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In order to increase the accuracy of temporal solutions, reduce the computational cost of time marching, and
improve the stability associated with collisions for the finite-volume discrete Boltzmann method, an advanced
implicit Bhatnagar-Gross-Krook (BGK) collision model using a semi-Lagrangian approach is proposed in this
paper. Unlike existing models, in which the implicit BGK collision is resolved either by a temporal extrapolation
or by a variable transformation, the proposed model removes the implicitness by tracing the particle distribution
functions (PDFs) back in time along their characteristic paths during the collision process. An interpolation
scheme is needed to evaluate the PDFs at the traced-back locations. By using the first-order interpolation, the
resulting model allows for the straightforward replacement of f eq,n+1

α by f eq,n
α no matter where it appears.

After comparing the proposed model with the existing models under different numerical conditions (e.g.,
different flux schemes and time-marching schemes) and using the proposed model to successfully modify the
variable transformation technique, three conclusions can be drawn. First, the proposed model can improve the
accuracy by almost an order of magnitude. Second, it can slightly reduce the computational cost. Therefore, the
proposed scheme improves accuracy without extra cost. Finally, the proposed model can significantly improve
the �t/τ limit compared to the temporal interpolation model while having the same �t/τ limit as the variable
transformation approach. The proposed scheme with a second-order interpolation is also developed and tested;
however, that technique displays no advantage over the simple first-order interpolation approach. Both numerical
and theoretical analyses are also provided to explain why the developed implicit scheme with simple first-order
interpolation can outperform the same scheme with second-order interpolation, as well as the existing temporal
extrapolation and variable transformation schemes.

DOI: 10.1103/PhysRevE.101.063301

I. BACKGROUND

Since its earliest development more than three decades
ago [1–4], the lattice Boltzmann method (LBM) has gained
a prominent role in the simulations of a large variety of com-
plex flows across a broad range of scales, from macroscopic
turbulence, all the way down to nanoscale flows of biological
interest, and lately, even subnuclear flows [5]. Its success is
supported by two important features. First, physically, the
LBM can inherently solve problems over a wide range of
length scales beyond the strict hydrodynamic regime [6].
The behavior of hydrodynamics at macroscales is basically a
low-dimensional asymptotic limit of the infinite-dimensional
sequence of kinetic moments associated with the Boltzmann
equation that is rooted in the microscale kinetics. By cap-
turing the high-order moments in the Boltzmann equation,
the low-order moments in macroscale hydrodynamics emerge
naturally from the underlying microdynamics [7]. This is why
the LBM is regarded as a mesoscale technique with both
upwards (to the continuum) and downwards (to the atomistic)
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multiscale capabilities. Second, numerically, the LBM can
achieve second-order accuracy in space with only a first-
order numerical scheme [8]. The reason for this is that the
advection term eα · ∇ fα in the LBM is linear (eα before the
gradient is constant). Due to the linear advection, the LBM
can couple the discretizations of all three dimensions: the
microscopic velocity (e), space (x), and time (t). By doing
this, the variables that are being advected (in this case, the
particle distribution functions) will stop exactly at a grid
point after each advection step. According to the definition of
the Courant-Friedrichs-Lewy (CFL) number, the CFL of the
microscopic velocities in the LBM becomes 1 globally, which
gives rise to a universal second-order accuracy in space.

Although this unique multidimensional coupling mecha-
nism is an important asset of the LBM, it also brings with
it a substantial challenge. Since the LBM couples the dis-
cretizations of all three dimensions, this limits the freedom
to choose a different way of individually discretizing any of
the three dimensions, which is especially restrictive for the
spatial dimension x. Therefore, the mesh, which is the result
of discretizing the space, has to copy the lattice structure (a
lattice tells how the velocity is discretized), and also has to
be uniform (in order to achieve CFL = 1 location-wise) and
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rigid (in order to achieve CFL = 1 timewise). Consequently,
such a uniform and rigid mesh structure makes it difficult for
the LBM to accurately accommodate problems with curved or
complicated boundaries [9], which are, however, ubiquitous in
fluid flow problems.

Numerically speaking, the LBM (with its coupling feature
mentioned above) is derived from the discrete Boltzmann
equation (DBE) whose space and time are still continuous.
Therefore, by solving the DBE, one can select an arbitrary
discretization for space. As a result, complex boundaries
can be easily captured with a body-fitted mesh, just like in
the conventional computational fluid dynamics models. The
earliest work following this idea was presented by Nannelli
and Succi [10], in which the finite-volume method (FVM)
is applied on irregular meshes. Their work belongs to a
category called the finite-volume discrete Boltzmann method
(FVDBM), which has witnessed a rapid progression in the
following decades [11–21]. Another major method that could
also use this approach is the finite-element discrete Boltzmann
method [22–24] because the finite-element method can easily
integrate unstructured meshes as well. However, this has not
gained the same popularity as the FVDBM due to the mathe-
matical simplicity and the built-in conservation of the FVM.

Unfortunately, as a result of the mesh flexibility, the
FVDBM [as well as other discrete Boltzmann methods
(DBM) that are based on solving the DBE] currently exhibits a
lower accuracy and higher computational cost than the LBM.
Since space and time in the FVDBM are decoupled, the
accuracy and computational cost in space as well as in time
must be handled separately.

In the space dimension, the accuracy of the FVDBM is
mostly limited by the diffusion error. Per a Fourier stabil-
ity analysis, this diffusion error automatically appears when
CFL<1, which is required to maintain proper stability when
solving the DBE on irregular meshes [25]. Such a diffusion
error in the FVDBM and other DBM models has been well
acknowledged since the early stages of their development
[15,26]. However, very few publications have provided so-
lutions on how to reduce this diffusion error at a reasonable
cost. As a result, it has been asserted that the FVDBM is
not a competitive alternative to the LBM [17]. As an effort
to address this issue, one of our previous papers provided a
systematic approach that could produce Godunov-type flux
schemes with different orders of accuracy for the advection in
the FVDBM, which could significantly reduce the diffusion
error beyond that of the conventional upwinding schemes
[27]. We also developed a different second-order interpola-
tion scheme designated the plane-fitting least-square (PFLS)
approach to reduce the diffusion error during the interpolation
step of the FVDBM [28], which displayed a faster speed
as well as a slightly better accuracy than the conventional
least-square interpolation scheme.

In the time dimension, the time-marching scheme should
be carefully chosen, since when solving the DBE, the maxi-
mum �t is not only limited by the CFL, which is controlled by
the advection, but also limited by the relaxation time, which is
affected by the collision. The explanation is that �t , which is
the numerical time interval for updating the solution, cannot
be too large compared to the relaxation time, which is the
physical time that the system takes during each time step to

relax towards the equilibrium state. As a result, solving the
DBE requires a very small �t when modeling steady-state
high-Re flows in which the relaxation time is very small.
Therefore, the selected time-marching scheme should allow
the use of a �t that is as large as possible, as long as it is
within the physical limit. The standard approach to achieve
this is to make the collision implicit for the time marching
[22,23,29], which, however, creates an implicit (nonlinear)
equilibrium term that requires additional treatment. Currently,
there are basically two approaches to resolve this implicitness:
the temporal extrapolation (TE) scheme that calculates the
implicit value based on two previous time steps [29], and
the variable transformation (VT) technique that can wrap the
implicit term into a new variable [30–39]. It was reported that
the VT can dramatically improve the stability beyond the TE
scheme [34,39]. However, the comparison in accuracy and
computational cost between these two is unknown.

In this paper, we develop an advanced scheme to resolve
the implicit collision during time marching. The new scheme
is based on applying the semi-Lagrangian (SL) treatment
to the implicit collision term. Therefore, it is designated as
the semi-Lagrangian implicit collision (SLIC) model in this
paper. After a quantitative comparison in accuracy, computa-
tional cost, and stability between the developed scheme and
existing approaches on the Bhatnagar-Gross-Krook (BGK)
collision model [40], it is found that the developed scheme is
more accurate and slightly faster than the existing schemes.
It is also shown that the developed scheme is more stable
than the TE scheme while having the same stability as the VT
scheme.

II. THE FVDBM WITH AN IMPLICIT BGK COLLISION

The DBE with the BGK collision model is defined as

∂ fα
∂t

+ eα·∇ fα = − 1

τ

(
fα − f eq

α

)
α = 0, 1, 2, . . . , N − 1,

(1)

where fα and f eq
α are the particle distribution function (PDF)

and equilibrium PDF, respectively, in the αth direction of
a total of N components, eα is the αth of N total lattice
velocities, and τ is the relaxation time. With the help of the
FVM, Eq. (1) can be integrated over a control volume (CV).
Then, after a rearrangement, the FVDBM in its general form
is shown as

Tα = Cα − Fα, (2)

where Tα , Cα , and Fα are the temporal term, collision term,
and flux term, respectively. The temporal and collision terms
are

Tα = ∂ fα
∂t

, (3)

Cα = 1

τ

(
f eq
α − fα

)
. (4)

It is worth noting that, so far, Eq. (2) is still continuous
both in space and time. When discretizing the space with a
mesh such as an unstructured one, the total flux through the
surface closure of each CV becomes the summation of the
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flux through each of the total K surface segments of the CV.
Then the flux term in Eq. (2) becomes

Fα = 1

VCV

K∑
i=1

Fα,i, (5)

where VCV is the volume of the CV. In the current study,
cell-centered triangular meshes are used, which makes K =
3. After discretizing the time with a proper time-marching
scheme, Eq. (2) can be solved numerically. With the standard
forward Euler method, Eq. (2) becomes

T n
α = Cn

α − F n
α , (6)

where

T n
α = f n+1

α − f n
α

�t
(7)

and Cn
α and F n

α are, respectively, the collision and flux terms
that are evaluated at time step tn. By inserting Eq. (7) into
Eq. (6), replacing Cn

α with its definition Eq. (4), and combining
the terms that contain f n

α , the simplest form for the FVDBM
is obtained:

f n+1
α =

(
1 − �t

τ

)
f n
α + �t

τ
f eq,n
α − �tF n

α . (8)

However, it is well known that the forward Euler method
is explicit and is not as stable as implicit methods. Lee and
Lin [22,23], Guo and Zhao [34], and Bardow et al. [30] tried
to introduce implicitness into the system. They developed
a general formula that keeps the collision implicit and the
advection explicit. After applying this method to the FVDBM,
it becomes

T n
α = [

(1 − θ )Cn
α + θCn+1

α

] − F n
α , (9)

where θ is a tuning parameter that varies between 0 and 1. The
collision term in Eq. (9) becomes fully explicit if θ = 0, and
fully implicit once θ = 1. Here we start from a simple case in
which θ = 1. Then Eq. (9) becomes

T n
α = Cn+1

α − F n
α . (10)

By combining Eqs. (4) and (7) into Eq. (10) to replace
the collision and temporal terms and rearranging the equation,
Eq. (10) becomes

f n+1
α = τ

τ + �t
f n
α + �t

τ + �t
f eq,n+1
α − τ�t

τ + �t
F n

α . (11)

Equation (11) is more stable than Eq. (8). However, there
is still implicitness left untouched in f eq,n+1

α that needs to be
resolved, which will be discussed in the next two sections. It
is important to note that a proper flux scheme is required to
calculate the flux term F n

α in order to close the system, which
will also be discussed later.

III. THE STATE OF ART OF RESOLVING THE
IMPLICITNESS IN f eq,n+1

α

The most simple and straightforward approach to resolve
implicitness for any problem is to solve the implicit variables
with an iterative process. For the current application, the
procedure should be performed with the following steps:

Step 1: Guess an initial value for f eq,n+1
α ;

Step 2: Calculate f n+1
α with Eq. (11);

Step 3: Calculate the moments with f n+1
α from step 2;

Step 4: Calculate the new f eq,n+1
α with the moments from

step 3;
Step 5: Check the difference between the new f eq,n+1

α

and its value in the last iteration. If it is converged, finish;
otherwise, repeat steps 2 to 5.

This iterative process is very costly since the calculation
of moments (step 3) and the calculation of the equilibrium
PDF (step 4) are computationally intense and the convergence
criteria must be met at all grid locations. Therefore, this
method is not studied in this paper. Instead, all the methods
discussed in this paper are noniterative.

A. The temporal extrapolation scheme

This approach directly solves f eq,n+1
α and then substitutes it

back into Eq. (11) to close the system. According to Mei and
Shyy [29], f eq,n+1

α can be linearly extrapolated, as a whole, by
using its own values in the two previous time steps, namely

f eq,n+1
α = 2 f eq,n

α − f eq,n−1
α , (12)

which is termed the temporal extrapolation (TE) scheme in
this paper. For the standard two-dimensional nine-velocity
model (D2Q9), the equilibrium PDF at any time step is
computed as

f eq
α = ωαρ

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u
2c2

s

]
, (13)

where ωα is the weight in each corresponding direction, cs is
the speed of sound, and u and ρ are the macroscopic velocity
and density, or moments, which can be calculated as

[
ρ

ρu

]
=

N−1∑
α=0

[
fα

eα fα

]
. (14)

As a result, the computation procedure of the FVDBM
using the TE scheme during each time step is as follows:

Step 1: Calculate the moments with Eq. (14) with the
newest fα;

Step 2: Calculate f eq
α with Eq. (13) based on the moments

from step 1;
Step 3: Calculate f eq,n+1

α with Eq. (12);
Step 4: Update fα with Eq. (11) with the f eq,n+1

α from
step 3.

It should be noted that step 2 requires only one computation
of f eq

α but additional memory allocation to store its value
at tn−1.

B. The variable transformation scheme

The TE scheme is very easy to implement. However, it was
noted by Mei and Shyy [29] that the TE scheme is prone to
instability due to the extrapolation. In order to address this, He
et al. [31] introduced a technique called the variable transfor-
mation (VT) to avoid the need for a temporal extrapolation. It
has been shown that the VT scheme is much more stable than
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the TE approach [34,39], and therefore has become a widely
accepted method [30–39]. The VT scheme does not focus on
solving f eq,n+1

α by itself. Instead, it treats the entire collision
term as a whole. In the context of the FVDBM, the VT scheme
starts from the following governing equation, which is the
result of replacing T n

α in Eq. (10) with Eq. (7):

f n+1
α = f n

α + �tCn+1
α − �tF n

α . (15)

By defining a new variable gα that contains the collision as

gα = fα − �tCα, (16)

at the time step tn+1, it holds that

gn+1
α = f n+1

α − �tCn+1
α , (17)

and by combining Eq. (17) and Eq. (15), this becomes

gn+1
α = f n

α − �tF n
α . (18)

It can be seen that there is no implicitness on the right-hand
side (RHS) of Eq. (18), so gn+1

α can be computed after the
flux calculation is finished. The next task is to recover f n+1

α

from gn+1
α . By rearranging Eq. (17) after expanding the BGK

collision term and combining the terms that contain f n+1
α , it

can be obtained that

f n+1
α = τ

τ + �t

(
gn+1

α + �t

τ
f eq,n+1
α

)
. (19)

The variable gα satisfies the condition that it preserves the
moments of fα; therefore,

[
ρ

ρu

]
=

N−1∑
α=0

[
gα

eαgα

]
=

N−1∑
α=0

[
fα

eα fα

]
. (20)

Since the equilibrium PDF can be exclusively determined
by its moments, as shown in Eq. (13), it also holds that

f eq, n+1
α = geq, n+1

α . (21)

As a result, the procedure of using the VT scheme for the
FVDBM during each time step is

Step 1: Calculate gn+1
α with Eq. (18);

Step 2: Calculate the moments based on gn+1
α with Eq. (20)

or Eq. (14);
Step 3: Calculate geq, n+1

α with Eq. (13) based on the
moments from step 2;

Step 4: Update fα with Eq. (19) by applying Eq. (21).

IV. THE SEMI-LAGRANGIAN IMPLICIT
COLLISION SCHEME

The semi-Lagrangian (SL) method originated in the ap-
plied math community for solving the general transport equa-
tion [41–44]. It preserves the mesh flexibility of the Eulerian
method while maintaining a good level of accuracy and large
CFL numbers of the Lagrangian method. And this why it
is “semi.” The earliest applications of the semi-Lagrangian
method in the LBM community were introduced by Shu et al.
[45] and Cheng and Hung [46], in which the interpolation
was introduced during the streaming step in order to remove
the restriction imposed by the rigid mesh structure. Recently
Krämer et al. [47] also applied the SL method to the streaming
on their off-lattice Boltzmann method and found that the SL

method can increase the computational efficiency by allowing
a larger time step size. In 2018, Di Ilio et al. [48] chose the
SL method for the streaming to study turbulent flows with a
body-fitted mesh for complex geometries. In the same year,
Dorschner et al. [49] applied the SL method to the advection
in their “particles on demand” framework in order to remove
the limitation of flow speed and temperature range in the orig-
inal LBM, which is the most recent work on the applications
of SL method in the LBM as of the writing of this paper.
However, all existing applications of the SL method are only
for advection, and it has never been applied to the collision
of any LBM or DBM work. In this section, an approach
that resolves the implicitness by applying the SL method to
the implicit collision term is developed. This approach is
called the semi-Lagrangian implicit collision (SLIC) in this
paper and completely different from the TE and VT methods
discussed in the previous section. The development of the
SLIC scheme will be explained in detail in the rest of this
section by starting from the reexamination of f eq, which is
defined as the Maxwellian distribution that is a function of
moments (density ρ, macroscopic velocity u, etc.) such that

f eq = ρ

(2πRT )D/2 exp

[
− (e − u)2

2RT

]
, (22)

where T is the temperature, D is the degree of spatial di-
mensions, and R is the ideal gas constant. The microscopic
velocity e in Eq. (22) is still continuous, which needs to
be discretized in order to be solved computationally. Once
discretized, f eq can be computed by performing a Taylor ex-
pansion on the Maxwellian. Equation (13) is the discrete form
of f eq on the D2Q9 lattice with a second-order truncation.
After the discretization, the moments can be recovered by
taking an ensemble of the PDFs, as shown in Eq. (14).

From Eqs. (13) and (14) it can be seen that f eq
α is a function

of moments that is further a function of fα , which can be
depicted by the following notation:

f eq
α = M{m[ fα]}, (23)

where m[] is the operator that calculates the moments from the
PDFs, and M{} is the operator that calculates the equilibrium
PDFs from the moments. (Technically speaking, M{} is the
Maxwellian operator that calculates the equilibrium PDFs by
Eq. (22). However, its notation is borrowed here to specifically
represent the calculation of equilibrium PDFs with discrete
velocities). As shown in Eq. (23), f eq

α is an indirect function of
fα , which is at the same time the solution of the DBE [Eq. (1)].
This is the reason why the implicitness in f eq,n+1

α is difficult
to treat.

Unlike the TE and VT schemes, the SLIC method tracks
the PDFs along their characteristics back in time in a La-
grangian way and was initially proposed by Groppi et al.
[50]. The SLIC method consists of two steps, which will
be explained as follows. First, according to Eq. (23), at the
barycenter P of any CV, as shown in Fig. 1, and at tn+1, it
holds that

f eq,n+1
α (P) = M

{
m

[
f n+1
α (P)

]}
. (24)

Second, as pointed out by Groppi et al. [50], the PDFs
preserve their values along their characteristic lines when
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FIG. 1. Advection of PDFs along characteristics.

being advected or streaming, followed by their moments.
Therefore, the PDFs at tn+1 are the same as the PDFs at tn
at their previous locations rendered by being tracked back in
time along the characteristic paths. Taking the D2Q9 lattice
model as an example, whose structure and numbering of
different directions are shown in the inset of Fig. 1, the nine
PDFs that rendezvous at the location P at tn+1 were advected
from different locations (P0 to P8) at the previous time step tn.
Therefore, it holds that

f n+1
α (P) = f n

α (Pα ). (25)

Since the PDFs keep their values along their characteristic
paths, the moments that are calculated based on these PDFs
also stay the same. Therefore, there exists

m
[

f n+1
α (P)

] = m
[

f n
α (Pα )

]
. (26)

For the D2Q9 lattice, Eq. (26) means that

[
ρn+1(P)

ρn+1(P)un+1(P)

]
=

8∑
α=0

[
f n
α (Pα )

eα f n
α (Pα )

]
. (27)

The tracked-back locations, P0 to P8 (P0 is the same lo-
cation as P since e0 is 0), are generally not located at grid
points (in the cell-centered meshes, they are not located at
barycenters). Therefore, an interpolation scheme is needed to
evaluate f n

α (Pα ). If using X to denote the coordinate of a point,
then the coordinates of Pα are known as

X (Pα ) = X (P) − eα�t . (28)

This location information is deterministic and can be used
to calculate f n

α (Pα ) with a chosen interpolation scheme. Once
f n
α (Pα ) becomes known, the implicitness can be closed as

f eq,n+1
α (P) = M

{
m

[
f n
α (Pα )

]}
. (29)

If a first-order interpolation scheme is selected, which
means the PDF distributions are constant within each CV, it

P 

X XN1 

N2 

N3 

FIG. 2. Second-order interpolation for the tracked-back locations.

can be assumed that

f n
α (Pα ) = f n

α (P), (30)

which says the PDF at the tracked-back locations within the
same CV is equal to its value at the barycenter of the CV.
Finally, Eq. (29) can be reduced to

f eq,n+1
α (P) = M

{
m

[
f n
α (P)

]}
. (31)

By revisiting Eq. (23) for the definition of f eq
α , it can be

seen that the RHS of Eq. (31) is actually f eq,n
α (P). Therefore,

Eq. (31) can be further reduced to

f eq,n+1
α (P) = f eq,n

α (P) or f eq,n+1
α = f eq,n

α . (32)

Equation (32) is the final form of the SLIC scheme with the
first-order interpolation. For convenience, this is designated
as SLIC+INT1 in this paper. The numerical sequence of
updating the FVDBM solution with the SLIC+INT1 scheme
during each time is

Step 1: Calculate the moments with Eq. (14) with the
newest fα;

Step 2: Calculate f eq,n
α with Eq. (13) based on the moments

from step 1;
Step 3: Update fα with Eq. (11) by using Eq. (32) for

f eq,n+1
α .

One can also choose a second-order interpolation to close
the SLIC scheme. Here we propose to use the PFLS scheme
from Ref. [28], in which the PDF distribution is assumed to
be a linear function such as

fα (x, y) = c1 + c2
x − x0√

�0
+ c3

y − y0√
�0

, (33)

where (x, y) and (x0, y0) are the coordinates of any tracked-
back location Pα and the barycenter P, respectively, as shown
in Fig. 2, and �0 is the area of the center CV whose barycenter
is P. In order to calculate the PDFs at the tracked-back
locations, the coefficients c1, c2, and c3 in Eq. (33) need to
be determined. With the help of three neighbor CVs whose
barycenters are N1(x1, y1), N2(x2, y2), and N3(x3, y3), these
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coefficients can be calculated as

[c1 c2 c3]
′ = (GT G)−1GT F, (34)

where

G =

⎛
⎜⎜⎜⎝

1 0 0

1 x1−x0√
�0

y1−y0√
�0

1 x2−x0√
�0

y2−y0√
�0

1 x3−x0√
�0

y3−y0√
�0

⎞
⎟⎟⎟⎠, (35)

F =

⎛
⎜⎜⎝

fα (P)
fα (N1)
fα (N2)

fα (N3)

⎞
⎟⎟⎠. (36)

Once c1, c2, and c3 are determined, the f n
α (Pα ) in Eq. (29)

can be calculated by plugging the coordinates of Pα into
Eq. (33). This is the SLIC scheme with second-order inter-
polation, which will be designated SLIC+INT2 in this paper.
It is worth noting that the matrix G [Eq. (35)] contains only
geometric information. Therefore, the computation process
can be optimized by precomputing the entire grouping of
(GT G)−1GT in Eq. (34) and storing it in memory. How-
ever, even with this optimization, the SLIC+INT2 scheme
undoubtedly will be much slower than the SLIC+INT1 ap-
proach, since the former requires the computation of Eqs. (33)
and (34) for multiple times (nine times for D2Q9) as well
as Eq. (29) for one time, but the latter only requires the
computation of f eq,n

α by Eq. (13) for one time.
The procedure of updating the FVDBM solution with the

SLIC+INT2 scheme during each time is
Step 1: Calculate the coefficients with Eq. (34);
Step 2: Calculate the PDF at the tracked-back location with

Eq. (33);
Step 3: Repeat step 1 and step 2 for all tracked-back

locations;
Step 4: Gather the PDFs at all tracked-backed locations

and combine them into Eq. (29) to compute f eq,n+1
α ;

Step 5: Update fα with Eq. (11) with the f eq,n+1
α from

step 4.

V. SIMULATION RESULTS AND DISCUSSIONS:
A PRELIMINARY STUDY

Taylor-Green vortex (TGV) flow is chosen as the major
example case for this study. The analytical velocities (ux, uy)
at any location (x, y) and any time t are defined as

ux = −u0 cos (k1x) sin (k2y)e[−ν(k2
1+k2

2 )t], (37)

uy = u0
k1

k2
sin (k1x) cos (k2y)e[−ν(k2

1+k2
2 )t], (38)

where u0 is a reference velocity, ν is the kinematic viscosity,
and k1 and k2 are defined as

k1 = 2π

Dx
, k2 = 2π

Dy
, (39)

FIG. 3. Grid convergence study on the Taylor-Green vortex flow.

where Dx and Dy are the length and height of the flow domain.
The SLIC+INT1 and SLIC+INT2 schemes are compared
with the TE and VT schemes by solving the FVDBM with
Eq. (11) (θ = 1) for the TGV flow. The second-order upwind
(SOU) is used for all schemes to calculate the flux term F n

α

in Eq. (11). The comparisons in terms of accuracy (temporal
accuracy), computational cost, and stability are made for all
schemes, which will be discussed in detail in the following
subsections. Before performing the comparisons, an appropri-
ate mesh size should be chosen. Therefore, a grid convergence
study is undertaken for all implicit schemes as shown in Fig. 3.
Except for the mesh resolution, all of the parameters are kept
the same, including τ = 0.009 and �t

τ
= 0.2, and all of the

errors are measured when t = 0.5tc (tc is the time when the
TGV flow has decayed to exactly 50% of its initial strength).
By fixing τ , the Re of the flow is also fixed due to the linear
relation between τ and ν, defined as ν = τc2

s . All of the curves
in Fig. 3 can be described by the simple power law axb. After a
and b for each curve are determined through curve fitting with
a high confidence level of R2 = 0.99, the prefactor log(a) and
slope b of each curve can be obtained, as shown in Fig. 3.
It can be seen that the SLIC+INT1 presents the steepest
slope, which is −0.71. The mesh size chosen for all numerical
studies in this paper is 40 000, since at this mesh resolution,
the errors for all of the schemes are below a reasonable
amount, which is 10−1. All numerical parameters used in the
convergence study along with the selected mesh size are also
applied in other studies in this paper except when otherwise
noted. There are another two observations one can make in
Fig. 3. First, the TE and VT schemes are almost identical
in terms of error; and second, the SLIC+INT2 approach
produces larger errors than SLIC+INT1. The analysis behind
these observations will be given in subsequent subsections.

A. Accuracy

The L2 errors [with respect to the analytical solution in
Eqs. (37) and (38)] of the FVDBM transient solutions with
four implicit collision schemes are calculated. In order to see
the effect of �t on the transient solutions, the transient errors
in the window from 0 to 0.5tc with four different sizes of �t
are measured and compared in Fig. 4. It can be seen that at all
sizes of �t , the errors for all schemes grow with time because
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FIG. 4. The L2 errors of transient FVDBM solutions with different implicit collision schemes during the time span from 0 to 0.5tc for (a)
�t = 0.05τ ; (b) �t = 0.1τ ; (c) �t = 0.15τ ; and (d) �t = 0.2τ .

the transient errors will accumulate during each time step.
However, the errors from the two SLIC schemes (especially
the SLIC+INT1) grow at a slower pace than the TE and VT
schemes as time progresses, which clearly indicates that the
SLIC schemes can generate much less temporal error than
the TE and VT schemes. At �t = 0.2τ , the error of the
TE (or VT) scheme is more than eight times the error from
the SLIC+INT1 scheme, which means the SLIC+INT1 can
improve the temporal accuracy by a factor of 8. When taking
an average among all of the plots in Fig. 4, this factor is
almost 4, which is still very high. As pointed out in the grid
convergence study, the TE and VT schemes generate almost
identical results, which can also be well observed in Fig. 4. In
order to quantify their difference, the error difference between
the TE and VT schemes (TE minus VT) of the transient
solutions is plotted in Fig. 5, from which it can be seen that
the VT scheme always generates slightly less error than the
TE scheme, and that such a difference also grow with time
and becomes larger with the increase of �t .

By examining each plot in Fig. 4 again, it is not difficult
to conclude that the change of �t has different effects on the
FVDBM solvers with different implicit collision schemes. For
the TE and VT schemes, the change of �t barely affects the
error. On the other hand, an increasing �t will decrease the
error of the solver with the two SLIC schemes. These can be
seen more clearly in Fig. 6, in which the errors with different
schemes at t = 0.5tc are plotted against �t . The error of a

transient solution at any instance t is the error accumulation
from the initial time step to the current time step. In other
words,

Et =
S∑
1

εn, (40)

FIG. 5. The L2 error difference between the TE and VT schemes
(TE-VT) of transient FVDBM solutions during the time span from 0
to 0.5tc.
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FIG. 6. The effects of �t on the error of the FVDBM solutions
with different implicit collision schemes.

where Et is the error of the transient solution measured at the
current time, εn is the error generated during the nth time step,
and S is the total number of time steps from the initial to the
current time. For the TE and VT schemes, although εn will
increase with increasing �t , it takes fewer time steps to reach
the same end time t . As a result, the total accumulated error
stays the same. Therefore, the FVDBM with the TE and VT
schemes belongs to the family that satisfies the condition that

ε1

ε2
= �t1

�t2
, (41)

where �t1 and �t2 are two different time step sizes, and ε1

and ε2 are the corresponding errors generated during one time
step. On the contrary, the errors of the two SLIC schemes
at t = 0.5tc dramatically decrease with an increase in �t .
At �t = 0.05τ , the SLIC+INT1 generates an error of less
than 6% compared to the analytical solution, which is a
roughly 25% decrease in error compared to the TE or VT
scheme. When increasing the time step size to �t = 0.2τ ,
the SLIC+INT1 scheme produces an error of only about 1%
compared to the analytical solution, which is an 85% cut in
error compared to the TE and VT schemes. The SLIC schemes
behave like this because they belong to another family of
schemes that satisfies

ε1

ε2
>

�t1
�t2

, (42)

which means when the time step size increases the temporal
error during each time step also increases but at a lower rate.
This is an important feature since a larger �t will not only
improve the accuracy of the solution but also bring down the
computational cost by taking fewer time steps if a steady-state
solution is sought. This feature of the SLIC scheme was also
observed in the publication of Qiu and Shu [43] although the
semi-Lagrangian method was applied to the advection term,
not the collision.

By examining the results in Figs. 3, 4, and 6, it might
seem counterintuitive that a larger transient error results from
the SLIC+INT2 scheme in comparison to the SLIC+INT1
scheme. It could be assumed, after all, that second-order
interpolation is inherently supposed to be more accurate than
first-order interpolation. However, a more in-depth accuracy

FIG. 7. The effect of viscosity on lid-driven square cavity flow.

analysis can explain this phenomenon. To do so, it is necessary
to reexamine the error accumulation of the transient solution
of TGV flow. By checking Eqs. (37) and (38) for the analytical
solution of the TGV flow, it can be seen that the decay of
the flow is exclusively controlled by the term e[−ν(k2

1+k2
2 )t].

Since k1 and k2 are constants, the actual decay is controlled
by just two factors: the time t and the viscosity ν. Therefore,
the longer the time and the larger the viscosity, the larger
the decay would become. Translating this analysis to the
numerical realm, this means that the error accumulation of the
TGV transient solution is due to two (and only two) numerical
ingredients: the time-marching scheme that controls how time
proceeds and the numerical viscosity that will alter the real
viscosity of the flow. Therefore, the fact that SLIC+INT2 is
less accurate than SLIC+INT1 for the temporal solution of the
TGV flow, which is repeatedly shown in Figs. 3, 4, and 6, must
be a manifestation of the combined effects of time marching
(the implicit collision scheme is part of time marching) and
numerical viscosity. As a result, it is necessary to see whether
the SLIC+INT1 and SLIC+INT2 contribute the same amount
of numerical viscosity prior to discussing their numerical error
difference in temporal solutions observed in Figs. 3, 4, and 6.

In order to do this, a new flow case that can satisfy two con-
ditions is needed. First, the flow must have a steady-state solu-
tion in order to remove the error difference due to time march-
ing; and second, the solution of the flow must only be affected
by viscosity from the physical point of view. To that end, the
canonical lid-driven square cavity (LDSC) flow is chosen. By
fixing the domain size and the velocity of the moving lid, the
steady-state solution of the flow only depends on the viscosity.
For example, the steady-state solution of Re = 100 is shown
by the solid line in Fig. 7. If the viscosity is decreased by
4, which will quadruple Re to 400 while keeping other pa-
rameters unchanged, the steady-state solution becomes what
is shown as the dashed line. Therefore, it can be concluded
that the flow profile will become more extreme when viscosity
is decreased. By using this principle, the FVDBM steady-
state solutions with all four implicit collision schemes on the
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FIG. 8. The manifestation of numerical viscosities of different
implicit collision schemes.

Re = 100 LDSC flow are obtained and compared in Fig. 8.
From the enlarged insets in Fig. 8, it can be seen that the
solutions with the TE, VT, and SLIC+INT1 schemes are
identical, which indicates that these three schemes either
produce zero or the same amount of numerical viscosity. On
the other hand, the solution with the SLIC+INT2 scheme is
slightly more disturbed than the other three approaches, which
could only be the result of the SLIC+INT2 scheme producing
slightly less numerical viscosity than SLIC+INT1 (and TE
and VT), since all other parts of the model are kept the same.
In fact, this is expected, since high-order spatial interpolation
schemes will decrease numerical viscosity or diffusion error.
By recalling the previous observations in Figs. 3, 4, and 6,
we now can conclude that SLIC+INT2 introduces a much
larger error to the time marching itself than SLIC+INT1. This
error is so large that it offsets the benefit of the lower nu-
merical viscosity compared to SLIC+INT1. Taken together,
then, the SLIC+INT2 scheme produces larger errors than the
SLIC+INT1 scheme for transient solutions. Therefore, for
time marching only, SLIC+INT1 is superior to SLIC+INT2,
even though SLIC+INT1 is mathematically much simpler. As
for why the SLIC+INT1 is superior to SLIC+INT2 for the
time marching itself, one is recommended to visit Sec. V D in
this paper for a detailed explanation.

B. Computational cost

The measured computational cost is the update time, tU , in
this paper, which is defined as

tU = tT
W S

, (43)

where tT is the total runtime for the simulation, W is the
total number of control volumes, and S is the total number
of time steps or iterations. Therefore, tU is the overhead on
all computational tasks in the FVDBM solver, not just the
time spent on the implicit collision scheme. However, tU is
able to reflect the difference in computational costs among

TABLE I. Update time for the FVDBM solver with different
implicit collision schemes.

Implicit collision scheme tU (sec)

TE 4.159 × 10−5

VT 4.211 × 10−5

SLIC+INT1 4.145 × 10−5

SLIC+INT2 5.079 × 10−5

different implicit collision schemes because all other numeri-
cal ingredients in the solver are the same. Table I lists the tU
for the entire solver with different implicit collision schemes.
All simulations are performed on an Intel i7-7700 3.6-GHz
CPU. Multiple measurements are taken and then averaged.

From the measurements, it can be seen that all of the
schemes have almost the same tU except for the SLIC+INT2
approach. The SLIC+INT1 is slightly faster than the TE
scheme because the former avoids the computational time
needed for f eq,n+1

α through Eq. (12), which is required in the
TE scheme; the VT is slower than the TE scheme because the
VT scheme requires two times of variable transformations,
one of which is from f to g [Eq. (17)] and the other is
from g to f [Eq. (19)]. The SLIC+INT2 scheme is almost
25% slower than SLIC+INT1 due to the cumbersome second-
order interpolation at multiple locations. Compared to the TE
and VT, the improvement in the computational cost of the
SLIC+INT1 is comparatively mild, but that approach also
comes with an accompanying gain in accuracy. Therefore, the
SLIC+INT1 scheme can improve the accuracy with no extra
computational cost.

C. Stability

As discussed in the Background, the stability of solving the
DBE is determined both by the advection and the collision.
For the advection, the maximum �t is limited by �x, which
is the characteristic grid size and defined in the following
equation for the triangular mesh used in this paper:

�x =
√

2VCV . (44)

For the collision, the maximum �t is related to the relax-
ation time τ . The stability region of each implicit collision
scheme is shown in Fig. 9, in which • and × represent stable
and unstable points, respectively. First, by comparing Fig. 9(a)
and 9(b), one can see that the VT scheme significantly im-
proves the stability in the �t/τ limit, which is changed from
2.6 to 100. A similar improvement was also reported in other
work [34,39]. Second, the comparison between Figs. 9(c),
9(d) and 9(a) shows that the SLIC schemes can also improve
the �t/τ limit by the same amount as the VT scheme.
However, it is worth noting that the stability tests for the
VT and SLIC schemes are purposely capped at �t/τ = 100
because that ratio is considered to be quite good in practice.
Therefore, the VT and SLIC schemes may display different
�t/τ behaviors beyond 100, but that is not studied in the
current paper. Finally, by comparing all of the subfigures in
Fig. 9, it is clear that all of the schemes share the same
�t/�x limit, which is 0.15. This is expected, since they
produce the same amount of numerical viscosity (as shown
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FIG. 9. The stability regions of the FVDBM solutions with different implicit collision schemes for (a) TE; (b) VT; (c) SLIC+INT1; and
(d) SLIC+INT2.

in Fig. 8), with the exception that the SLIC+INT2 scheme
generates a slightly lesser amount of numerical viscosity than
the other schemes, which can be ignored eventually. It is well
known that the stability for advection is closely related to
the numerical viscosity. Therefore, these four schemes have
an equal effect on the advection process and share the same
�t/�x limit based on the �t/�x resolution used in the figure.

D. Preliminary conclusions and further discussions
from a different perspective

Some preliminary conclusions can be made based on the
results gathered so far. The comparison in accuracy reveals

that, first, the VT scheme is slightly more accurate than the TE
scheme, while both satisfy Eq. (41). Second, the SLIC+INT1
scheme is much more accurate than the TE and VT schemes,
and satisfies Eq. (42). In the tested range of �t , it can improve
the accuracy by a factor of 8 at maximum and by a factor
of 4 on average. Third, the SLIC+INT2 scheme satisfies
Eq. (42) as well, and is also an improvement over the TE
and VT schemes, but is not as accurate as SLIC+INT1. The
deterioration is exclusively due to the fact that the
SLIC+INT2 approach generates a higher level of error during
time marching (although it produces slightly less numeri-
cal viscosity). The tests on computational costs show that,
first, the SLIC+INT1 is the fastest scheme because it is
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mathematically the simplest; second, upgrading the interpo-
lation from first order to second order for the SLIC scheme
is not a good investment given the fact it unpleasantly cuts
the accuracy. At last, the stability test shows that the two
SLIC schemes have the same �t/τ limit as the VT scheme
in the tested range of �t/τ , which is an order of magnitude
higher than the TE scheme. In conclusion, SLIC+INT1 is the
most advantageous scheme to use, considering the accuracy,
computational cost, and stability all at the same time.

By comparing the mathematical forms of the TE scheme
[Eq. (12)] and the SLIC+INT1 scheme [Eq. (32)] side by side,
one may draw an erroneous conclusion that these two schemes
belong to the same mathematical family based on the temporal
extrapolation of equilibrium PDFs. This is because Eq. (12)
is a second-order extrapolation that utilizes the equilibrium
PDFs at the two previous time steps tn and tn−1, and Eq. (32)
appears to be a first-order temporal extrapolation that uses the
equilibrium PDFs at only one time step, tn. However, Eq. (32)
actually is not connected to a temporal extrapolation at all.
There are two supporting pieces of evidence. First, if the

SLIC+INT1 and TE schemes belong to the same family but
have different orders of accuracy, one would have been able
to see that the SLIC+INT1 generates a higher, not smaller,
error than the TE scheme in Fig. 4. Second, the vigorous
derivation in Sec. IV reveals the true origin of Eq. (32), which
is completely unrelated to temporal extrapolation. The reason
why it appears to be a first-order temporal extrapolation
scheme is only because Eq. (32) is a special case that applies
the first-order spatial interpolation to the general form of the
semi-Lagrangian collision model [Eq. (29)].

In order to explain why the SLIC+INT1 scheme, which
bears the simplest mathematical form, can outperform other
schemes (especially the SLIC+INT2 approach) in terms of
the accuracy for time marching itself, it is necessary to reex-
amine all of the schemes presented in this paper from a dif-
ferent perspective. The four schemes—TE, VT, SLIC+INT1,
and SLIC+INT2—can be reformulated and generalized such
that

f eq,n+1
α = f eq,n

α + δ, (45)

where

δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f eq,n
α − f eq,n−1

α , for TE
[
please refer to Eq. (12)

]
−M

{
m

[
F n

α

]}
�t, for VT

[
please refer to Eqs. (18), (21), and (23)

]
0, for SLIC + INT1

[
please refer to Eq. (32)

]
a nontrivial term related to Eq. (33), for SLIC + INT2

. (46)

It can be easily concluded that δ is a nonzero term for all
schemes except for the SLIC+INT1 approach. Therefore, we
can propose the following hypothesis:

The temporal error is related to the size of δ and is minimized
when δ = 0 (H1)

If H1 is true, the reason why the SLIC+INT1 scheme
exhibits the best performance is self-explanatory. However,
for H1 to be valid, another hypothesis first must be valid: On
the system level, δ = 0 represents the absolutely true case. In
other words

If a simulation is correct, globally, f eq,n+1
α − f eq,n

α → 0 as
time progresses, or ∂ f eq

α

∂t → 0 as t → ∞ (H2)
In order to prove H2 and then H1, we can develop the

following numerical evidence. A standard LBM simulation is
performed on the same TGV flow. It is used as a benchmark,
since its computational paradigm is completely different from
the FVDBM and it does not require the computation of
the implicit f eq,n+1

α . The ∂ f eq
α

∂t at any location x and time

step tn is computed numerically as f eq,n
α (x)− f eq,n−1

α (x)
�t at each

grid point, and then averaged over the entire computational
domain. The calculation is performed on each of the nine
total directions, and then plotted over time. The results
from the LBM simulation as well as the FVDBM simula-
tions with all of the studied implicit schemes are shown in
Fig. 10.

It can be seen from the results that there are three pieces
of evidence to support H2. First, the values of ∂ f eq

α

∂t for all of

the numerical schemes (LBM as well as FVDBM) on all nine
directions are very small. Apart from direction 0, in which
the value is of order 10−9, the values of ∂ f eq

α

∂t in the other eight

directions are on the order of 10−10. Second, for the LBM, ∂ f eq
α

∂t
is oscillating, but the magnitude of the oscillation is decreas-
ing over time in all directions; and for the FVDBM, the results
from all implicit schemes are monotonically converging to
zero over time except at the beginning of the simulations (the
simulations are initialized with f eq

α , and this is why ∂ f eq
α

∂t = 0
at t = 0). Third, for the LBM simulation, the centerlines of
the oscillations of ∂ f eq

α

∂t are computed, and are horizontal lines
passing through trivial values. In direction 0, this value is
4.02 × 10−11; and it is −4.6 × 10−12 for directions 1 to 4 and
−3.9 × 10−12 for directions 5 to 8, respectively. These values
are nearly zero, which is another indicator that ∂ f eq

α

∂t → 0 on
the global scale captures the true nature of the simulation
during time marching.

Given that H2 is true, the validity of H1 can be proven with
ease. It can be seen in Fig. 10 that in all nine directions, the
SLIC+INT1 scheme consistently generates a smaller size of
∂ f eq

α

∂t than the other three implicit schemes. And at the same
time, the temporal error of the SLIC+INT1 scheme for time
marching is the smallest, which is already shown in Fig. 4. So,
H1 is true as well.

The theoretical reason why ∂ f eq
α

∂t → 0 on the global scale
(H2) is also provided here, which is embedded in the DBE
itself. By using the material derivative D/Dt = ∂/∂t + e · ∇,
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FIG. 10. The transient behaviors of ∂ f eq
α /∂t for different models on the Taylor-Green vortex flow for (a) direction 0; (b) direction 1; (c)

direction 2; (d) direction 3; (e) direction 4; (f) direction 5; (g) direction 6; (h) direction 7; (i) direction 8.

the DBE with the BGK collision model [Eq. (1)] can be
rewritten as

D fα
Dt

= − 1

τ

(
fα − f eq

α

)
. (47)

Since it always holds that fα = f eq
α + f neq

α , Eq. (47) then
becomes

D f eq
α

Dt
= −

(
D f neq

α

Dt
+ 1

τ
f neq
α

)
. (48)

063301-12



SEMI-LAGRANGIAN IMPLICIT BHATNAGAR-GROSS- … PHYSICAL REVIEW E 101, 063301 (2020)

There are two components in the parentheses on the RHS
of Eq. (48). The first one is D f neq

α

Dt , which is controlled by
streaming; and the second part is 1

τ
f neq
α , which is governed by

the relaxation process. These two components tend to cancel
out each other as a result of the famous “ever-shifting battle”
originally evoked by Boltzmann. The explanation for what
this means and why it happens can be found in Ref. [7].
The purpose of relaxation is to achieve a balance in which
the distribution functions are couched into the universal local
Maxwell-Boltzmann distribution. On the other hand, stream-
ing operates in a completely opposite way. It destroys the
balance established by the relaxation by reviving nonequi-
librium through inhomogeneity. As a result, the sum of D f neq

α

Dt

and 1
τ

f neq
α will converge to zero as time progresses. However,

when the numerical viscosity is zero (such as in the LBM),
the RHS of Eq. (48) will never monotonically converge to
zero, but always oscillates within a narrowing band (capped
by very small values) due to the ever-shifting nature of the
balance, as seen in the oscillatory curves of Fig. 10. Therefore,
D f eq

α

Dt , which is the left-hand side (LHS) of Eq. (48), will
inherit the same converging nature exhibited by the RHS as
a result of LHS = RHS (the minus sign on the RHS does not
affect this nature; and the LHS is also oscillatory if numerical
viscosity is zero). When D f eq

α

Dt → 0 locally, it means that f eq
α

only slightly departs from exact conservation along the light
cone (the lattice directions or characteristics) as time passes.
On the local scale, D f eq

α

Dt → 0 and ∂ f eq
α

∂t → 0 are not the same,
since the former is in Lagrangian space while the latter is in
Eulerian space. However, on a global scale, in which a global
average is taken, D f eq

α

Dt → 0 can be considered equivalent to
∂ f eq

α

∂t → 0, further validating H2 on a theoretical basis, beyond
the numerical evidence shown in Fig. 10.

VI. THE APPLICATION OF THE SLIC+INT1 MODEL:
A SECONDARY STUDY

In terms of implementing the SLIC+INT1 scheme for
different simulations, there is a simple rule of thumb to do
this:

Replace f eq,n+1
α with f eq,n

α in any place it appears.
It is important to recall that the numerical results and

conclusions for the implicit collision schemes in the previous
section are made in a specific numerical context that the time
marching of the FVDBM is chosen to have θ = 1 in Eq. (9)
and the flux term F n

α is completed with the second-order
upwind scheme. In order to demonstrate that the numerical
advantages of the SLIC+INT1 scheme in terms of accuracy,
computational cost, and stability will generally hold, the same
comparisons from the previous section will be performed
again, but this time on the FVDBM with a different time-
marching scheme and a different flux calculation. Starting
from Eq. (9) again for the general FVDBM, and choosing
θ = 1

2 , which is a popular choice for a second-order accuracy
[22,23,34–39], Eq. (9) then becomes

T n
α = 1

2

(
Cn

α + Cn+1
α

) − F n
α . (49)

After using Eq. (4) to expand the BGK collision terms Cn
α

and Cn+1
α and using Eq. (7) to replace T n

α , Eq. (49) is further

transformed to

f n+1
α = f n

α − �t

2τ

[(
f n
α − f eq,n

α

) + (
f n+1
α − f eq,n+1

α

)] − �tF n
α .

(50)

After combining the terms that contain f n
α and f n+1

α ,
Eq. (50) becomes

f n+1
α = 2τ − �t

2τ + �t
f n
α + �t

2τ + �t

(
f eq,n
α + f eq,n+1

α

)

− 2τ�t

2τ + �t
F n

α . (51)

Now, instead of using the SOU for F n
α , it is calculated with

the piecewise linear (PL) Godunov-type flux scheme (which is
also second order) developed in Ref. [27]. The PL flux scheme
produces much less diffusion error than the SOU approach
because it calculates the averaged flux from tn to tn+1. As a
result, the PL flux scheme is also a function of �t , so that the
flux calculation will become more accurate as �t becomes
smaller (please refer to Ref. [27] for more details). It can be
seen that there is still unresolved implicitness embedded in
f eq,n+1
α in Eq. (51) [and Eq. (50)], which will be treated with

different schemes in the following subsections.

A. The temporal extrapolation scheme

The same numerical procedure in Sec. III A can be repeated
here:

Step 1: Calculate the moments with Eq. (14) with the
newest fα;

Step 2: Calculate f eq
α with Eq. (13) based on the moments

from step 1;
Step 3: Calculate f eq,n+1

α with Eq. (12);
Step 4: Update fα with Eq. (51).

B. The variable transformation scheme

Since a different θ value is used, the variable transforma-
tion process should be redone accordingly from the beginning.
By defining another variable hα as

hα = fα − �t

2
Cα, (52)

we have

hn+1
α = f n+1

α − �t

2
Cn+1

α = f n+1
α + �t

2τ

(
f n+1
α − f eq,n+1

α

)
.

(53)

Equation (50) can then be rewritten as

hn+1
α = 2τ − �t

2τ
f n
α + �t

2τ
f eq,n
α − �tF n

α . (54)

After hn+1
α is computed, f n+1

α can be recovered by using
Eq. (53) such that

f n+1
α = 2τ

2τ + �t

(
hn+1

α + �t

2τ
f eq,n+1
α

)
. (55)
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Again, f eq,n+1
α can be resolved by the following relation

because the variable h has the same moments as f :

f eq, n+1
α = heq, n+1

α . (56)

Then heq, n+1
α is computed by Eq. (13) with the moments

that are calculated by

[
ρ

ρu

]
=

N−1∑
α=0

[
hα

eαhα

]
. (57)

As a result, the procedure of using the VT scheme on the
new FVDBM is

Step 1: Calculate the moments with Eq. (14) with the
newest fα;

Step 2: Calculate f eq, n
α with Eq. (13) based on the mo-

ments from step 1;
Step 3: Calculate hn+1

α with Eq. (54);
Step 4: Calculate the moments with Eq. (57) based on the

hn+1
α obtained from step 3;

Step 5: Calculate heq, n+1
α with Eq. (13) based on the

moments from step 4;
Step 6: Update fα with Eq. (55) by applying Eq. (56).
By comparing the numerical procedures of the current and

the previous FVDBM in Sec. III B, it can be seen that the
current one requires the calculation of f eq, n

α , which does not
appear in the previous FVDBM. This is solely because both
f eq, n
α and f eq, n+1

α are needed to update fα in the current
FVDBM in which θ = 1

2 .

C. The SLIC schemes

The calculation of the new FVDBM with the SLIC+INT1
scheme becomes very simple:

Step 1: Calculate the moments with Eq. (14) with the
latest fα;

Step 2: Calculate f eq,n
α with Eq. (13) based on the moments

from step 1;
Step 3: Update fα with Eq. (51) using the rule of thumb,

which can further reduce Eq. (51) to

f n+1
α = 2τ − �t

2τ + �t
f n
α + 2�t

2τ + �t
f eq,n
α − 2τ�t

2τ + �t
F n

α . (58)

In order to explore a comparison between the SLIC+INT1
and SLIC+INT2 schemes for this numerical case, the cal-
culation with the SLIC+INT2 is also provided, utilizing the
following steps:

Step 1: Calculate the coefficients with Eq. (34);
Step 2: Calculate the PDF at the tracked-back location with

Eq. (33);
Step 3: Repeat step 1 and step 2 for all tracked-back

locations;
Step 4: Gather the PDFs at all tracked-backed locations

and plug them into Eq. (29) to compute f eq,n+1
α ;

Step 5: Update fα with Eq. (51) by using the f eq,n+1
α from

step 4.

D. The VT scheme modified by SLIC+INT1

As stated in the rule of thumb, f eq,n+1
α can be replaced

by f eq,n
α anywhere it appears, including in Eq. (55) for the

VT scheme. As a result, the calculations of the moments
based on h [Eq. (57)], the subsequent calculation of heq, n+1

α

[Eq. (13)], and the final update of f eq,n+1
α [Eq. (56)] can

be completely avoided. Therefore, the VT scheme modified
by the SLIC+INT1 scheme can be realized in the following
sequence:

Step 1: Calculate the moments with Eq. (14) with the
newest fα;

Step 2: Calculate f eq, n
α with Eq. (13) based on the mo-

ments from step 1;
Step 3: Calculate hn+1

α with Eq. (54);
Step 4: Update fα with Eq. (55) by using the rule of thumb.
However, it is worth noting that the modified VT scheme

will generate exactly the same solution as the SLIC+INT1
scheme, because after replacing hn+1

α with Eq. (54), Eq. (55)
becomes Eq. (51) automatically. After that, substituting
f eq,n+1
α with f eq,n

α will have the same effect as the SLIC+INT1
scheme.

E. Numerical comparisons and discussions

The five schemes, TE, VT, SLIC+INT1, SLIC+INT2, and
VT modified by SLIC+INT1 will be compared in this sub-
section in terms of accuracy, computational cost, and stability.
The numerical settings for the comparison are kept the same
as in Sec. V.

1. Accuracy

The errors of transient solution from 0 to 0.5tc of the
TGV flow for the five schemes on the new FVDBM (different
time marching and flux schemes) with four sizes of �t are
compared in Fig. 11. By comparing Fig. 11 with Fig. 4, several
quick observations can be made. First, all errors shown in
Fig. 11 are smaller than those in Fig. 4. This is because the
PL flux scheme can produce much less numerical viscosity
than the SOU flux. As discussed at the end of Sec. V A,
numerical viscosity is one of the two factors that can influence
the accuracy of the transient solution of TGV flow. A smaller
numerical viscosity will make the transient solution more
accurate. Second, TE and VT schemes still produce the same
results. Third, the SLIC+INT1 is still the most accurate
scheme. In the tested range of �t , the maximum factor of
accuracy improvement is more than 5 at �t = 0.2τ , compared
to the TE or VT scheme. On average, it can still improve the
accuracy by a factor of 4. Fourth, the SLIC+INT2 is still not
as accurate as the SLIC+INT1 approach for the same reason
[Eq. (46)]. In addition, in Fig. 11(a) in which �t is small,
it can be seen that even the TE and VT schemes are better
choices than the SLIC+INT2 approach.

There are also some other phenomena. First, after being
modified by the SLIC+INT1, VT can also improve its accu-
racy. From the results, it can be seen that the SLIC+INT1 and
the modified VT produce the same accuracy, which echoes the
analysis at the end of Sec. VI D. Second, all schemes in Fig. 11
have an increasing error with an increase in �t , which differs
from the behavior observed in Fig. 4. This can be more easily
seen in Fig. 12, in which the percentage errors of different
schemes are plotted against different sizes of �t . The upward
trend is due to the fact that the error of the PL Godunov flux
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FIG. 11. The L2 errors of the transient solutions of the new FVDBM with different implicit collision schemes during the time span from 0
to 0.5tc for (a) �t = 0.05τ ; (b) �t = 0.1τ ; (c) �t = 0.15τ ; and (d) �t = 0.2τ .

scheme increases with an increase in �t , which changes the
nature of the entire FVDBM solver to the one that satisfies
the following condition, no matter which implicit collision
scheme is used:

ε1

ε2
<

�t1
�t2

. (59)

However, it is interesting to note that in Fig. 12 the errors
of the modified VT and two SLIC schemes grow at a slower
rate than the other schemes when �t is increasing. This is

FIG. 12. The effects of �t on the errors of the new FVDBM
solutions with different implicit collision schemes.

because although the PL Godunov flux scheme generates a
higher error with a larger �t , the SLIC and the modified
VT implicit collision schemes still decrease the error with
a growing �t [Eq. (42)] while the TE and VT are still not
affected by �t [Eq. (41)]. As a result, the combined effects of
the flux scheme and the implicit collision scheme will behave
as what is shown in Fig. 12.

2. Computational cost

The update time tU [Eq. (43)] of the new FVDBM solver
with each of the five implicit schemes is measured and listed
in Table II. Again, it can be seen that the SLIC+INT1
scheme is still the fastest. In addition, the modified VT
scheme is faster than the original VT scheme due to the
saved computations, but still slower than the SLIC+INT1.
However, there are two major differences compared to the

TABLE II. Update time for the new FVDBM solver with differ-
ent implicit collision schemes.

Implicit collision scheme tU (sec)

TE 3.589 × 10−5

VT 4.064 × 10−5

SLIC+INT1 3.521 × 10−5

SLIC+INT2 4.426 × 10−5

VT modified by SLIC+INT1 3.762 × 10−5
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FIG. 13. The stability regions of the new FVDBM solutions with different implicit collision schemes for (a) TE; (b) VT; (c) SLIC+INT1;
(d) SLIC+INT2; and (e) VT modified by SLIC+INT1.

observations in Table I for the previous FVDBM solutions.
First, the update times for the new FVDBM solver with all
implicit collision models are universally shorter than their
counterparts in Table I. This is because the PL Godunov

flux scheme is faster than the SOU flux scheme. Second, in
Table I, the SLIC+INT1 is roughly 2% faster than the VT
scheme, but for the new FVDBM, the SLIC+INT1 presents a
13% improvement in speed. The reason for this is that in the

063301-16



SEMI-LAGRANGIAN IMPLICIT BHATNAGAR-GROSS- … PHYSICAL REVIEW E 101, 063301 (2020)

previous FVDBM in which θ = 1, both the VT and
SLIC+INT1 schemes require just one calculation of the equi-
librium PDF. However, the VT scheme in the current FVDBM
with θ = 1

2 requires the calculation of the equilibrium PDF
two times, which was also stated at the end of Sec. VI B, while
the SLIC+INT1 scheme still just requires one calculation.
Since the equilibrium PDF calculation is very costly, the
difference in speed becomes larger. Finally, the SLIC+INT2
scheme is still the slowest due to its much larger computa-
tional load.

3. Stability

The last test is the stability test on the new FVDBM with
the five implicit collision schemes. The stability region for
each scheme is shown in Fig. 13. The first difference from
the results shown in Fig. 9 is that the �t/�x limit becomes
larger. This is the advantage of the PL Godunov flux scheme
over the SOU flux scheme. Consistent with Fig. 9, it can be
seen as well that the two SLIC schemes have a much higher
�t/τ limit than the TE scheme and have the same �t/τ limit
as the VT scheme. Additionally, the stability of the modified
VT does not change compared to its original version, and
also stays the same as the SLIC+INT1 since the SLIC+INT1
and modified VT scheme are mathematically the same, as
explained as the end of Sec. VI D.

VII. CONCLUSIONS

In this paper, an advanced method to resolve the implicit
BGK collision is developed for the finite-volume discrete
Boltzmann method. This method stems from applying the
semi-Lagrangian approach to the implicit equilibrium PDFs
in the BGK collision. With the help of the first-order interpo-
lation, the developed scheme becomes as simple as enforcing
f eq,n+1
α = f eq,n

α . By comparing this scheme with two existing
ones, the temporal extrapolation and the variable transforma-
tion approaches, on the FVDBM with different time-marching
and flux calculation schemes, three advantages consistently
can be demonstrated:

(1) The proposed scheme can improve the temporal accu-
racy by almost an order of magnitude in the tested range of
numerical settings while not affecting the spatial accuracy;

(2) The proposed scheme can slightly lower the compu-
tational cost (so that it can be concluded that the proposed
scheme can improve accuracy at no extra cost); and

(3) The proposed scheme can significantly improve the
stability in the �t/τ limit compared to the TE scheme, and
maintain the same �t/τ limit as the VT scheme. In addition,
the proposed scheme does not affect the �t/�x limit.

In addition, this paper also demonstrates that the proposed
approach can be easily applied in any place where f eq,n+1

α is
present by modifying the VT scheme with it. The test results
show that the modified VT scheme still presents the three
advantages listed above.

In order to test whether the accuracy could be improved
further, a second-order interpolation scheme was also devel-
oped and applied. However, a detailed analysis shows that
using second-order interpolation unexpectedly displays no ad-
vantage over the simple first-order interpolation approach. It is
found that the accuracy is decreased while the computational
cost is increased.

In order to explain why the semi-Lagrangian approach
with the simple first-order interpolation outperforms other
schemes, especially the same semi-Lagrangian scheme but
with the second-order interpolation, two hypotheses have
been successfully validated by numerical evidence as well
as a theoretical analysis. The detailed analysis showed that
f eq,n+1
α − f eq,n

α must converge to zero during time marching
for a correct simulation. The SLIC+INT1 scheme is the only
method that introduces the smallest value of f eq,n+1

α − f eq,n
α ,

which is why it is the most accurate approach. Therefore,
the rule of converging f eq,n+1

α − f eq,n
α can also be used as a

guideline to develop time-marching schemes for future DBM-
based methodologies.
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