0). (C5)

The quantity D(q = 0) requires a comment.
The factorization of the partition function given by

Eq. (C2) makes it possible to extract the partial partition
function Z̃q from it. This partial partition function is the most
significant because it contains generalized Hurst exponent
h(q), which we consider in Sec. II C. Indeed, h(q) is the
multifractality core.

APPENDIX D: α(q) VERSUS h(q)

In development on Eq. (13) we can answer in detail the
question important for further considerations. Namely, does
the component q dh(q)

dq appearing in this equation destroy the
nonmonotonicity imposed by the dependence h(q) on q? To
this end, we compared on Fig. 9 the behaviors of h(q), q h(q)

dq ,
and α(q) depending on q. As one can see, the nonmonotonic
dependence of α on q is even enhanced by q h(q)

dq component
especially for q > 5. It is the nonmonotonicity of the function
α(q) that is directly responsible for the multibranching of
spectrum f (α). The relationship between the nonmonotonic-
ity and multibranchist is discussed in detail in Sec. III. Here
it is enough to note that nonmonotonicity and multibranchist
are two sides of the same coin, since the rotation of Fig. 9
around a bisector of a right angle 180 degrees gives a bifur-
cating df (a)

da [=q(α)] curve depending on α. Hence, we have
multibranching depicted in Figs. 5(a) and 5(b), where turning
points C, A1, and B1 are the bifurcation points.

We can now precisely define a multibranch function having
continuous derivative bifurcating.

APPENDIX E: INTERPRETATION OF D(q = 0)

In the canonical MF-DFA approach, one can read di-
rectly from the scaling relation for the partition function that
D(q = 0) is the support’s Hausdorff dimension for the time
series—usually D(q = 0) = 1.

Since in our approach, the Rényi dimensions enter into the
generalized partition function on a relative way, such a diag-
nosis does not take place. Therefore, D(q = 0) does not have
to be a fractal dimension of the substrate [and Drel(q = 0)
even vanishes]. The knowledge of D(q = 0) does not require
its value to take independently outside our formalism. It is
designated by the information Hurst exponent h(q = 1)—it
is related to information and not topology. For this reason, the
D(q) family should rather be called pseudo Rényi dimensions,
while the Drel(q) family of the relative or reduced one despite
the fact that for q 
= 0 both families have formally the usual
interpretation (see Appendix F for details). However, in the
further part of the work, we return to the simplified name
“Rényi dimensions” for D(q) of course, remembering the
above-given conditions.

Using the scaling exponent τ , we can define now the Rényi
dimensions in the usual way,

D(q)
def.= τ (q)

(q − 1)
, (E1)

which additionally allows to present Drel in the reduced
form Drel(q) = D(q) − D(q = 0). Notably, all the relative
quantities defined above (and indexed by “rel”) disappear in
either q = 0 or/and in q = 1, which results from their relative
character.

The partial partition functions Z lin
q and Z̃q are normalized

separately, and the factorization given by Eq. (C2) (up to
multiplicative prefactor and additive exponents) is unique.
These partition functions represent statistically independent
monofractal and multifractal structures, respectively. We pay
attention to the most interesting, the latter one.

APPENDIX F: PROPERTIES OF THE MULTIBRANCHED
MULTIFRACTAL

In this section, we consider the chosen characteristics of
multifractality at some significant values of q.

1. Case q → 0

This case fundamentally distinguishes our multibranched
multifractality from the ordinary single-branched multifrac-
tality. Our approach is unified—it is entirely based on the gen-
eralized Hurst exponent. From Eqs. (5), (C2)–(C5) we obtain
τ (q = 0) = −D(q = 0) = −h(q = 1) [see also Fig. 4(d) for
details], where we took advantage of the fact that generalized
Hurst exponent is finite. You can see that the scaling exponent
is controlled at q = 0 only by the generalized Hurst exponent
at q = 1, which has nothing to do with the support of the time
series.
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2. Case q → 1: Shanon information

In this case, one can write the expansion

τ (q) ≈ (q − 1)

[
h(q = 1) + q

dh(q)

dq

∣∣∣∣
q=1

+1

2
q(q − 1)

d2h(q)

dq2

∣∣∣∣
q=1

]
, (F1)

based on the expansion of h(q) in the vicinity of q = 1, where
the expression in square brackets is indeed

D(q) ≈ D(q = 0) + q
dh(q)

dq

∣∣∣∣
q=1

+ 1

2
q(q − 1)

d2h(q)

dq2

∣∣∣∣
q=1

,

(F2)

that is, the expansion of Rényi dimensions in the vicinity of
q = 1.

Equivalently, we have

τ rel(q) ≈ (q − 1)

[
q

dh(q)

dq

∣∣∣∣
q=1

+ 1

2
q(q − 1)

d2h(q)

dq2

∣∣∣∣
q=1

]
,

(F3)

where the expression in square brackets is in fact

Drel(q) ≈ q

[
dh(q)

dq

∣∣∣∣
q=1

+ 1

2
(q − 1)

d2h(q)

dq2

∣∣∣∣
q=1

]
. (F4)

Expansion (in the vicinity of q = 1) in Eq. (F4) emphasizes
that Drel(q) depends on the successive derivatives of the gen-
eralized Hurst exponent as parameters (calculated at q = 1).

For instance, combining Eqs. (5) with (C2), we obtain an
expression

Drel(q = 1) = 1

ln s

Nd∑
ν=1

p(ν, s) ln p(ν, s)

= 1

ln s
〈ln p(ν, s)〉 = 1

ln s
Iq=1(s),

or equivalently,

D(q = 1) = D(q = 0) + 1

ln s
Iq=1(s), (F5)

here 〈. . .〉 = ∑Nd
ν=1 p(ν, s) . . . and Iq=1(s) can be identified

with the Shanon information (within the scale of s).
Finally, from Eqs. (F4) and (F5), we get

1

ln s
Iq=1(s) = dh(q)

dq

∣∣∣∣
q=1

(F6)

for s from the scaling region. Thus, the change of the gen-
eralized Hurst exponent at q = 1 is the key to the Shanon
information.

3. Case q → 2

The correlation integral (or autocorrelation function) is
obtained from the q-correlation function by substituting q =
2. Grassberger and Proccacia introduced both quantities long
ago [64]. They proved that the statistical sum given by Eq. (5),
transforms into a q-correlation function. From Eq. (C1) we

get (for large s for the scaling region) the reduced correlative
dimension in the form

Drel(q=2) ≈ ln Zq=2(s)

ln s
,

or equivalently

D(q = 2) ≈ D(q=0) + ln Zq=2(s)

ln s
. (F7)

4. General case of arbitrary q: Bounds

a. Properties of D

In our situation [see Eq. (E1) and Fig. 4 for help] Rényi
dimensions fulfill general inequalities/bounds which are not
identical to those well known for the ordinary Rényi dimen-
sions. The differences result from the fact that D(q) is not in
our case the monotonic function of q [see Fig. 4(e) for details],
i.e., the Hentschel-Procaccia inequality [65] is valid in our
case only on disjoint intervals q. These bounds are as follows:

(i) D(q) > 0, for arbitrary value of q;
(ii) (q′ − 1)D(q′) > (q − 1)D(q) for q′ > q;
(iii) if D(q′) < D(q) for q′ > q, i.e., if we deal with

monotonically decreasing ranges of D(q), then q′−1
q′ D(q′) >

q−1
q D(q), where q′, q 
= 0, otherwise the opposite inequality

is fulfilled.
From (iii), we obtain
(a) D(q) <

q
q−1 D(q = +∞) for q > 1;

(b) D(q) >
q

q−1 D(q=−∞) for q < 0, where D(q=−∞)
is finite.

b. Properties of f

We begin with general useful property of the f [α(q)]
spectrum. From Eqs. (E1) and (11),

f [α(q)] = D(q) + q(q − 1)D′(q), (F8)

where we marked D′(q) = dD(q)
dq . Note that the intermediate

step in the derivation of the above formula is the following
convenient expression obtained from Eq. (E1) and the first
equality in Eq. (11),

α(q) = D(q) + (q − 1)D′(q). (F9)

Hence, for q = 1 and extrema of D(q), we have

α(q) = D(q). (F10)

However, you have to see that the location of the extremes of
the functions α(q) and D(q) is different (see Figs. 4(e) and
4(f) for details).

Moreover, we present two characteristic limitations that
can significantly distinguish multibranched multifractality
from ordinary (i.e., single-branched) multifractality. Namely,
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from Eq. (F10) we obtain

α(q = +∞) = D(q = +∞),

α(q = −∞) = D(q = −∞), (F11)

on assumption that derivative D′(q) disappears faster than 1/q
if |q| → ∞. It should be emphasized that because α(q) is not
a monotonically decreasing function of q [see Fig. 4(f) for
details], in general, α(q = +∞) 
= αmin and α(q = −∞) 
=
αmax, where αmin and αmax are the minimal and maximal val-
ues of α(q), respectively.

From Eq. (F8) the special cases yield,

f [α(q = 0)] = D(q = 0) = α(q = 0) + D′(q)|q=0,

f [α(q = 1)] = D(q = 1) = α(q = 1), (F12)

where we obtain df (α(q))
dα

|α(q=1) = 1 [with help of Eq. (12)].
This relation and the second equality in Eq. (F12) defines the
contact point considered in Sec. II C.

APPENDIX G: REMARKS ON LEGENDRE-FENCHEL
TRANSFORMATION

We present the essence of the one-dimensional Legendre-
Fenchel (LF) transformation in the version we use in our
approach. In this way, we want to make our work more
accessible/understandable. The LF transformation has never
been used in a multifractality context. We show that it can
be beneficial by significantly expanding the possibilities of
advanced time series analysis. This is why we want to draw
it to the attention of physicists, especially those dealing with
complex systems, especially in econo- and sociophysics.

The Legendre-Fenchel transformation can refer, for exam-
ple, to functions whose schematic exemplary course we show
in Fig. 10. As can be seen, it alternately contains both convex
and concave parts and not just one of them, as in the case
of the Legendre transformation. Thus, the LF transformation
allows treating both stable and metastable states, for example,
in the physics of phase transitions. This is why we are dealing
with two supremes of the function

| f (x)| = |y(x) − τ (x)| (G1)

for the fixed α (see the bottom plot in Fig. 10) located at points
−q and q. We obtain these supremes as roots of the equation

df

dx
= 0 = 3aq2 − (c − α), (G2)

where the variable x runs the entire domain while the variable
q applies only to supreme. Thus,

q(α) = ∓
√

c − α

3a
, (G3)

where coefficient α is the directional coefficient of the straight
line y(x) = αx. The coefficient c of the basic polynomial

τ (x) = −ax3 + cx (G4)

sets the upper limit of 0 � α < c below, which these supreme
exist and are located in the range x1 � −q and q � x2. The
variable q denotes the value of the variable x at the extreme
point of the function f (x). Of course, the size of q depends on

FIG. 10. The schematic plots of convex-concave function τ (x)
(solid curve on both plots) with two supremes denoted on the bottom
plot by f [see Eq. (G1) for details]. This solid curve shape is the basis
for further consideration.

the slope α of the straight line y(x). If the component contain-
ing x2 were present in the τ (x) polynomial, then the extremes
of this polynomial would not be located symmetrically on
both sides of the vertical axis. Such a situation would be more
complicated, bringing nothing new to the understanding of the
essence of the functioning of the LF transformation.

From Eq. (G3) we obtain directly an inverse expression,

α(q) = −3aq2 + c, (G5)

and finally [using Eq. (11)] the spectrum of dimensions,

f (α) = ±2a

(
c − α

3a

)3/2

. (G6)

The significant components/functions of the LF transfor-
mation given by Eqs. (G3)–(G6) are plotted in Figs. 10–13 by
the corresponding curves (the plots we made, for example,
for a = 1 and c = 4). These functions have all the most
important features of their empirical counterparts considered
in this paper. It is about nonmonotonicity, two-branching, and
left-sided.

Still to meet additional empirical condition τ (q = 1) = 0
prompted by Eqs. (C4) and (C5), we go to the shifted poly-
nomial τ (x),

τ (x) ⇒ τ (x) + a − c = −ax3 + cx + a − c. (G7)

According to Eq. (G1), this translation shifts the spectrum of
dimensions as follows:

f (α) ⇒ f (α) + c − a. (G8)

It is this new shifted spectrum of dimensions that is presented
by solid curves in Fig. 13 in the form of two branches. As one
can see, it is not only two-branched but also left-sided. This is
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FIG. 11. Dependence α (solid curve) and h (dashed curve) on
q representing Eqs. (G5) and (G10), respectively. The key feature
for further considerations is the nonmonotonic α and h dependence
on q.

a basic analog of our empirical spectrum of dimensions shown
in plots in Figs. 5(a) and 5(b) in our work. Please note that the
shifted functions used do not change the q and α variables as
should be the case.

It should be emphasized that the characteristic example
considered here is particularly simple—each of its elements
is presented in a closed, easy-to-determine analytical form.

Significant references to our NMF-DFA

We are now introducing, as defined by Eq. (E1),

D(q) = τ (q)

q − 1
= −a(q3 − 1)

q − 1
+ c, (G9)

where τ (q) is already this new shifted function. Hence,
we get directly D(q = 0) = c − a, D(q = 1) = c − 3a, and
D(q = 2) = c − 7a.

FIG. 12. Derivatives df (α)
dα

[=q(α), solid curve] and d2 f (α)
dα2 (dashed

curves) vs. α. This black bifurcating curve defines the phase diagram
and these dashed diverging curves constitute its characteristics, espe-
cially at point α = c.

FIG. 13. The bifurcating spectra of dimensions f (α) vs. α (solid
and dashed two-branched curves). The solid curve has been moved
up by c − a relative to the dashed curve. This results in the ap-
pearance of the contact point satisfying the equality f (α) = α =
c − 3a, which is the case for q = 1. It justifies using the concept
of contact transformation in the case of LF transformation. Hence,
the maximum value of f or f [α(q = 0)] may be greater than 1.
However, this does not prevent the additional interpretation of f as
the probability density of the variable α. It prevents D(q = 0) from
being interpreted as a box dimension or capacity.

Similarly, using definition Eq. (C5), we get

τ (q) + D(q = 0)

q
= h(q) = −aq2 + c. (G10)

This expression is graphically presented in Fig. 11 by the
dashed curve.

Relative quantities

In the following we will present the list of relative (re-
duced) quantities used in NMF-DFA. Based on the relative
quantities given in Appendix C, we get

hrel(q) = h(q) − h(q = 1) = −a(q2 − 1),

τ rel(q) = qhrel(q) = −aq(q2 − 1),

Drel(q) = τ rel(q)

q − 1
= −aq(q + 1). (G11)

We have provided these quantities in an explicit form because
they play an important role in the statistical analysis of the
time series that we conducted in our work.
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