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Strange attractors induced by melting in systems with nonreciprocal effective interactions
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Newton’s third law—the action-reaction symmetry—can be violated for effective interbody forces in open
and nonequilibrium systems that are ubiquitous in areas as diverse as complex plasmas, colloidal suspensions,
active and living soft matter, and social behavior. While studying monolayer complex plasma (confined charged
particles in an ionized gas) with nonreciprocal interactions mediated by plasma flows, in silico we found that
an interplay between melting and thermal activation drastically transforms the collective dynamics: the order-
disorder transition modifies the system’s thermal steady state so that the crystal tends to melt, whereas the fluid
tends to freeze, jumping chaotically between the two states. We identified this collective chaotic behavior as
strange attractors formed in a monolayer complex plasma and link the strange attractor behavior to the specifics
of interparticle interactions.
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I. INTRODUCTION

The reciprocity of action and reaction, known as Newton’s
third law, can be violated for effective interbody forces in open
and nonequilibrium (dissipative) systems. The nonreciprocity
can play an important role in dynamics of active matter [1,2],
as well as in social systems, such as insect swarms [3–6],
crabs [7], fish schools [8–10], animal herds [11], and cells
[12]. Today these systems are in the spotlight of intensive
studies with collective phenomena that can be in principle
observed being one of the central questions. However, the
role of nonreciprocity of interactions in such systems remains
poorly understood.

Complex plasmas and colloidal systems—microparticles
immersed in an ionized gas or solvent, which can be im-
aged using video recording [13,14]—can also exhibit effec-
tive nonreciprocal interactions. The action-reaction symmetry
in these systems is broken if the interactions are mediated
by a nonequilibrium environment, e.g., flows [14–18], opti-
cal beams [19], diffusiophoresis [20–22], and plasma wakes
[23–30]. In particular, complex (dusty) plasmas allow de-
tailed studies of different generic phenomena inherent for
strongly coupled (condensed) matter to gain insights into
physics of fluids, glasses, and crystals [31], including melting
and crystallization [32–34], spinodal decomposition [35–37],
viscoelastic behavior [38,39], microphysics of fluids [40–42],
and excitations and correlations [43–47].

Typical experiments with monolayer dusty plasmas are
performed with microparticles injected in a capacitively cou-
pled radio frequency discharge and levitating above the elec-
trode due to the balance of gravity and electric forces [13].
The vertical plasma flow focused downstream of each particle
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forms plasma wakes, resulting in nonreciprocal interactions
between the particles. This has been shown to change drasti-
cally dynamics of dissipative systems (governed by the energy
release and dissipation [48]), leading to multiple-temperature
steady states [14], single- and double-step thermal activation
[49–51], thermoacoustic instability [52], and bistability [53].
The significance of these studies extends well beyond the
immediate area of complex plasma, since the corresponding
conclusions reveal physical mechanisms governing collective
behavior of dissipative systems in general. However, system-
atic and continuous variation of key parameters that affect
system’s dynamic behavior in the specific range of interest is
frequently limited by technical challenges.

To overcome these limitations and inspired by our recent
works [46–52] on dynamics of (confined) monolayer dusty
plasma, in this article, we utilize molecular dynamics (MD)
simulations and the balance method [48] for analysis of the
energy release and dissipation. As a result, we obtained and
investigated the dissipative phase diagrams and have analyzed
the system’s dynamics as a function of confinement strength.
We found that, in strong confinement, the system exhibits dis-
sipative spinodal decomposition with the (dissipative) critical
point above the melting line in the average kinetic energy
of particles. However, starting from the critical confinement
strength, the energy release develops a gap during melting. If
a steady state falls into the gap, the system becomes frustrated
and falls into chaotic jumping between the crystal and fluid,
eliciting strange attractors.

II. METHODS

A. Details of MD simulations

As a model system capable of melting and thermal ac-
tivation, we considered a (confined) monolayer of charged
microparticles in plasma flow. In our model system particles

2470-0045/2020/101(6)/063205(9) 063205-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0731-9412
https://orcid.org/0000-0001-6821-904X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.063205&domain=pdf&date_stamp=2020-06-26
https://doi.org/10.1103/PhysRevE.101.063205


NIKITA P. KRYUCHKOV et al. PHYSICAL REVIEW E 101, 063205 (2020)

FIG. 1. The schematic illustration of the model system under the
study: (a) The side view of the dust particle monolayer confined in
the vertical parabolic potential well. The direction of the plasma flow
is indicated by the arrows, and the wakes are shown by the orange
clouds. (b) Two negatively charged particles (colored in blue) in
plasma flow interact nonreciprocally due to the positively charged
wakes (orange clouds). F(r)

AB = −F(r)
BA are the reciprocal (repulsive)

forces; F(w)
AB �= −F(w)

BA denote attractive interactions between (nega-
tively charged) particles and (positively charged) wakes. As result,
the particle-wake interactions affect the reciprocity of action and
reaction for effective forces, FBA �= −FAB.

interact through Yukawa (Debay-Huckel) repulsion, whereas
the nonreciprocity is provided by the wakes (in the plasma
flow) downstream the particles. We used the smoothed point-
wake model (with experimentally relevant parameters), the
particles were placed in a parabolic potential well, and the
simulations were performed with the Langevin thermostat,
in the same manner as in Refs. [49,50,52]; the details are
provided below.

The system was set up as a monolayer of charged monodis-
persed (identical) dusty particles in plasma flow, as illustrated
in Fig. 1(a). In this configuration plasma wakes formed down-
stream the particles are playing the role of the third body, and
the forces of action and reaction have different magnitudes
and are not collinear [48–50,52] [see sketch in Fig. 1(b)].

MD simulations were performed using the following po-
tential of interparticle interaction [49–52]:

ϕ(r) = ε

[
e−r/λ

r/λ
− q̃

e−rw/λ

rw/λ

(
1 + b

e−rw/λ

rw/λ

)−1
]
, (1)

where ϕ(r) is the potential of the ith particle in the field of
the jth particle and its wake, r is the position vector between
the particles, rw = |r − hez| is the distance from the particle
to the wake, ez is the unit vertical z vector, λ is the Debye
screening length, q̃ = 0.3 and h = 0.343λ are effective wake
charge and length, respectively, b = 1 is the dimensionless
cutoff used to truncate (artificial) divergence of the particle-
wake interactions, ε = e2Z2/4πε0λ is the interaction magni-
tude determined by the particle charge number Z , and ε0 is the
electric constant. Typically, in experiments we have the charge

number Z = (1.5 . . . 2) × 104, the interparticle distances in
crystal � = (490 . . . 550) μm, and the screening parameters
κ = �/λ � (1.0 . . . 1.2) [51].

Despite the real interactions between particles in plasma
flows being much more complicated than given by Eq. (1)
and strongly depend on the plasma parameters [28], Eq. (1)
describes in detail a broad range of generic activation phe-
nomena, inherent to systems with nonreciprocal interactions,
and has been shown to describe well a range of experimentally
observed phenomena such as activated melting in crystals
[49,51], thermoacoustic instability in fluid complex plasma
[52], and double-step defect activation [50].

In our simulations, the particles were confined in the
potential well

U (z) = 1

2
m�2z2, (2)

where m is the particle mass, and � is the confinement
frequency, related to the vertical oscillations of the system
in the long-wavelength limit [51]. The strength of vertical
confinement is determined by the frequency � and can change
the spectra of collective excitations and trigger mode-coupling
instabilities in plasma crystals and fluids [51,54–56]. Since
the system is open (and thus nonconservative), the energy
can transfer from the plasma stream into the kinetic energy
of microparticles. Note that constant forces, e.g., ion-drag
force (related to the interaction of a particle with its wake)
and gravity force, can be excluded from consideration: in the
potential well (2), these forces only induce an equal offset of
the equilibrium vertical position of all particles in monolayer
and do not change the interactions between particles [13].

The Langevin equation was used to analyze the dynamics
of the many-body system

mv̇i = Fi − mτ−1vi +
√

2mTth/τRi(t ), (3)

where vi, is the velocity of ith particle, Fi is a total force
acting on the ith particle due to the external (confinement)
fields and interparticle interactions, τ is a damping time,
Tth is the temperature of thermostat, and R(t ) is a random
force with zero moment 〈Ri(t )〉 = 0 and δ correlation func-
tion 〈Riα (t )Rjβ (t ′)〉 = δαβδi jδ(t − t ′), where indices α and β

denote coordinate axes.
The particles were placed in a rectangular simulation

box with infinite size along the z direction and periodic
boundary conditions in the x and y directions. A monolayer
hexagonal crystal in the plane z = 0, with the lattice con-
stant � = 1.143λ (relevant to the values in most experiments
[13,31,51]), was set as initial configuration. The initial particle
velocities were randomly generated in accordance with a
Maxwell distribution. The simulations were performed for
N = 104 particles at different temperatures Tth. The cutoff
radius rc and time step �t were set equal to 8λ and 2.5 ×
10−3

√
mλ2/ε, respectively. The number of time steps in sim-

ulations was varied from 105 to 2 × 107 steps.
Simulations were performed in dimensionless units where

lengths, energies, and masses were measured in λ, ε, and m
(in this case, the dimensionless frequency � is normalized
to

√
ε/mλ2). From a computational point of view these were
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FIG. 2. The hysteretic behavior of the average kinetic energy in the system at �2 = 11.25 and Tth/Tm = 0.85: (a) The time evolution of the
energy K (t ) from “cold” and “hot” initial states, shown by the blue and red solid lines, at different values of τ . (b) The hysteretic dependence
of the asymptotic energy K∞ on the damping time τ . The orange symbols are MD data, the solid red lines are obtained with the balance
method [48]. The gray area corresponds to the domain of thermally unstable states [there are no steady states here; the same domain is shown
in Fig. 3(a)]. (c) The calculated powers PNR(K ) (the orange thick line) and PD(K ) (the blue lines at τ = 330, 670, and 1220) versus the kinetic
energy K . The curves and states corresponding to the same conditions are labeled by the same letters A–D (stable states), whereas the state E
is unstable.

equal to λ = 1, ε = 1, and m = 1. All simulations were
performed in HOOMD-blue package [57,58].

B. Balance method for analysis of steady states

The balance method was developed in Ref. [48] for effec-
tive and detailed analysis of steady states in systems with non-
reciprocal interactions. Within this approach the powers of the
energy release PNR (due to the nonreciprocity of interactions)
and the energy exchange with the thermostat PD are equal
(balanced) in a steady state. The time evolution of the total
energy is governed by the equation Ḣ = PNR − PD, where H
is the total energy of the system per particle, consisting of
kinetic and potential terms. From the dynamical point of view,
a steady state plays the role of a normal attractor, while the
balance method allows one to calculate easily corresponding
dissipative phase diagrams.

The power PNR is obtained with MD simulations without
damping (τ → ∞) followed by the calculation of [48]

PNR = 〈v · F〉, (4)

where 〈·〉 denotes the ensemble averaging. During the simu-
lations, we scaled the particle velocities every 200 time steps
in order to hold the average kinetic energy per particle K at a
given value, to obtain PNR(K ).

In the framework of the balance method [48], the velocity
distribution is assumed to be almost Maxwellian (that corre-
sponds to the most states observed in MD simulations), and,
hence, the power PD is

PD = 2τ−1

(
K − 3

2
Tth

)
. (5)

In Fig. 2 we illustrated an example of analysis with the
balance method at Tth/Tm = 0.85 and �2 = 11.25 (here Tm

is the melting temperature of the 2D Yukawa crystal with
the same screening parameter κ = �/λ = 1.143 as was used
in MD simulations [59]). The time evolution of the energy
K (t ), obtained with MD simulations at different τ , is shown

in Fig. 2(a) by the solid blue and red lines for the high-
and low-energy initial states. The asymptotic energies K∞
(at t → ∞), corresponding to the steady states at different
τ , are shown in Fig. 2(b) by the orange symbols for MD
results, whereas the solid red line was obtained with the
balance method. At small and large τ , the asymptotic behavior
does not depend on the initial state, whereas the hysteretic
loop is observed at intermediate τ values, similarly to that
in Ref. [48]. The calculated powers PNR and PD are shown
in Fig. 2(c) by the thick orange and blue lines (at different
τ values) versus the energy K . Depending on the character
of intersection, the states with PNR = PD can be stable (the
states A–D) or unstable, as the state E in Fig. 2(c). The
states given by the balance method agree excellently with
MD simulations, while the method is essentially less time
consuming numerically and allows deep theoretical analysis
at different τ and Tth/Tm. As shown in Fig. 2(b), the system
can be in nonactivated or activated states with limit points,
where corresponding curves K∞(τ ) in τ − K plane are cut off
(on the left and right side if the hysteretic loop). The set of
limit points obtained at different thermostat temperatures form
the boundary of the gray-colored domain (domain of thermal
instability): The system does not have any steady states with
τ and K belonging to the gray-colored domain.

C. Calculation of excitation spectra

To obtain the spectra of excitations, we used an approach
based on the analysis of the velocity current j(q, t ) [60,61]

j(q, t ) = N−1
∑

s

vs(t ) exp[iqrs(t )], (6)

where q is the wave vector, and N is the total number of
particles in the region of analysis. The excitation spectrum
for a mode ξ with the polarization vector eξ (we assume that
eμ · eν = δμν) can be calculated with the Fourier transform

Cξ (q, ω) =
∫

dt eiωt Re〈 jξ (q, t ) jξ (−q, 0)〉, (7)
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FIG. 3. Dissipative phase diagrams of the system at different confinement strength: Panels (a)–(c) correspond to the confinement frequencies
�2 = 11.25, 9.75, and 9.0, respectively. The symbols and solid lines are MD data and the results of the balance method, respectively, at different
thermostat temperatures Tth. The domains of thermally unstable states (there are no steady states here), obtained with the balance method [48],
are gray-colored [the gray-colored domain (a) is exactly the same as shown in Fig. 2(b)]. The dashed black lines correspond to the melting,
K∞/Tm = 3/2.

where jξ (q, t ) = j(q, t ) · eξ is the velocity current projection
and the brackets 〈. . . 〉 denote the canonical ensemble average.
We used the vectors ev = ez, eL = q/q, and eT = ev × eL,
corresponding to the (optical) out-of-plane mode and the
(acoustical) in-plane longitudinal and transverse modes, re-
spectively. In the case of spatially isotropic fluid states, one
can average Cξ (q, ω) over the different q directions in the
horizontal plane, to enhance the signal to noise ratio [61].

To analyze the dispersion curves ωξ (q) and the damping
rates �ξ (q) of the excitations corresponding to the different
modes, we used analysis developed in Refs. [47,61,62] and
based on fitting of Cξ (q, ω) at different q values with the
Lorentzian

Cξ (q, ω) ∝ �ξ

(ω − ωξ )2 + �2
ξ

+ �ξ

(ω + ωξ )2 + �2
ξ

. (8)

Equation (8) follows from Eq. (7) in assumption that
〈 jξ (q, t ) jξ (−q, 0)〉 ∝ e−�t cos(ωt ) [61].

The separate mode analysis works well in crystals, where
the anharmonic effects are weak and, thus, the lifetime of the
excitations is large. On the other hand, in fluids, structural dis-
order and anharmonicity lead to effective interaction between
different modes, their hybridization, and spectra redistribution
at short wavelengths [47,62]. In this case, one should analyze
the total current spectra C(q, ω) = Cv (q, ω) + CL(q, ω) +
CT (q, ω), which are calculated with MD and than should be
fitted at each q with the three-oscillator model

C(q, ω) ∝
∑

ξ

[
�ξ

(ω − ωξ )2 + �2
ξ

+ �ξ

(ω + ωξ )2 + �2
ξ

]
,

where the summation is performed over all three polarizations
(v, L, and T ). This three-oscillator model allows to take into
account the effects of mode hybridization at short wavelengths
[47,62].

III. ACTIVATION AND MELTING

At the fixed interaction model (described in Sec. II A) and
the system’s density, its dynamics is determined by the damp-
ing time τ , the confinement frequency �, and the thermostat
temperature Tth/Tm (which we normalized to the melting
temperature Tm of the corresponding Yukawa 2D crystal [59]).
Therefore, to analyze steady states with the balance method,
we calculated powers of energy release (due to nonreciprocity
of forces) and dissipation (due to the interaction of the system
with thermostat) at different τ , �, and Tth/Tm (see Sec. II B for
details). Then, the steady states, where the powers of energy
release and dissipation are equal, were obtained in the same
manner as illustrated in Figs. 2(b) and 2(c).

The dissipative phase diagrams are shown in Fig. 3, where
the asymptotic values of the average kinetic energy per parti-
cle K∞ were obtained at different τ , Tth/Tm, and �2 = 11.25,
9.75, and 9.0 (characterizing the confinement strength) in
panels (a–c), respectively. Here exactly the same kind of plot
is shown as in Fig. 2(b), and the curve shown in Fig. 3(a)
for Tth/Tm = 0.85 is the same as in Fig. 2(b). The dashed
black lines correspond to the melting line K∞/Tm = 3/2,
since K plays a role, analogous to temperature. The gray
areas (obtained with the balance method) are the domains
of dissipative spinodal decomposition, where the system is
thermally unstable. The dissipative spinodal decomposition,
introduced in Ref. [48] for systems with nonreciprocal inter-
actions, means that, with a decrease in thermostat temperature,
the system acquires an ability to exist in nonactivated or acti-
vated steady states separated by the gap in asymptotic kinetic
energy K . This situation is similar to thermodynamic spinodal
decomposition, in that, with a decrease in temperature below
a critical point (e.g., in condensable systems or mixtures),
the system becomes decomposed into condensed or gaseous
states separated by the gap in density (or concentrations in
the case of mixtures). The difference is the dissipative phase
transitions does not require attraction or mixture of different
particles (as thermodynamic analog) and can occur in the
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FIG. 4. The energy release power and the excitation spectra: (a) Dependencies PNR(K ) of the energy release due to the interaction
nonreciprocity at different �2. The gap of the energy release power in crystal and fluid �P at the melting line is shown in the inset. (b–g)
Excitation spectra in crystal (b–d) and fluid (e–g) states. The color-coded velocity current spectra C(q, ω) were normalized to the maximum
in �K intervals in crystal and to the maximum at each q in fluid. The first Brillouin zone in crystal is sketchily shown in (b). The blue symbols
are results of single-mode analysis, and red ones are obtained with the three-oscillator model (see details in Sec. II C). The parameters of
simulations (for technical details see Sec. II A) are (b) �2 = 11.25, Tth/Tm = 0.6, τ = 240; (c) �2 = 9.75, Tth/Tm = 0.6, τ = 30; (d) �2 = 9.0,
Tth/Tm = 0.6, τ = 240; (e) �2 = 11.25, Tth/Tm = 0.9, τ = 730; (f) �2 = 9.75, Tth/Tm = 0.6, τ = 270; (g) �2 = 9, Tth/Tm = 0.1, τ = 220.
The energy K/Tm � 2.4 in the fluid states (e–g).

system of identical particles with nonreciprocal interactions,
as we consider here. The set of steady states with the least
K on the activated branches and with the largest K on the
nonactivated ones at different thermostat temperatures form
in the τ -K plane the dissipative spinodal line, restricting
the gray-colored domain with no steady states inside, as
illustrated in Fig. 3. The results obtained with MD simu-
lations (the symbols) agree well with those provided with
the balance method (the solid lines). The discrepancies are
observed only at low K∞ and τ and are caused by the features
of the energy release during the crystalline mode-coupling
instability [54,55].

Under strong confinement, the system exhibits the dissi-
pative spinodal decomposition between the nonactivated and
activated states, with the dissipative critical point (CP), as
shown in Fig. 3(a). Depending on the energy K∞/Tm ≷ 3/2,
the system can exist in a fluid or solid state. The lines with
the same Tth play a role of isotherms [48], and the dissipative
spinodal decomposition is possible only if Tth is less than
the critical thermostat temperature. Because of the dissipative
critical point is above the melting line in the energy K∞, fluid
can exist in nonactivated or activated states at 0.8 � Tth/Tm �
1.6.

With a decrease in �2, the critical point shifts down to
the melting line, as illustrated in Fig. 3(b). Here the energies
K∞ at the critical point and at the melting are practically
coincide, and the nonactivated fluid state becomes unstable.
Further decrease in �2 changes drastically the phase diagram,
as highlighted in Fig. 3(c) for �2 = 9: The averaged energy
K∞(τ ) acquires the horizontal plateau near the melting line
at Tth/Tm � 0.6. This suggests significant changes in dynamic
behavior of the system between �2 = 9.75 and �2 = 9. To

shed light onto the origins of these changes, we investigated
the effect of confinement strength on the excitation spectra of
the system and energy release.

IV. EXCITATION SPECTRA AND ENERGY RELEASE

A steady state of a dissipative system is determined by
the balance of the energy release and dissipation, provided
by the interaction of nonreciprocity and damping in our case
[48]. While the damping rate and thermostat temperature
control the dissipation, the confinement strength affects the
in- and out-of plane excitations in the system, thus affecting
the energy release. To understand the mechanisms responsible
for the behavior shown in Fig. 3, we calculated the depen-
dencies of the energy release power PNR(K ) as a function of
energy K together with the excitation spectra of the crystals
and fluids [47,61–63] (see details in Secs. II B and II C) at
different �2.

The energy release power is shown in Fig. 4(a) at different
�2, with the dashed black line indicating the melting line
of the 2D Yukawa crystal [59] with the same parameters of
interaction as we used in present work (see Sec. II A). The
gap �P between the energy release power in crystal and fluid
at the melting line [calculated as the maximal drop in PNR

between the neighboring points in Fig. 4(a)] is shown in the
inset. One can see that the energy release becomes suppressed
(in crystal) at �2 > �2

∗ � 9.5, PNR increases monotonously
with K , and �P = 0 (there is no drop in PNR with melting of
the crystal). On the other hand, �P becomes positive at �2 �
�2

∗ and changes approximately linearly near the threshold,
as shown by the solid red line in the inset in Fig. 4(a). In
this range of �2 the energy release in the crystal becomes
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FIG. 5. Strange dynamic attractor: (a) The dependence of kinetic energy K∞(τ ) on the damping time τ at Tth/Tm = 0.1 and �2 = 9.0.
(b) The power of energy release PNR(K ) (thick orange line) and dissipation Pd (K ) at τ = 30, 97, and 246 (blue, red, and green lines), under
the same conditions as in (a). At τ = 97, the steady state should have been in the gap shown by the dashed vertical line; as a result, the system
is forced to oscillate around the point, as justified in panel (c) for dependencies K (t ) at τ = 30, 97, and 246. (d–f) Power spectrum densities of
K (t ) at the same τ values as in (c).

significantly larger (and grows steadily as �2 → 9.0) than in
the fluid, leading to �P > 0: this means that, under the same
conditions, the crystal is thermally activated, whereas the fluid
is not. At �2 = �2

∗, the energy release in crystal and fluid
become equal at the melting line.

Further insights into observed behavior can be gained
from the dispersion relations ω(q) for excitations in crystals
and fluids, shown in Figs. 4(b)–4(g). At strong confinement,
the (optical) out-of-plane and (acoustic) in-plane longitudinal
branches do not intersect, as seen in Figs. 4(b) and 4(e).
However, as �2 is reduced and approaches to the threshold
�2 = �2

∗, the modes touch and then cross, contributing to
the enhanced energy release due to their interaction, generally
inherent for the nonreciprocal systems [51,54–56], as illus-
trated in Figs. 4(c) and 4(d) and 4(f) and 4(g). To obtain
the spectra, we used single-mode analysis (separate fitting
of the modes) and a more accurate three-oscillator model
(for joint fitting) [61] (see details in Sec. II C). The spectra
are shown by the blue and red symbols in Figs. 4(c)–4(g).
The results obtained with the different approaches agree well
in crystal and at small q. At qn−1/2/π � 1.5, we observe
the anticrossing between the longitudinal and transverse in-
plane modes in fluid (in total agreement with Refs. [47,62])
when the excitation branches repel in frequencies and become
hybridized. Thus, growth of the gap �P in the energy release
power is correlated with the crossing between optical and
longitudinal acoustic modes in the fluid, which is, in turn,
responsible for the principal change of the dissipative phase
diagram illustrated in Figs. 3(b) and 3(c) at at �2 = �2

∗. In
fact, as we show below, the gap �P in the power PNR(K ) as
a result of melting leads to emergent dynamic behavior of the
system (in the dynamics of the average kinetic energy K)—the
strange attractor.

V. THE STRANGE ATTRACTOR

Development of the gap �P in the energy release power
results in the energy (K (t )) fluctuation around the plateau
observed in Fig. 3(c), corresponding to the dynamic strange
attractors elicited by the “interference” of the activation and
melting. This is illustrated in Fig. 5, where Fig. 5(a) repro-
duces the same data for K∞(τ ) at Tth/Tm = 0.1 as in Fig. 3(c),
with the plateau in the range 40 � τ � 200. The dependencies
of the energy release power PNR(K ) and dissipation Pd (K )
(at different τ ) are shown in Fig. 5(b). We considered three
representative values of τ = 30, 97, and 246, with the corre-
sponding lines and points in blue, red, and green, respectively,
in Fig. 5. As seen in Fig. 5(b), at small and large τ , PNR and Pd

cross at one point corresponding to the steady state. However,
at τ corresponding to the plateau in Fig. 5(a), the steady state
should have been in the gap, as shown in Fig. 5(b) for τ = 97.
At this τ both the crystal and fluid become thermally unstable:
the (activated) crystal is heated and tends to melt, but the (non-
activated) fluid is cooled and tends to freeze. The oscillations
of K (t ) at τ = 97, shown in Fig. 5(c), stand in contrast with
the behavior at τ = 30 and 247. This is further illustrated by
the power spectrum densities (PSDs) shown in Figs. 5(d)–
5(f), that we calculated as PSD(ω) = ∫

R(t ′) exp(−iωt ′) dt ′,
where R(t ′) = 〈K (t )K (t + t ′)〉/〈K (t )2〉 and the brackets 〈·〉
denote ensemble average and the relaxation part of K (t ) is
discarded. The spectral densities are similar at small and
large τ , demonstrating only thermal fluctuations and slow
relaxation, whereas a broad peak around ω ≈ 1.35 × 10−2 is
observed at τ = 97.

The chaotic dynamics can be clearly visualized with repre-
senting the dependencies shown in Fig. 5 in the coordinates
{K, K̇, Ḣ}, where Ḣ = PNR − Pd , in a typical manner for
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FIG. 6. Trajectory of the system in the phase space {K, K̇, PNR −
Pd}: Blue and orange points correspond to (nonactivated) liquid and
(activated) crystal, respectively. The red points depict the evolution
over previous 300 dimensionless time units. See the supplemental
movie [64] for detailed picture of the time evolution.

analysis of nonlinear dynamics [65] (see the supplemental
movie [64] and Fig. 6). In Fig. 6 the system states are shown
for 5 × 103 (dimensionless) time units: red points represent
the last 300 time units, blue and orange points correspond
to the nonactivated fluid and activated crystal, respectively.
The results in Figs. 5 and 6 clearly and comprehensively
evidence strange attractor and reveal the physical mechanism
responsible for such behavior: Due to the structural phase
transition, the thermal attractor of (nonactivated) fluid turns
out to belong to crystalline domain, whereas the crystalline
state becomes thermally activated, and its thermal attractor is
located above the melting line, in fluid domain. The melting
or freezing plays a role of the trigger, which changes the struc-
ture, excitation spectra, and position of the thermal attractor.
As a result of the dissipative and structural phase transitions
overlapping, the system evolution demonstrates strong aperi-
odic oscillations and chaotic jumps between crystalline and
fluid states, revealing the strange attractor.

In addition to the main result, to illustrate that the key rea-
son for chaotic behavior is the irreversible (nonmonotonous)
form of the power function PNR provided by melting, one
can use the simplified discrete-time model [65]. As a start,
consider the time evolution of the total energy, Ḣ = PNR − Pd .
In our case, the system oscillates around the melting line,
where the heat capacity of the system per particle is CV �
(2.85 . . . 3.0) and remains practically constant [66]. This
means that the oscillations can be considered as harmonic, and
corresponding average kinetic and potential terms in the total
energy can be assumed to be equal, H � 2K + M [here M is
the static (Madelung) energy of the system]. Then we replace
the time derivative with the finite difference, as Ḣ � 2K̇ �

FIG. 7. The bifurcation diagram of the discrete-time model (9):
The color code represents the relative probabilities of the energy K
at fixed η, from blue to red. An example of the mapping function
f (K ) given by Eq. (9) with η = 1.5 and f (K ) = K are shown by the
solid red and dashed gray lines in the inset. The jumps and chaotic
behavior arise due to the irreversible (nonmonotonous) form of the
mapping function f (K ).

(Kn+1 − Kn)/η, and obtain the discrete model

Kn+1 = f (Kn), f (K ) = K + η[PNR(K ) − Pd (K )], (9)

where Kn is the kinetic energy at the discrete-time moment tn,
f (K ) is the mapping function, and η is the step of the discrete-
time model, η = (tn+1 − tn)/2, and 2η should be much smaller
than the characteristic time of the kinetic energy evolution
[in the case shown in Fig. 5(c), the time is T = 2π/ωmax �
450, where ωmax � 1.35 × 10−2 is the frequency of the PSD
maximum in Fig. 5(e)]. Taking the same powers PNR and Pd as
shown in Fig. 5(b) (at τ = 97), we calculated the bifurcation
diagram with a standard approach [65]. We performed 5 × 104

iterations by Kn+1 = f (Kn) to obtain the Kn sequence for
each value of η. After that, the last 5 × 103 values of each
sequence were plotted. The results in a color-coded format
for probabilities (from blue to red for lower and higher ones
respectively) are presented in Fig. 7. An example of the
function f (K ) at η = 1.5 is shown in the inset with the solid
red line.

The classical scenario of transition to chaos through the
cascades of period-doubling bifurcations [65] is clearly seen
in Fig. 7. The model (9) is rather simple and does not
take into account stochastic noise, but allows us to illustrate
the main reason leading to the strange attractor formation:
This is caused by the form of the mapping function f (K ),
which is irreversible (nonmonotonous) and, hence, can lead to
chaotic behavior with the formation of strange attractors. This
means also that the model system we considered can exhibit
chaotic jumps between different states, spontaneous melting,
and freezing even if we neglect the stochastic nature of the
Langevin thermostat.

Note that one can estimate η, corresponding to the
strange attractor in Fig. 5 at τ = 97, by comparing the
magnitudes of the kinetic energy fluctuations in Figs. 5(c)
and 7, which yields η ∼ 11. The step of the discrete
model is significantly smaller than the characteristic relax-
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ation time of the system, η/τ � 0.11 and 2η/T � 0.05.
This a posteriori justifies the suitability of the (simplified)
discrete model (9) for qualitative analysis of the nonlinear
dynamics in our system. However, one should note that,
to describe accurately the system’s dynamics, continuous-
time stochastic Langevin equations should be solved with
MD simulations.

VI. CONCLUSIONS

Utilizing MD simulations, we studied a model many-body
system exhibiting thermodynamic and dissipative phase tran-
sitions between solid and fluid, as well as thermally acti-
vated and nonactivated states. Our results reveal a generic
mechanism responsible for chaotic collective behavior—the
strange attractor dynamics—in the systems capable of ther-
modynamic and dissipative phase transitions. On melting, the
long-range structural correlations are lost, and the spectra of
fluctuations change discontinuously. This plays a crucial role
in emerging dynamic behavior, since a steady state of a dissi-
pative system is determined by the balance of energy release
and dissipation. Due to the change in the structure and in the
excitation spectra, the energy release power can acquire a gap
between the values in crystal and fluid at the melting line. If
the dissipation power falls into the gap, the (activated) crystal
is heated and tends to melt, whereas the (nonactivated) fluid
is cooled and tends to freeze, eliciting the strange attractor.
Thus, for the first time we link the strange attractor behavior
to the interactions between individual particles.

We found that the dissipative phase diagrams can be easily
calculated with a simple balance method [48]. Although the
model system of charged particles with nonreciprocal forces
mediated by plasma wakes has been known for a long time,
the strange attractors have never been observed or reported, to
the best of our knowledge. Strange attractor we identified here
might be responsible for unusual dynamics, bistability, and
jumps between crystalline and fluid states of monolayer com-
plex plasma that was observed experimentally in Ref. [53],
but has never been understood in detail and associated with
the nonreciprocity of interactions and interplay between dis-
sipative and structural phase transitions.

Strange attractors, known for a long time in systems with
“normal” reciprocal interactions between particles (e.g., in
fluids), typically arise in the presence of external driving
forces, which do not affect the interparticle interactions. An
example is thermal convection (triggered by external heat
source) described by the well-known Lorentz model [65]. In
the case we considered here, the main reason for the observed
behavior is the interaction nonreciprocity, induced due to a
nonequilibrium environment (plasma flows).

Provided by the same underlying physics, the strange-
attractor-like behavior is expected for a broad range of other
systems, whose dynamics can be described by Langevin equa-
tion with some effective nonreciprocal forces: for instance, in
active colloids and emulsions [2,20–22], in crowding systems
with the discontinuous change in the neighboring distribution
[1], and in dynamics of patterns and collective behaviors in
biology, including insect swarms [3–6], crabs [7], fish schools
[8–10], animal herds [11], and cells [12].

Since nonreciprocal interactions are inherent to a plethora
of open, nonequilibrium, and artificial systems, we believe
the results should be interesting to the broader community in
complex plasmas, active soft matter, and living, multiagent,
and social systems. The approaches to analysis we used here
can be applied in these cases to study self-organization and
nonlinear dynamics. Therefore, we hope that our work will
stimulate corresponding theoretical studies and experiments.

ACKNOWLEDGMENTS

The study of the dissipative phase diagram was supported
by the Russian Foundation for Basic Researches, Grant No.
20-02-00894. The authors are grateful to the BMSTU State
Assignment for infrastructural support. The excitation spectra
were analyzed under support of the Russian Science Founda-
tion, Grant No. 17-19-01691. N.P.K. and L.A.M. performed
MD simulations and processed the results; N.P.K., A.V.S., and
S.O.Y. analyzed and discussed the results; N.P.K. and S.O.Y.
wrote the manuscript; S.O.Y. conceived and supervised the
research. All authors reviewed the manuscript.

[1] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).
[2] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,

G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).
[3] J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland,

E. R. Miller, and S. J. Simpson, Science 312, 1402 (2006).
[4] J. E. Ron, I. Pinkoviezky, E. Fonio, O. Feinerman, and N. S.

Gov, PLoS Comput. Biol. 14, e1006068 (2018).
[5] O. Feinerman, I. Pinkoviezky, A. Gelblum, E. Fonio, and N. S.

Gov, Nat. Phys. 14, 683 (2018).
[6] G. Ariel and A. Ayali, PLoS Comput. Biol. 11, e1004522

(2015).
[7] Y.-P. Gunji, H. Murakami, T. Tomaru, and V. Basios, Philos.

Trans. R. Soc. A 376, 20170370 (2018).
[8] K. Tunstrøm, Y. Katz, C. C. Ioannou, C. Huepe, M. J. Lutz, and

I. D. Couzin, PLoS Comput. Biol. 9, e1002915 (2013).

[9] A. Filella, F. Nadal, C. Sire, E. Kanso, and C. Eloy, Phys. Rev.
Lett. 120, 198101 (2018).

[10] D. S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G.
Theraulaz, New J. Phys. 16, 015026 (2014).

[11] F. Ginelli, F. Peruani, M.-H. Pillot, H. Chaté, G. Theraulaz, and
R. Bon, Proc. Natl. Acad. Sci. USA 112, 12729 (2015).

[12] K. Copenhagen, G. Malet-Engra, W. Yu, G. Scita, N. Gov, and
A. Gopinathan, Sci. Adv. 4, eaar8483 (2018).

[13] A. Ivlev, H. Löwen, G. Morfill, and C. P. Royall, Complex Plas-
mas and Colloidal Dispersions (World Scientific, Singapore,
2011).

[14] A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and
H. Löwen, Phys. Rev. X 5, 011035 (2015).

[15] J. Dzubiella, H. Löwen, and C. N. Likos, Phys. Rev. Lett. 91,
248301 (2003).

063205-8

https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1126/science.1125142
https://doi.org/10.1371/journal.pcbi.1006068
https://doi.org/10.1038/s41567-018-0107-y
https://doi.org/10.1371/journal.pcbi.1004522
https://doi.org/10.1098/rsta.2017.0370
https://doi.org/10.1371/journal.pcbi.1002915
https://doi.org/10.1103/PhysRevLett.120.198101
https://doi.org/10.1088/1367-2630/16/1/015026
https://doi.org/10.1073/pnas.1503749112
https://doi.org/10.1126/sciadv.aar8483
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1103/PhysRevLett.91.248301


STRANGE ATTRACTORS INDUCED BY MELTING IN … PHYSICAL REVIEW E 101, 063205 (2020)

[16] K. Hayashi and S. ichi Sasa, J. Phys.: Condens. Matter 18, 2825
(2006).

[17] C. Mejía-Monasterio and G. Oshanin, Soft Matter 7, 993
(2011).

[18] I. Sriram and E. M. Furst, Soft Matter 8, 3335 (2012).
[19] K. Dholakia and P. Zemánek, Rev. Mod. Phys. 82, 1767

(2010).
[20] B. Sabass and U. Seifert, Phys. Rev. Lett. 105, 218103

(2010).
[21] R. Soto and R. Golestanian, Phys. Rev. Lett. 112, 068301

(2014).
[22] H. J. Keh, Curr. Opin. Colloid Interface Sci. 24, 13 (2016).
[23] V. N. Tsytovich, Phys.-Usp. 40, 53 (1997).
[24] S. A. Khrapak, A. V. Ivlev, and G. Morfill, Phys. Rev. E 64,

046403 (2001).
[25] M. Chaudhuri, A. V. Ivlev, S. A. Khrapak, H. M. Thomas, and

G. E. Morfill, Soft Matter 7, 1287 (2011).
[26] V. A. Schweigert, I. V. Schweigert, A. Melzer, A. Homann, and

A. Piel, Phys. Rev. E 54, 4155 (1996).
[27] A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757

(1996).
[28] R. Kompaneets, G. E. Morfill, and A. V. Ivlev, Phys. Rev. E 93,

063201 (2016).
[29] O. S. Vaulina, I. I. Lisina, and E. A. Lisin, Europhys. Lett. 111,

50003 (2015).
[30] J. Bartnick, A. Kaiser, H. Löwen, and A. V. Ivlev, J. Chem.

Phys. 144, 224901 (2016).
[31] G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
[32] V. Nosenko, S. K. Zhdanov, A. V. Ivlev, C. A. Knapek, and

G. E. Morfill, Phys. Rev. Lett. 103, 015001 (2009).
[33] P. Hartmann, A. Douglass, J. C. Reyes, L. S. Matthews, T. W.

Hyde, A. Kovács, and Z. Donkó, Phys. Rev. Lett. 105, 115004
(2010).

[34] M. Rubin-Zuzic, G. E. Morfill, A. V. Ivlev, R. Pompl, B. A.
Klumov, W. Bunk, H. M. Thomas, H. Rothermel, O. Havnes,
and A. Fouquét, Nat. Phys. 2, 181 (2006).

[35] S. A. Khrapak, G. E. Morfill, A. V. Ivlev, H. M. Thomas, D. A.
Beysens, B. Zappoli, V. E. Fortov, A. M. Lipaev, and V. I.
Molotkov, Phys. Rev. Lett. 96, 015001 (2006).

[36] A. V. Ivlev, S. K. Zhdanov, H. M. Thomas, and G. E. Morfill,
Europhys. Lett. 85, 45001 (2009).

[37] C. Killer, T. Bockwoldt, S. Schütt, M. Himpel, A. Melzer, and
A. Piel, Phys. Rev. Lett. 116, 115002 (2016).

[38] P. Hartmann, M. C. Sándor, A. Kovács, and Z. Donkó, Phys.
Rev. E 84, 016404 (2011).

[39] Z. Haralson and J. Goree, Phys. Rev. Lett. 118, 195001 (2017).
[40] V. Nosenko, A. V. Ivlev, and G. E. Morfill, Phys. Rev. Lett. 108,

135005 (2012).
[41] V. E. Fortov, O. F. Petrov, O. S. Vaulina, and R. A. Timirkhanov,

Phys. Rev. Lett. 109, 055002 (2012).
[42] C. Yang, C.-W. Io, and Lin I., Phys. Rev. Lett. 109, 225003

(2012).
[43] V. Nosenko, J. Goree, and A. Piel, Phys. Rev. Lett. 97, 115001

(2006).

[44] S. Nunomura, S. Zhdanov, D. Samsonov, and G. Morfill, Phys.
Rev. Lett. 94, 045001 (2005).

[45] H.-W. Hu, W. Wang, and Lin I., Phys. Rev. Lett. 123, 065002
(2019).

[46] E. V. Yakovlev, M. Chaudhuri, N. P. Kryuchkov, P. V.
Ovcharov, A. V. Sapelkin, and S. O. Yurchenko, J. Chem. Phys.
151, 114502 (2019).

[47] E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. V.
Sapelkin, V. V. Brazhkin, and S. O. Yurchenko, J. Phys. Chem.
Lett. 11, 1370 (2020).

[48] N. P. Kryuchkov, A. V. Ivlev, and S. O. Yurchenko, Soft Matter
14, 9720 (2018).

[49] S. O. Yurchenko, E. V. Yakovlev, L. Couedel, N. P. Kryuchkov,
A. M. Lipaev, V. N. Naumkin, A. Y. Kislov, P. V. Ovcharov,
K. I. Zaytsev, E. V. Vorob’ev et al., Phys. Rev. E 96, 043201
(2017).

[50] E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, K. Pitiot,
A. V. Sapelkin, and S. O. Yurchenko, Phys. Rev. E 100, 023203
(2019).

[51] L. Couedel, V. M. Nosenko, S. Zhdanov, A. V. Ivlev, I. Laut,
E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. M. Lipaev,
and S. O. Yurchenko, Phys.-Usp. 62, 1000 (2019).

[52] N. P. Kryuchkov, E. V. Yakovlev, E. A. Gorbunov, L. Couedel,
A. M. Lipaev, and S. O. Yurchenko, Phys. Rev. Lett. 121,
075003 (2018).

[53] G. Gogia and J. C. Burton, Phys. Rev. Lett. 119, 178004 (2017).
[54] A. V. Ivlev and G. Morfill, Phys. Rev. E 63, 016409 (2000).
[55] L. Couedel, V. Nosenko, A. V. Ivlev, S. K. Zhdanov, H. M.

Thomas, and G. E. Morfill, Phys. Rev. Lett. 104, 195001 (2010).
[56] A. V. Ivlev, S. K. Zhdanov, M. Lampe, and G. E. Morfill, Phys.

Rev. Lett. 113, 135002 (2014).
[57] J. A. Anderson, C. D. Lorenz, and A. Travesset, J. Comput.

Phys. 227, 5342 (2008).
[58] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga,

J. A. Millan, D. C. Morse, and S. C. Glotzer, Comput. Phys.
Commun. 192, 97 (2015).

[59] P. Hartmann, G. J. Kalman, Z. Donkó, and K. Kutasi, Phys. Rev.
E 72, 026409 (2005).

[60] J.-P. Hansen and I. R. MacDonald, Theory of Simple Liquids
(Academic Press, London, 2006).

[61] N. P. Kryuchkov, L. A. Mistryukova, V. V. Brazhkin, and S. O.
Yurchenko, Sci. Rep. 9, 10483 (2019).

[62] N. P. Kryuchkov, V. V. Brazhkin, and S. O. Yurchenko, J. Phys.
Chem. Lett. 10, 4470 (2019).

[63] S. O. Yurchenko, K. A. Komarov, N. P. Kryuchkov, K. I.
Zaytsev, and V. V. Brazhkin, J. Chem. Phys. 148, 134508
(2018).

[64] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.101.063205 for supplemental movie illus-
trating strange attractors in the studied system.

[65] A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic
Motion (Springer, New York, 1983).

[66] N. P. Kryuchkov, S. A. Khrapak, and S. O. Yurchenko, J. Chem.
Phys. 146, 134702 (2017).

063205-9

https://doi.org/10.1088/0953-8984/18/10/008
https://doi.org/10.1039/C0SM00465K
https://doi.org/10.1039/c2sm06784f
https://doi.org/10.1103/RevModPhys.82.1767
https://doi.org/10.1103/PhysRevLett.105.218103
https://doi.org/10.1103/PhysRevLett.112.068301
https://doi.org/10.1016/j.cocis.2016.05.008
https://doi.org/10.1070/PU1997v040n01ABEH000201
https://doi.org/10.1103/PhysRevE.64.046403
https://doi.org/10.1039/C0SM00813C
https://doi.org/10.1103/PhysRevE.54.4155
https://doi.org/10.1103/PhysRevE.53.2757
https://doi.org/10.1103/PhysRevE.93.063201
https://doi.org/10.1209/0295-5075/111/50003
https://doi.org/10.1063/1.4953225
https://doi.org/10.1103/RevModPhys.81.1353
https://doi.org/10.1103/PhysRevLett.103.015001
https://doi.org/10.1103/PhysRevLett.105.115004
https://doi.org/10.1038/nphys242
https://doi.org/10.1103/PhysRevLett.96.015001
https://doi.org/10.1209/0295-5075/85/45001
https://doi.org/10.1103/PhysRevLett.116.115002
https://doi.org/10.1103/PhysRevE.84.016404
https://doi.org/10.1103/PhysRevLett.118.195001
https://doi.org/10.1103/PhysRevLett.108.135005
https://doi.org/10.1103/PhysRevLett.109.055002
https://doi.org/10.1103/PhysRevLett.109.225003
https://doi.org/10.1103/PhysRevLett.97.115001
https://doi.org/10.1103/PhysRevLett.94.045001
https://doi.org/10.1103/PhysRevLett.123.065002
https://doi.org/10.1063/1.5116176
https://doi.org/10.1021/acs.jpclett.9b03568
https://doi.org/10.1039/C8SM01836G
https://doi.org/10.1103/PhysRevE.96.043201
https://doi.org/10.1103/PhysRevE.100.023203
https://doi.org/10.3367/UFNe.2019.01.038520
https://doi.org/10.1103/PhysRevLett.121.075003
https://doi.org/10.1103/PhysRevLett.119.178004
https://doi.org/10.1103/PhysRevE.63.016409
https://doi.org/10.1103/PhysRevLett.104.195001
https://doi.org/10.1103/PhysRevLett.113.135002
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1016/j.cpc.2015.02.028
https://doi.org/10.1103/PhysRevE.72.026409
https://doi.org/10.1038/s41598-019-46979-y
https://doi.org/10.1021/acs.jpclett.9b01468
https://doi.org/10.1063/1.5022969
http://link.aps.org/supplemental/10.1103/PhysRevE.101.063205
https://doi.org/10.1063/1.4979325

