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Influence of dust particles on ionization equilibrium in partially ionized plasmas
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A chemical model is proposed for a dusty plasma consisting of electrons, ions, neutrals, and positively charged
dust particles all being at thermodynamic equilibrium. An expression is derived for the Helmholtz free energy,
which comprises the ideal part, taking into account the charge of dust particles, and the excess part, evaluated in
the framework of the self-consistent chemical model [Phys. Rev. E 83, 016405 (2011)]. The ionization potential
depression for a dust-free partially ionized hydrogen is analytically evaluated for weakly and strongly ionized
states to consistently account for the presence of charged and neutral components. An ad hoc interpolation of the
ionization potential depression, valid across the whole ionization region, is put forward and subsequent solution
of the generalized Saha equation is found to be in a perfect agreement with exact calculations. Minimization
of the Helmholtz free energy of dusty plasmas provides the number densities of free electrons, free ions,
neutrals, and the dust electric charge as well. Based on consideration of weakly and strongly ionized states, a
straightforward comparison is made of the ionization equilibrium in a partially ionized plasma with and without
dust particles to demonstrate that at thermal equilibrium positively charged dusts are responsible for an increase
in the number density of free electrons and a decrease in the number density of free ions. It is analytically proved
that nonideality effects result in a growth of the number densities of free electrons and ions by obtaining the
so-called electron and proton ionization potential depressions. Electric charge of dust particles is systematically
studied as a full plasma component rather than considering a detailed balance of the electron and ion fluxes on
the surface of a solitary dust grain.
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I. INTRODUCTION

At present a dusty plasma still poses a great variety of
challenges in both experimental and theoretical investigations
[1], which is strictly prescribed to its rather complex nature.
Indeed, a typical dusty plasma consists of electrons, ions, neu-
trals and dust particles, called grains, and the whole diversity
of phenomena, observed in various external conditions, is just
an interplay between the dusty plasma constituents having
drastically different characteristic space and time evolution
scales [2]. It has to be especially emphasized that an important
role is bound to played by the ionization source, which can
be either external electric fields and radiation in various gas
discharges or the thermal motion as appropriate, for instance,
for magnetically confined fusion devices [3].

Another origin of dusty plasma complexity is due to quite
a broad range of its physical parameters spanning orders of
magnitude in temperature and number density of each plasma
component [4]. A great number of effects are thus invoked to
compete with one another preventing further construction of
a unified theoretical approach needed to understand all sub-
tleties of events occurring both in technological installations
[5] and in nature [6,7]. Nevertheless, dusty plasmas are well
distinguished among all other objects of general scientific in-
terest by the temporal behavior of macroscopic dust particles,
which is promptly taped via high-speed and high-resolution
videography [8,9], thereby serving as an extraordinary test
tube for verification of distinct theoretical models already
worked out for many-body systems [10].

It is physically evident that dust particles, being embedded
in a partially ionized medium, can vitally alter the local
plasma characteristics. First of all it is especially true for the
ionization balance since dust grains are capable of attaining
quite high, mostly negative, electric charge [11,12], thereby
affecting the quasineutrality condition. Hence increasing the
dust number density can easily cause a considerable depletion
in the electron number density as compared to the case of a
dust-free plasma [13,14]. Another expected implication of the
dust injection into an ionized medium is the growth of the
electron temperature, which, in accordance with the decline
of the electron number density, seems to be an unavoidable
response from the plasma to maintain the rate of electron
impact ionization [15,16]. Furthermore, some specific electric
properties of gas discharges, such as impedance and phase
shift between the current and voltage, were found to be highly
sensitive to the presence of even a small amount of dust [17].

Note that the situation with the ionization balance remains
rather ambiguous for all plasma regions, which is especially
intrinsic to the central void of a dust cloud. In particular,
the optical emission spectroscopy provided a clear evidence
that the electron temperature grows [18], while the converse
was proved using direct measurements with the aid of elec-
tric probes [19]. Curiously enough, numerical simulations
precisely demonstrated [20] that both an increased electron
temperature and number density should appear in a well-
developed void of a dusty plasma. Recently, beam microwave
interferometry, which is both noninvasive and model-free,
finally showed [21] that the whole effect might depend on the
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size of dust particles such that an increased electron number
density was detected for rather large grains and vice versa.

It was Langmuir [22] who first noted that in the vast
majority of practical situations dust particles, immersed in a
ordinary plasma, promptly acquire negative electric charge,
which is explained by the absorption of oppositely charged
electrons and ions with drastically different mobilities. This is,
however, not obligatory since positively charged dust grains
are frequently encountered in some context of planetary sci-
ences [23,24] as well as eagerly generated in plasma-wall
interactions in the scrape-off layer in tokamaks [25,26]. In
the last two examples the thermionic and secondary elec-
tron emissions are dominating phenomena that determine the
physical properties of the dust component. Hereinafter we are
in a position to study some general aspects of the ioniza-
tion equilibrium in a partially ionized plasma with positively
charged dusts.

Obviously, the ionization balance and the charge of dust
grains in a plasma are mutually interrelated with the former
being almost unchanged when the dust charge density is
much smaller in magnitude than the charge density of plasma
particles. At the moment there exist only few theoretical
approaches that are capable of estimating positive electric
charge of dust particles. The paramount one is certainly the
orbital motion limited (OML) approximation [27,28], which
particularly relies on several simplifying assumptions: (i) dust
particles are much smaller in size than the Debye screening
length; (ii) interaction potentials between plasma and dust
particles remain monotonic at all separations; (iii) plasma par-
ticles’ trajectories are exclusively ballistic such that interparti-
cle collisions can be totally ignored. It is then no surprise that
the pure OML method is only substantiated for rather dilute
collisionless plasmas and further amendments are provided
within the OML+ [29,30] and the modified OML (MOML)
[31] approximations. It is inevitable in all OML-like formula-
tions that an average should be taken over the plasma particles
distribution functions, which is assumed to be unperturbed at
rather large separations from a grain and thus must be a priori
known. In this regard a more plausible concept is advocated
within the orbital motion (OM) theory [32] that consistently
incorporates a set of the Poisson and Vlasov kinetic equations
for the case of a collisionless medium. However, with growing
plasma density pairwise interparticle collisions become of
importance, which is traditionally handled by introducing
collision integrals into the Vlasov kinetic equation [33,34].
As for a fully collisional regime even hydrodynamics is con-
ventionally employed to describe the charging of dust grains
[35] to attain a fairly good agreement with experimental data.
Note that if the magnetic field comes to play a crucial part,
like it is the case for magnetic fusion devices, the thin-sheath
ion model [36] proved to be very fruitful.

Thus it is readily inferred that theory usually treats the
charging of a solitary dust particle, whereas the influence
of a dust cloud on the ionization equilibrium is accounted
for via the quasineutrality condition. On the other hand, a
whole series of experiments were performed with a purpose of
establishing the effect of a dust component on the plasma ion-
ization degree, particularly the bulk electron number density.
The present consideration undertakes a systematic theoretical
attempt to consistently treat dust particles as a full plasma

component with a strong emphasis on their electric charge
and the ionization equilibrium in the medium. Specifically,
we develop a meaningful extension of the self-consistent
chemical model of a partially ionized medium [37] thoroughly
modified for a thermal dusty plasma by incorporating dust
particles into the Helmholtz free energy of the system. In
order to do so, one has to keep in mind that, to pull an
electron out of a dust particle, some work function, say W ,
should be done and this creates a free electron and a positively
charged dust grain. It is therefore clear that a neutral dust
particle can be viewed as a “unionized” entity, whereby a strict
analogy with a neutral atom in a partially ionized plasma is
convincingly drawn. Thus the resulting Helmholtz free energy
turns out to be a function of free electron and free proton
number densities as well as the dust charge and its further
multiparametric minimization under quasineutrality condition
provides the corresponding equilibrium quantities.

The rest is organized as follows. In Sec. II dimensionless
plasma parameters, relevant to the description of the plasma
state, are introduced. A chemical model of a dusty plasma is
accurately formulated in quite clear physics terms in Sec. III.
Section IV is completely devoted to the ionization equilibrium
in a partially ionized plasma needed to make a further compar-
ison with the case when dust particles are present. In Sec. V an
equilibrium state of dusty plasmas is comprehensively studied
with a strong emphasis on the ionization balance and related
Sec. VI is aimed at evaluating the electric charge of the dust
component from the imposed quasineutrality condition. At the
end conclusions are broadly drawn in Sec. VII and important
provisions for future work are briefly stated.

II. PLASMA PARAMETERS

A typical dusty plasma is known to constitute a multicom-
ponent aggregation in which solid dust particles are trapped
in a partially ionized plasma that itself contains at least three
sorts of particles, i.e., electrons, ions, and neutrals. Despite
this evident experimental fact, many theoretical approaches
are solely concentrated on studying the behavior of dust par-
ticles, thus regarding a dusty plasma as a one-component sys-
tem in which the role of electrons and ions is basically reduced
to shielding of interdust electrostatic interactions. This widely
accepted model, called the Yukawa one-component plasma,
proved to be especially beneficial in accurate description of
experiments with the strongly coupled dusty plasma [38,39],
which is plainly rationalized as follows. First of all, in the
strongly coupled regime the electrostatic interaction between
dust grains largely predominates over all other types of forces,
such as the ion drag, thermoforetic force, etc. Secondly, in
many practical situations the dust component hardly modifies
the ionization balance in the surrounding plasma [40,41];
otherwise, the electron and ion dynamics must be taken into
account to comprise the dust charge variation [42,43]. In con-
trast to the aforesaid the present consideration evenly treats
all dusty plasma components since the ionization degree and
electric charge of dust particles are both placed in spotlight
and jointly handled within the thermodynamical approach.
Even the presence of neutrals is thoroughly included into
the whole analysis since electrons and ions permanently neu-
tralize at grains surfaces, which, according to the ergodic
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hypothesis, surely requires the existence of at least a small
portion of atoms.

Just for the reason of definiteness in the succeeding ana-
lytical approximations and numerical calculations we assume
that the dusty plasma contains four sorts of particles: (i) free
electrons with the number density ne, mass me, and electric
charge −e; (ii) free protons with the number density np, mass
mp, and electric charge e; (iii) neutrals, i.e., electrons and
protons bounded in hydrogen atoms, with the number density
nn and mass mn; (iv) dust particles with the number density nd ,
mass md , and positive electric charge Ze. However, the exact
plasma composition that incorporates the number densities of
free electrons, free protons, and neutrals, as well as the electric
charge of dust particles, remains initially unknown and is to
be determined in the subsequent consideration. Note that the
medium temperature is implied to be rather high such that the
formation of hydrogen molecules is effectively prevented.

In order to theoretically describe the state of the dusty
plasma, we keep the total number density of protons in
the system, n = np + nn, fixed such that the dimensionless
density parameter is conventionally defined as

rs = a

aB
, (1)

where a = (3/4πn)1/3 stands for the Wigner-Seitz radius,
aB = h̄2/mee2 denotes the first Bohr radius, and h̄ signifies the
reduced Planck constant. The density parameter (1) can vary
in quite a broad range but should always obey the inequality
rs > 1.5 to avoid consideration of the pressure ionization [44].

Another magnitude, appropriate for the description of the
dusty plasma state, is the coupling parameter that measures
the degree of plasma nonideality by representing the ratio
of the average energy of Coulomb interaction to the thermal
kinetic energy, viz.

� = e2

akBT
, (2)

with kB symbolizing the Boltzmann constant and T being the
system temperature. Due to the method used below and since
the thermionic emission is under scrutiny, the temperature
must be high enough, effectively restricting our consideration
to the case of � < 1.

As for the dust component its number density is quantified
by the grain density parameter

γ = nd/n, (3)

which is usually very small, γ � 1.
To simplify matters, each of the dust particles is assumed

to be a hard ball of radius R with the dust material being
characterized by some work function W for the electrons. It
is crucial for the following that the dust particles have finite
dimensions specified by the packing fraction as

η = 4
3πnd R3, (4)

which cannot exceed its upper bound theoretical value of
π/

√
18.

It is, of course, obligatory that the dusty plasma retains its
local quasineutrality by imposing the following condition:

ne = np + Znd . (5)

Note that the parameters above imply that the whole system
is in its thermal equilibrium such that the temperatures of
all plasma components are essentially the same, which is
referred to in the literature as a thermal dusty plasma [45].
Such objects are not rare in nature and laboratory, see [46,47]
and references therein, as exemplified by stellar atmospheres
and meteors, active media in flames, magnetohydrodynamic
generators, rocket exhausts, radiatively heated dust clouds,
and specifically designed plasma generators, in all of which
the thermionic emission is presumed to play an essential part
in determining their rather interesting physical characteristics
[48].

III. CHEMICAL MODEL

It is well known that a standard chemical model of partially
ionized plasmas is constructed in the following way. An
expression for the ideal part of the Helmholtz free energy
is literally postulated to consist of independent contributions
from all plasma constituents [49,50], thereby discounting their
reciprocal interrelations. This is then called the linear mixing
rule that only validates for a system of noninteracting particles
[51] but undoubtedly breaks down when the role of interpar-
ticle correlations significantly grows. Chemical models are
closely articulated by the Helmholtz free energy minimization
procedure [52,53] and known to suffer from thermodynamic
inconsistencies [54] approving their verification against re-
sults of the physical picture [55,56]. Quite recently the self-
consistent version of the chemical model was put forward to
correctly treat microscopic interinfluence of the charged and
neutral components of partially ionized plasmas [37], which
fundamentally relies on the generalized Poisson-Boltzmann
equation, first derived in [57] from the Bogolyubov chain of
equations for equilibrium distribution functions in the pair
correlation approximation. It is a foremost gist of this section
to extend the self-consistent chemical model to account for
the presence of positively charged dust particles.

Strictly speaking, both the ionization equilibrium and the
dust charge are governed by competing kinetic processes,
which demands accurate knowledge of the corresponding
cross sections. In the case of the ionization balance those
competing processes are the thermal ionization and recom-
bination, whereas for the electric charge of dust particles they
are charging and discharging currents of oppositely charged
plasma particles. Herein it is demonstrated that at thermal
equilibrium the ionization degree as well as the dust charge
are independent of the details of those kinetic processes and
can predominantly be extracted in the framework of classi-
cal thermodynamics by minimizing an appropriately defined
Helmholtz free energy. It has to be admitted, however, that
such a chemical model pays off for its success in that it is
totally incapable of predicting the electric charge of a solitary
dust particle—only electric charge of dust particles in a dust
cloud with a certain number density nd can be determined,
which makes the principal distinction from the OML-like
approaches mentioned in the introductory Sec. I.

The chemical model conventionally starts from the well
established assumption that the Helmholtz free energy of any
system, Ftot , is ultimately found as a sum of the ideal, Fid , and
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excess, Fexc, parts

Ftot = Fid + Fexc. (6)

As it has been remarked above the ideal part of the Helmholtz
free energy is additive due to the linear mixing rule and is to
be defined in Sec. III A, while the same does not hold for the
excess part, which is to be further qualified in the spirit of the
self-consistent chemical model of partially ionized plasmas in
Sec. III B.

A. Ideal part

The keystone of the whole present consideration is how to
incorporate dust particles into the chemical model of a plasma.
It is believed in the sequel that each dust particle is capable
of emitting electrons, but cannot absorb protons. Despite the
fact that electrons and protons are constantly neutralized on
dust surfaces, this process is accounted for in the following by
the presence of neutrals, as assured by the ergodic hypothesis.
The main idea is to consider the emission of electrons by a
dust grain as a certain effective ionization process, i.e., an
uncharged dust particle is viewed as a neutral entity, whereas
a charged dust particle is thought of as its ionized counterpart.
This virtually completes a direct analogy with an atom, but
the big difference is that all dust particles are thus charged
or ionized in the above sense. On the contrary, from a purely
theoretical point of view neutral atoms are inevitably present
in a partially ionized plasma, as absolutely guaranteed by
the detailed balance between the processes of ionization and
recombination.

To continue with our approach, let us determine the min-
imal work that needs to be done in order to pull Z electrons
out of a single neutral dust particle, whose material is charac-
terized by the work function W , and bring them all to infinite
separation one after another, thereby leaving the grain with
the positive charge Ze. This work is easily derived within the
framework of classical electrodynamics to be equal to

A = ZW + Z (Z + 1)e2

2R
. (7)

Note that the dust particles are treated as if they would have
a fixed charge, but in reality the dust charge fluctuates around
its mean value Z .

It is now uncomplicated to obtain an expression for the
Helmholtz free energy of charged dust particles. Namely, we
start from the ideal part of the Helmholtz free energy of Nd

neutral dust particles which reads as [58]

F0 = Nd kBT
[
ln

(
ndλ

3
d

) − 1
]
, (8)

with the dust thermal de Broglie wavelength λd defined below.
Then, at fixed temperature, the work (7) is done to charge

each of Nd dust particles, which, in accordance with the
general laws of thermodynamics, immediately provides their
Helmholtz free energy in the following form:

F = F0 + Nd A. (9)

After some trivial transformation, the expression for the ideal
part, Fid , of the Helmholtz free energy of the whole system

can be cast as

Fid

V kBT
= ne

[
ln

(
neλ

3
e/2

) − 1
] + np

[
ln

(
npλ

3
p

) − 1
]

+ nn
[
ln

(
nnλ

3
n/σ

) − 1
] + nd

[
ln

(
ndλ

3
d/�

)−1
]
,

(10)

where V denotes the system volume, λa = (2π h̄2/makBT )1/2

stands for the de Broglie wavelength of particles of species
a, and the atomic partition function, σ , of hydrogen atoms is
chosen in the following form, proposed by Planck and Larkin
[59]:

σ =
∞∑

n=1

2n2

[
exp

(
In

kBT

)
− 1 − In

kBT

]
, (11)

with In = −I/n2 referring to the energetic spectrum of the
hydrogen atom and I = −mempe4/2(me + mp)h̄2 being the
ground state energy, and the dust partition function is defined
as

� = exp

(
− A

kBT

)
. (12)

Expression (10) is rather remarkable for it allows one to
evaluate the thermodynamic properties of the entire system as
a whole, not just those of the dust component. Particularly,
the first three terms are very well known and widely used in
chemical models of partially ionized plasmas [60], whereas
the fourth term stands for the dust component and is derived
by combining Eqs. (7)–(9). Note that the third term on the
right hand side of the relation (10) strictly corresponds to
the neutral atoms, while the fourth precisely pertains to the
charged dust particles. It should necessarily be emphasized
that in the limiting case of the absence of protons and atoms,
as well as of the contribution from the neutral dust particles,
expression (10) promptly turns into the Helmholtz free energy
of an electron-dust plasma [61], which enables one to estab-
lish exact correspondence with the results of the respective
OML-like approximation.

B. Excess part

In a great variety of experimental and natural settings
interparticle interactions play a noticeable role in dusty plas-
mas, which is especially true for dusts capable of acquiring a
significant electric charge. One of the simplest options for tak-
ing into account interparticle interactions is a self-consistent
chemical model [62], which is entirely based on the renor-
malization procedure of particle interactions [63] and leads
to the following generalized Poisson-Boltzmann equation for
the macroscopic potential 	ab(ra

i , rb
j ) of interaction of particle

species a and b, taking into account collective events in the
medium


i	ab
(
ra

i , rb
j

) = 
iϕab
(
ra

i , rb
j

)
− nc

kBT

∫

iϕac

(
ra

i , rc
k

)
	cb

(
rb

j , rc
k

)
drc

k .

(13)

Here ϕab(ra
i , rb

j ) denotes the genuine microscopic interaction
potential, ra

i stands for the radius vector of the ith particle with
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i being the corresponding Laplace operator, and nc signifies
the number density of particles of sort c. Note that above and
everywhere below the summation is implied over the repeated
subscripts of particle species.

In Fourier space the set of equations (13) for particle
species converts into a set of linear algebraic equations,
whose solution for the Fourier transform of the macropotential
	̃ab(k) is neatly expressed in terms of the Fourier transform
of the microscopic potential ϕ̃ab(k) as follows [64]:

	̃ab(k)

= 1




(
ϕ̃ab(k) + Ac[ϕ̃cc(k)ϕ̃ab(k) − ϕ̃ac(k)ϕ̃bc(k)]

+ δabAcAd

[
ϕ̃ac(k)ϕ̃ad (k)ϕ̃cd (k) + ϕ̃aa(k)ϕ̃cc(k)ϕ̃dd (k)

2

− ϕ̃aa(k)ϕ̃cd (k)2 + ϕ̃cc(k)ϕ̃ad (k)2 + ϕ̃dd (k)ϕ̃ac(k)2

2

])
,

(14)

where


 = 1+Aaϕ̃aa(k) + AaAb
[
ϕ̃aa(k)ϕ̃bb(k) − ϕ̃ab(k)2

]+AaAbAc

×
[
ϕ̃ab(k)ϕ̃bc(k)ϕ̃ac(k)

3
+ ϕ̃aa(k)ϕ̃bb(k)ϕ̃cc(k)

6

− ϕ̃aa(k)ϕ̃bc(k)2 + ϕ̃bb(k)ϕ̃ac(k)2 + ϕ̃cc(k)ϕ̃ab(k)2

6

]
.

(15)

Here Ac = nc/kBT and δab denotes the Kronecker delta.
In order to initiate application of the chemical model, the

microscopic potentials must be appropriately chosen. The
interactions between the electrons and protons of the plasma
medium are taken to be pure Coulombic so that the Fourier
transforms of the corresponding micropotentials are written
as

ϕ̃ee(k) = ϕ̃pp(k) = −ϕ̃ep(k) = 4πe2

k2
. (16)

The microscopic potentials, involving electrons, protons,
and neutrals, are picked out for the hydrogen plasma in
the simplest available static form with the following Fourier
transforms [65]:

ϕ̃pn(k) = −ϕ̃en(k) = 4πe2
(
k2 + 8/a2

B

)
(
k2 + 4/a2

B

)2 ,

ϕ̃nn(k) = 4πe2(
k2 + 2/a2

B

) . (17)

As for the microscopic potentials of interaction between
dust particles and dust particles with electrons and protons,
the following Fourier transforms are engaged [66]:

ϕ̃dd (k) = 4πZ2e2

k2
− 8 πZ2e2R

k

[
Ci(2kR) sin(2kR)

+ 1

2
cos(2kR)[π − 2Si(2kR)]

]
, (18)

ϕ̃ed (k) = −ϕ̃pd (k) = 4πZe2

k2
− 4πZe2R

k

[
Ci(kR) sin(kR)

+ 1

2
cos(kR)[π−2Si(kR)]

]
, (19)

with Ci(x) = − ∫ ∞
x

cos t
t dt and Si(x) = ∫ x

0
sin t

t dt being the
cosine and sine integral functions, respectively. It seems
reasonable to assume that the interaction between hydrogen
atoms and dust particles is really negligible because of their
neutrality as compared to other kinds of forces described
above and it is therefore dropped out in the subsequent analy-
sis.

The excess part, Fexc, of the Helmholtz free energy is finally
deduced in the framework of the self-consistent chemical
model as [37,62]

Fexc

V kBT
= 1

2
nanb

ϕ̃ab(0)

kBT

+ 1

16π3k2
B

nanb

∫
dk ϕ̃ab(k)

∫
dT

	̃ab(k)

T 3
. (20)

Expression (20) for the excess part of the Helmholtz free
energy is quite a broad generalization of the Debye-Hückel
approximation, which is only valid in the pair correlation
approximation for the Bogolyubov chain of equations for
equilibrium distribution functions to soundly account for mu-
tual interactions between all plasma components..

IV. IONIZATION EQUILIBRIUM IN
PARTIALLY IONIZED PLASMAS

The chief objective of the present consideration, as its
title states, is to establish the effect of positively charged
dust particles on the ionization equilibrium in a plasma. As
a first step and for the sake of comparison, we begin with
studying the ionization balance in a partially ionized plasma,
completely devoid of dust grains. To achieve this, it suffices
to mathematically take the limit nd → 0 in the corresponding
expressions for the ideal and excess parts of the Helmholtz
free energy. In the framework of the self-consistent chemical
model, numerical results were previously obtained elsewhere
[37]; therefore, the rest of this section concentrates on deriva-
tion of pure analytical results. An important consequence is a
generalization of the Saha equation, which is primarily written
as [59,67]

nenp

nn
= 2λ3

n

λ3
eλ

3
pσ

. (21)

As is straightly inferred from the laws of thermodynam-
ics, the Helmholtz free energy of the system should take
its minimum value at fixed magnitudes of temperature and
total number of particles. It is convenient to introduce the
ionization degree as α = ne/n, and it then follows from the
quasineutrality condition (5) at nd = 0 that np = αn, as well
as nn = (1 − α)n, comes from the conservation of the total
number of protons. Hence, at fixed magnitudes of parameters
(1) and (2), the Helmholtz free energy of a partially ionized
plasma becomes a function of the single parameter α, which
is then minimized to obtain the equilibrium value of α. This
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main procedure in the framework of the chemical picture is
consistently implemented below in order to obtain new ana-
lytical results on the so-called ionization potential depression
[68–70], which is most correctly described within ab initio
simulations at high densities [71] and quantum statistical
theory at low densities [72].

A. Ideal plasma

Let a plasma be in an ideal state of matter when interparti-
cle interactions can be totally omitted. Then, minimizing the
ideal part of the Helmholtz free energy results in the following
form of the Saha equation (21):

α2

1 − α
= 2λ3

n

nλ3
eλ

3
pσ

, (22)

which is quadratic with the only positive root

α = λ3
n

nλ3
eλ

3
pσ

⎛
⎝

√
1 + 2nλ3

eλ
3
pσ

λ3
n

− 1

⎞
⎠. (23)

Hence, as it is well known, the Saha equation strictly corre-
sponds to the ideal gas approximation.

Let us consider two limiting cases which are particularly
needed for further treatment of analytical results obtained
below.

Case 1 of weakly ionized state. If 2λ3
n/nλ3

eλ
3
pσ � 1, then

the ionization degree is very low and is approximated from the
exact solution (23) as

α0
id =

√
2λ3

n

nλ3
eλ

3
pσ

. (24)

Case 2 of strongly ionized state. If 2λ3
n/nλ3

eλ
3
pσ � 1, then

the ionization degree is very high and is approximated from

the exact solution (23) as

α1
id = 1 − nλ3

eλ
3
pσ

2λ3
n

. (25)

It should be mentioned that formulas (24) and (25), albeit
elementary in derivation, are crucial for understanding the
results of the following subsection.

B. Nonideal plasma

If a plasma is found in a nonideal state such that interpar-
ticle correlations can no longer be ignored, the minimization
of the Helmholtz free energy can only be fulfilled numerically
because the contribution of the excess part turns rather essen-
tial. Nevertheless, it is still possible to analytically study the
same limiting cases as in the previous subsection. After all
it seems much more practical to search for an approximate
solution to the following equation:

dFtot

dα
= 0, (26)

strictly corresponding to the minimum of the Helmholtz free
energy.

Case 1 of weakly ionized state. When the ionization is
very low, α � 1, the excess part of the Helmholtz free energy
can be expanded in series in the vicinity of α = 0 and the
following formula holds for the ionization degree:

α0
tot =

√
2λ3

n

nλ3
eλ

3
pσ exp(−
I0/kBT )

, (27)

where


I0 = kBT x + e2

√
2aB

f0(x) (28)

and

f0(x) = 1 + x
√

2(1 + x)(13 − 259x + 127x2 − 9x3) − 16(1 − 3x − 16x2 − 4x3 + 7x4 − x5)

16(1 − x)4
√

1 + x
, (29)

with x = 2πne2a2
B/kBT .

Comparison of formula (27) with expression (24) reveals
that 
I0 can immediately be interpreted as the ionization po-
tential depression, which is essentially caused by interatomic
interactions in a plasma. This effect is well known in the
literature and can be numerically taken into account [73,74]
but we present here the analytical result (28).

Case 2 of strongly ionized state. When the ionization is
rather high, α ≈ 1, the excess part of the Helmholtz free
energy can be expanded in series in the vicinity of α = 1
yielding the following expression for the ionization degree:

α1
tot = 1 − nλ3

eλ
3
pσ exp(−
I1/kBT )

2λ3
n

, (30)

where


I1 = e2

√
2aB

f1(x), (31)

with

f1(x) =
√

2x(32 + 115
√

x + 140x + 75x3/2 + 16x2)

16(1 + √
x)4

(32)

and the same notation for x as above.
It is again concluded by contrasting formulas (25) and (30)

that 
I1 can be treated as the ionization potential depression,
which is now connected to the dominating contribution of
the charged component of the plasma. It is rather simple to
demonstrate that, at small values of x � 1, formula (31) ex-
actly reproduces the classical ionization potential depression
in the Debye approximation [75,76].

C. General case

The problem of determining the ionization potential de-
pression in the medium or the so-called continuum lowering
has a long history and dates back to the 1960s of the past
century, when two competing approaches were proposed. The
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first method of Stewart and Pyatt [77] was based on the
approximation of an electron-nucleus electrostatic interaction
by the Thomas-Fermi potential at a finite temperature. The
other approach was formulated by Ecker and Kröll [78] and
stemmed from the generalized Saha equation incorporating
the chemical potential of the surrounding plasma. The ex-
perimental capabilities of that time refrained from making
a univocal choice in favor of one of the two concepts, but
the situation has recently changed dramatically. Rather fresh
experiments with matter at high-energy densities [79–81]
have revived the subject by demonstrating that the problem
of the ionization potential depression still requires further
elaboration.

It is beyond our intent to go deep into the topic of the
ionization potential depression; nevertheless, in the previous
subsection we have been able to analytically evaluate the
continuum lowering of hydrogen medium both in an almost
completely ionized state and in the regime of weak ionization.
A natural question arises whether it is possible to determine
the continuum lowering for an arbitrary ionization state of
a partially ionized medium. The answer is positive, but the
ionization potential depression 
I should thus become a
function of the ionization degree α, i.e., 
I (α), such that it
is necessary to solve the following generalized Saha equation
[82,83]:

α2

1 − α
= 2λ3

n

nλ3
eλ

3
pσ exp[−
I (α)/kBT ]

. (33)

The ionization potential depression can be explicitly found
in the framework of the self-consistent chemical model of a
partially ionized plasma, but in the most general case rather
cumbersome calculations are involved. However, the formulas
obtained in the expansions above enable the following predic-
tion for the ionization potential lowering:


I (α) = (1 − α)1/2
I0 + α1/2
I1, (34)

such that it gives rise to 
I0 in (27) at α ≈ 0, and turns into

I1 in (30) when α ≈ 1.

Formula (34) together with the generalized Saha equation
(33) provides a vary fast converging scheme for evaluation of
the ionization degree of partially ionized hydrogen, which has
been verified in quite a broad domain of plasma parameters
with the representative results shown in Fig. 1 and its inset.
It is seen that perfect agreement is observed with the self-
consistent chemical model and with the results of (27) and
(30) in the corresponding ranges of the ionization degree.
Note that the ad hoc dependence (34) is hardly variable since
the ionization potential depression appears in the exponent
of the generalized Saha equation (33), which is, thus, very
sensitive to even slight change in its form.

V. IONIZATION EQUILIBRIUM IN DUSTY PLASMAS

That the electron bulk density can exceed its magnitude
prescribed by the Saha equation (21) was first observed a long
time ago in experiments with rich hydrocarbon flames [84,85].
As was already mentioned in the introductory Sec. I, the
recent experiment with the beam microwave interferometry
clearly demonstrated [21] that an increased electron number

FIG. 1. Ionization degree α of a partially ionized hydrogen
plasma as a function of � at rs = 40 and as a function of rs at
� = 0.2 for the inset. Squares: [37]; solid lines: formulas (33) and
(34); dashed lines: formulas (27) and (28); dotted lines: formulas (30)
and (31).

density is a real effect for rather large dust particles even for
gas discharge plasmas.

In the past the influence of dust particles on the electron
number density in a plasma was handled within the appli-
cation of the Saha equation to charging or discharging of
dusts in a plasma; see for details [47] and references therein.
To do so, the ionization potential was formally replaced by
W + Ze2/R in (21) written for the balance of electrons and
dust grains, thereby implying that an uncharged dust particle
is considered an analog of neutral atom in a partially ionized
medium. Using this heuristic idea charge distribution in dust
clouds was neatly determined for thermal equilibrium [86]
and another phenomena taken into account in the method were
the electric field emission process [87,88] and quantum tun-
neling [89]. However, it is worthwhile mentioning that such an
employment of the Saha equation suffers from few drawbacks.
First of all, the presence of positively charged ions is totally
ignored, which vastly restricts the applicability of the results
obtained. Secondly, interactions between plasma components
are discarded as well, although the interdust correlations are
usually quite strong. And finally, for a dust particle to attain a
certain charge Z , the presence of all intermediate charge states
of dusts, including neutral ones, is necessary.

Recently we have put forward an alternative approach [61],
which is essentially deprived of the shortcomings mentioned
in the previous paragraph. It is based on exact derivation
of the Helmholtz free energy of electron-dust plasmas and
has proven to explicitly reproduce the OML-like results for
the charge of emitting dust particles. Herein this approach
is extended to a principally different situation when positive
ions and neutrals are present, thereby opening new grounds
for simultaneously studying the ionization equilibrium and
charging of dust grains.

In particular, in Sec. III the expression for the Helmholtz
free energy of the four-component dusty plasma has been
deduced to satisfy two limiting cases: (i) the electron-dust
plasma of [61] and (ii) the partially ionized hydrogen plasma
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of [37]. At fixed values of the dimensionless parameters (1)–
(4) as well as the work function, W , the total free energy
Ftot of the dusty plasma depends on the number density of
free electrons, ne, the number density of free protons, np, and
the charge number Z of dust grains, which are locally related
via the quasineutrality condition (5). Introducing the reduced
quantities αe = ne/n and αp = np/n and excluding Z with the
aid of the quasineutrality relation (5), the Helmholtz free en-
ergy ultimately turns out to be a function of the two variables,
say αe and αp, and its further two-parametric minimization
provides corresponding equilibrium magnitudes. Note that in
general αe �= αp and, hence, there are two ionization degrees
in dusty plasmas: αe for free electrons and αp for free protons.
Instead of minimizing the system free energy it is simpler
from the practical point of view to simultaneously solve the
following set of equations:

∂Ftot

∂αe
= 0,

∂Ftot

∂αp
= 0, (35)

which are both integral and transcendental with respect to αe

and αp.

A. Ideal plasma

First of all, we study the ideal gas regime when the excess
part can be neglected in expression (35). It is curious to
mention that substituting the ideal part of the Helmholtz
free energy into Eqs. (35) and taking their sum provide the
following relation:

αeαp

1 − αp
= 2λ3

n

nλ3
eλ

3
pσ

, (36)

which is a straightforward consequence of the Saha equation
(21) with αe �= αp. It is therefore inferred that the electron
and proton ionization degrees are still related via the Saha
equation, which is physically conceivable since the Saha
equation is valid for the ideal gas approximation and is a result
of the competition between the ionization and recombination
processes even in a part of the system volume deprived
of dust particles. Keep in mind, however, that in order to
independently determine αe and αp, it is necessary to solve
both equations (35).

Case 1 of weakly ionized state. When the ionization is very
low, such that both αe, αp � 1, the set of equations (35) can
be expanded in the vicinity of αe = 0, αp = 0 till the zeroth
order resulting in the following formulas for the electron and
proton ionization degrees:

α0
id,e = 2

nλ3
e

exp

(
− W

kBT
− e2

2RkBT

)
, (37)

α0
id,p = λ3

n

λ3
pσ

exp

(
W

kBT
+ e2

2RkBT

)
. (38)

It is interesting to note in this case that the electron and
proton ionization degrees do not actually depend on the
number density of dust particles, but do depend on their size
and the work function of the dust material. In virtue of the
quasineutrality condition (5) this means that the charge den-
sity of the dust component maintains its invariance throughout

a nonuniform dust cloud and, thus, the charge of dust particles
is inversely proportional to their number density.

It is to be shown below that in the case of low ionization
the inequalities αp � αe � 1 virtually hold; thus the set of
equations (35) can be expanded in the vicinity of αe = 0 till
the first order and in the vicinity of αp = 0 till the zeroth
order to provide more accurate expressions for the electron
and proton ionization degrees

α0
id,e = Rnd kBT

ne2
Lm

(
2e2

Rnd kBT λ3
e

exp

[
− W

kBT
− e2

2RkBT

])
,

(39)

α0
id,p = 2e2λ3

n

Rnd kBT λ3
eλ

3
pσ

×
{

Lm

(
2e2

Rnd kBT λ3
e

exp

[
− W

kBT
− e2

2RkBT

])}−1

,

(40)

where Lm(x) stands for the product logarithm or Lambert
function.

When x � 1, expressions (39) and (40) reduce to formulas
(37) and (38), respectively. However, for both sets of formulas
the following relation is obviously secured:

α0
id,eα

0
id,p = 2λ3

n

nλ3
eλ

3
pσ

= (α0
id )2, (41)

with α0
id being taken from expression (24). The striking reg-

ularity (41) is remarkable in many respects and bears simple
physical meaning, stating that the product of the electron and
proton ionization degrees in a dusty plasma is equal to the
square of the ionization degree in a dust-free partially ionized
plasma at the same values of the system temperature and
the total number density of protons. It can be numerically
demonstrated that at low ionization degrees α0

id,e � α0
id and,

therefore, α0
id,p � α0

id , which means that at the same external
conditions injection of dust particles into a partially ionized
plasma leads to a significant growth of the electron number
density and, at the same time, to a depletion of the proton
number density, as it was experimentally evidenced in [21].

Case 2 of strongly ionized state. When the plasma temper-
ature grows, the proton ionization degree approaches unity,
i.e., αp → 1, whereas the electron ionization degree continues
to rise further due to thermionic emission such that αe � 1.
Expanding the set of equations (35) in the vicinity of αe = ∞,
αp = 1 and solving it yield the following result:

α1
id,e = Rnd kBT

ne2
Lm

×
(

2e2

Rnd kBT λ3
e

exp

[
− W

kBT
− e2

2RkBT
+ e2n

Rnd kBT

])
,

(42)

α1
id,p = 1 − Rnd kBT λ3

eλ
3
pσ

2λ3
ne2

Lm

(
2e2

Rnd kBT λ3
e

× exp

[
− W

kBT
− e2

2RkBT
+ e2n

Rnd kBT

])
. (43)
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In contrast to formulas (37) and (38), relations (42) and
(43) contain direct dependence on the number density of dust
particles. It is to be highlighted in Sec. VI that these relations
have a lot to do with the results of the OML-like approach for
an electron-dust plasma [61].

B. Nonideal plasma

When interactions between plasma particles are carefully
taken into account, the Saha equation in the form of (36)
definitely breaks down and the set of equations (35) has to
be numerically solved, which, of course, cannot be performed
analytically. Nevertheless, some approximations may still be
adapted to attain very informative relations for the electron
and proton ionization degrees.

Case 1 of weakly ionized state. If the electron and proton
ionization degrees are very low, αe, αp � 1, the set of equa-
tions (35) can be expanded in the vicinity of αe, αp = 0 and
the following formula is derived for the electron ionization
degree:

α0
tot,e = 2

nλ3
e

exp

(
− W

kBT
− e2

2RkBT
+ 
I0

e

kBT

)
, (44)

where the electron ionization potential depression is defined
as


I0
e = kBT x + e2

√
2aB

f 0
e (x), (45)

with

f 0
e (x) = x[32x(1 + x)(3 − x)2 + √

2(1 + x)(13 − 259x + 127x2 − 9x3)]

32(1 − x)4
√

1 + x
(46)

and the same definition for x as in Sec. IV.
Similar procedure for the proton ionization degree yields the following outcome:

α0
tot,p = λ3

n

λ3
pσ

exp

(
W

kBT
+ e2

2RkBT
+ 
I0

p

kBT

)
, (47)

with the proton ionization potential depression

I0
p = e2

√
2aB

f 0
p (x) (48)

and

f 0
p (x) = 1 +

√
2(1 + x)x(13 − 259x + 127x2 − 9x3) − 32(1 + x)2(2x2 − 5x + 1)

32(1 − x)4
√

1 + x
. (49)

It can immediately be stressed that both the electron (44) and proton (47) ionization degrees in nonideal plasmas exceed
the corresponding values (37) and (38) in the ideal gas regime. Note that in dusty plasmas we have two ionization degrees,
separately defined for electrons and protons, and, thus, two types of the ionization potential depression appear in the above
analytical estimations.

The range of the applicability of formulas (44) and (47) is very well restricted and more practical expressions are delivered
with the aid of expressions (39) and (40) by inserting the appropriate ionization potential depressions, which provide the electron
and proton ionization degrees in the following forms:

α0
tot,e = Rnd kBT

ne2
Lm

(
2e2

Rnd kBT λ3
e

exp

[
− W

kBT
− e2

2RkBT
+ 
I0

e

kBT

])
, (50)

α0
tot,p = 2e2λ3

n

Rnd kBT λ3
eλ

3
pσ

{
Lm

(
2e2

Rnd kBT λ3
e

exp

[
− W

kBT
− e2

2RkBT
− 
I0

p

kBT

])}−1

. (51)

Case 2 of strongly ionized state. It has already been mentioned above that if the system temperature rises, the proton ionization
degree almost reaches its border value of unity, αp → 1, while the electron ionization degree continues to grow much larger,
αe � 1. Unlike the ideal plasma case, no rational approximations are possible for a nonideal plasma at high ionization degrees
because the dominating contribution to the excess part of the Helmholtz free energy comes from the interdust interactions and
the corresponding expansions and integrations cannot be altogether performed. As yet some simple estimations can be made to
achieve the following formulas for the electron and proton ionization degrees:

α1
tot,e = πRnd kBT

(π − 1)ne2
Lm

(
2(π − 1)e2

πRnd kBT λ3
e

exp

[
− W

kBT
− e2

2RkBT
+ (π − 1)e2n

πRnd kBT

])
, (52)

α1
tot,p = 1 − λ3

pσ

2λ3
n

exp

[
− W

kBT
− e2

2RkBT
+ (π − 1)e2n(1 − α1

tot,e)

πRnd kBT
+ x(1 − α1

tot,e)

]
. (53)

Accurate analysis clearly demonstrates that formulas (52) and (53) give rise to higher degrees of electron and proton
ionizations than corresponding expressions (42) and (43) for an ideal system.
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FIG. 2. Base-10 logarithms of the electron ionization degree αe

and of the proton ionization degree αp for the inset as functions of
� at rs = 200, γ = 0.0001, η = 1.25 × 10−4, and W = 1 eV. Solid
lines: present exact result; dashed lines: approximations (52) or (53);
dotted lines: approximations (50) or (51).

C. General case

In contrast to a partially ionized plasma the general case
of arbitrary ionization in dusty plasmas can only be handled
numerically and it is thus a chief goal of the following to in-
spect how deeply the ionization equilibrium is modified by the
presence of dust particles in the plasma medium. First of all
we check out the analytical approximations developed above
against the results of exact numerical calculations, which is
done in Fig. 2 and its inset for both the electron and the proton
ionization degrees. It is clearly confirmed that the analytical
approximations work excellently in the corresponding regions
of ionization and, therefore, can be vastly used for practical
purposes.

Figures 3 and 4 depict the receding electron and proton
ionization degrees in dusty plasmas as a function of the

FIG. 3. Base-10 logarithms of the electron ionization degree αe

and of the proton ionization degree αp for the inset as functions of �

at γ = 10−4, η = 1.25 × 10−4, and W = 1 eV. Solid lines: rs = 200;
dashed lines: rs = 300; dotted lines: rs = 400.

FIG. 4. Base-10 logarithms of the electron ionization degree αe

and of the proton ionization degree αp for the inset as functions of �

at rs = 200, γ = 10−4, and W = 1 eV. Solid lines: η = 10−3; dashed
lines: η = 1.25 × 10−4; dotted lines: η = 1.5625 × 10−5.

coupling parameter �. Provided that the dust number density
is fixed, as it is the case in Fig. 3 and its inset, both the electron
and proton ionization degrees turn out to be independent of the
density of the surrounding plasma medium at low magnitudes
of the coupling parameter �, which is a characteristic feature
of an electron-dust plasma in which the presence of free
positive ions can be completely omitted because they are
severely outnumbered by free electrons. However, this is not
true for rather large values of the coupling when an increase in
the density parameter rs results in a drop of both the electron
and proton ionization degrees. It has to be mentioned as well
that further growth of the coupling parameter � should reveal
the opposite behavior when the electron ionization degree
diminishes with the growth of the density parameter rs, which
is due to an increasing contribution from the system nonide-
ality. Note that with a decrease in the nonideality parameter �

both the electron and proton degrees of ionization αe and αp

increase with αp approaching unity, and αe persisting in rise
due to the thermionic emission.

It is worthwhile identifying that the dependence of the
ionization degrees on the work function W is obvious, i.e.,
the electron ionization degree should grow with regard to
increasing W , and vice versa for the proton ionization degree.
The similar behavior is observed in Fig. 4 and its inset for
various values of the packing fraction η, which is straightly
proportional to the cube of the dust particle radius. Note
that there is always an intermediate range in the coupling
parameter where the size of dust particles does not matter,
whilst the same cannot be said about very high and very low
temperatures. At rather large values of the coupling parameter
when the dusty plasma is in a weakly ionized state, the elec-
tron ionization degree diminishes when the packing fraction η

goes to zero, while the opposite tendency is discovered for the
proton ionization degree.

It is rather self-evident that an increase in the density of
dust particles nd , which is proportional to γ , is responsible for
a growth of the electron ionization degree αe, and, at the same
time, for a drop of the proton ionization degree αp. This kind
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FIG. 5. Base-10 logarithms of the electron and proton ionization
degrees αe, αp of dusty plasmas as functions of � at rs = 200, γ =
10−3, η = 1.25 × 10−4, and W = 1 eV. Dashed line: log10 αe; dotted
line: log10 αp; solid line: log10 α from formulas (33) and (34).

of pattern is firmly associated with the role of the thermionic
emission, whose contribution is expected to grow at very low
values of the coupling parameter � corresponding to the high
temperature regime.

An important result is plotted in Fig. 5 in which the
electron and proton ionization degrees are drawn as functions
of the coupling parameter and compared with the ionization
degree in a dust-free partially ionized plasma at fixed values
of all other parameters. It is inevitably concluded that the
self-consistent chemical model of partially ionized plasmas
remains applicable to the dusty plasma at moderate degrees of
ionization. However, for very low ionization degrees, relation
(41) is numerically corroborated with αe � α and αp � α but
αeαp ≈ α2 or log10 αe + log10 αp ≈ 2 log10 α, i.e., dust parti-
cles, brought into the partially ionized plasma, are responsible
for an increase of the electron bulk density as it was recently
reported in [21]. However, for high ionization degrees αe �
1 ≈ α0

id still holds due to the thermionic emission, whereas
αp ≈ 1 ≈ α0

id .
It is required to mention that, in practice, the ionization

degree in a partially ionized plasma can significantly vary,
whereas in a dusty plasma it is almost always very low.
Therefore, for a real laboratory dusty plasma formulas (50)
and (51) seem only helpful but, in order to preserve the
symmetry between the partially ionized plasma and the dusty
plasma cases, the plasma parameters in Figs. 2–5 and below
are chosen such that both the electron and proton ionization
degrees could reach rather significant values.

VI. ELECTRIC CHARGE OF DUST PARTICLES

As noted above, the electric charge of dust particles in the
framework of the proposed approach is not an independent
quantity, being determined from the quasineutrality condition
(5) as

Z = ne − np

nd
= αe − αp

γ
. (54)

FIG. 6. Base-10 logarithm of the electric charge of the dust
particles Z as a function of η at � = 0.1, rs = 200, and W = 1 eV.
Solid line: γ = 10−3; dashed line: γ = 10−4; dotted line: γ = 10−5.

Since both the electron αe and proton αp degrees of ion-
ization are determined by two-parametric minimization of
the Helmholtz free energy, formula (54) gives an immediate
opportunity to study the behavior of the electric charge of dust
particles under various external conditions. In particular, the
formulas of Sec. V can be directly used to obtain analytical
expressions for the charge of dust particles in weakly and
strongly ionized states, either taking into account the nonide-
ality or not. These formulas have been sacrificed here because
of their simple derivation in order to directly examine the
general case.

In determining the charge of dust particles, the urgent
question is its dependence on the grain size. For this purpose
Fig. 6 is drawn to indicate the logarithm of the dust charge
versus the logarithm of the packing fraction. The obtained
dependence is almost linear, so that the charge of dust particles
Z varies with their radius R according to the law Z ∼ Rn with
the power exponent n ≈ 1.2, which, nevertheless, slightly de-
creases with a growth of the number density of dust particles.
It is thus concluded that the floating potential of dust particles
in a dust cloud is no longer a constant but depends on the
grain radius. Note that the numerical divergence in the charge
of dust particles in Fig. 6 at fixed values of the number
density of dust particles is due to their effect on the ionization
equilibrium in the partially ionized hydrogen plasma.

Finally, the most important point is the influence of the
dust number density on the dust grain charge, shown in Fig. 7.
The use of the logarithmic scale again suggests a power-law
dependence Z ∼ nm

d with the power exponent m ≈ −0.36 that
has an insignificant trend to grow with decreasing the total
number density of protons in the system or increasing the
density parameter rs. It is worthwhile emphasizing that a
decrease in the charge of dust particles with an increase in
their number density is caused by their effect on the ionization
equilibrium in a partially ionized medium rather than by their
absorption of plasma charge.

Of particular interest is a fundamental difference be-
tween the proposed approach to determining the charge
of dust particles and the hitherto widely used OML-like
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FIG. 7. Base-10 logarithm of the electric charge of the dust
particles Z as a function of γ at � = 0.1, η = 1.25 × 10−4, and
W = 1 eV. Solid line: rs = 200; dashed line: rs = 300; dotted line:
rs = 400.

approximations. The latter habitually considers the fluxes of
electrons and ions on the surface of a solitary dust particle,
whereas the method developed above works exclusively for
the entire dust component with a certain number density nd .
There is, however, one exception when both concepts utterly
agree with each other. Namely, in the case of an ideal electron-
dust plasma the OML-like approach yields the following
equation for the electric charge of dust particles [61]:

ne

2

(
2π h̄2

mekBT

)3/2

= exp

(
− W

kBT
− Ze2

RkBT

)
, (55)

whose solution is obtained under the quasineutrality condition
ne = Znd as

Z = RkBT

e2
Lm

(
2e2

Rnd kBT λ3
e

exp

[
− W

kBT

])
. (56)

As remarked at the end of subsection V A, formula (56)
exactly corresponds to the strong ionization case αe � αp

of an ideal dusty plasma (42) and (43) when the presence
of protons can be entirely disregarded. It should be stressed
that the nature of the agreement between the OML-like ap-
proach (55) and the present chemical model lies in imposing
the quasineutrality condition ne = Znd , which inescapably
requires the dust grains be treated as a plasma component even
within the OML-like approximation.

It is rather interesting to admit that the whole charge
actually resides on a solitary dust particle when the limit
nd → 0 is numerically taken, which Fig. 7 precisely exposes.
In this case, the electron and proton degrees of ionization
behave adequately, striving for the same limit of the ionization
degree of a dust-free partially ionized plasma at nd → 0,
which is decidedly demonstrated in Fig. 8 for two different
sets of parameters.

Recognizing the fundamental difference between the pro-
posed chemical model and the OML-like approximations,
the question arises on under which conditions each of them
validates. That the charge of dust particles in a dust cloud
is reduced in comparison with the charge of a solitary dust

FIG. 8. Base-10 logarithm of the electron and proton ionization
degrees αe, αp of dusty plasmas as functions of γ at � = 0.1, η =
1.25 × 10−4, and W = 1 eV. Dashed lines: αe; dotted lines: αp; solid
lines: α from formulas (33) and (34). Upper lines for rs = 300 and
lower lines for rs = 400.

grain was noted long ago by Havnes et al. [90], which
was attributed to the plasma depletion on dusts. In reality,
with an injection of dust particles, the ionization equilibrium
in the plasma is itself affected, which must also be taken
into account. Strictly speaking, the OML-like approximations
work particularly well for a solitary dust particle, and their
applicability to the dust component as a whole requires that
the following inequality ad � λD be satisfied, where ad is
still the average interdust spacing and λD refers to the Debye
screening length in the plasma. Indeed, in this case, the plasma
sheaths of neighboring dust particles do not actually overlap,
which allows us to consider them as solitary. However, such
dust particles practically do not interact via their electric
fields, remaining virtually isolated. Under such conditions, the
method proposed herein does not work; nevertheless, it can
yet be modified for the case of a solitary dust, which is to be
done in the forthcoming investigations. Our chemical model is
definitely valid in the opposite and practically more important
case of ad � λD, when the electrical interaction firmly ties all
dust grains into a single plasma component.

VII. CONCLUSIONS

This article has advocated the thermodynamic point of
view on thermal dusty plasmas by exclusively focusing on
the effect of positively charged dust particles on the ioniza-
tion equilibrium in a partially ionized plasma. To do so, an
expression has been derived for the Helmholtz free energy
of a four-component hydrogen plasma at thermal equilibrium
containing free electrons, protons, neutral atoms, and dust
particles. In the ideal part of the Helmholtz free energy, the
work that needs to be done to positively charge all dust
particles has been taken into account, while the excess part has
been handled in a way similar to the self-consistent chemical
model previously developed for a partially ionized plasma.

In the beginning, the ionization equilibrium in a partially
ionized hydrogen has been considered. In the limit of high
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ionization degrees, an expression has been obtained for the
ionization potential depression, which is somewhat identical
to the classical expression of the Debye theory. Similarly,
an expression has been predicted for the ionization potential
depression at low ionization degrees, which is completely
originated by the plasma neutral component. In the case of an
arbitrary ionization degree, a simple interpolating expression
has been proposed for the ionization potential depression,
depending on the ionization degree itself, and the solution
of the corresponding generalized Saha equation has been
demonstrated to be in a perfect agreement with the results of
calculations within the self-consistent chemical model.

As for a dusty plasma with positively charged particles,
there exists two ionization degrees, the electron and proton
ones, that correspond to the abundance of free electrons
and protons in the system. As long as the Helmholtz free
energy has been derived, its two-parametric minimization has
allowed us to determine the equilibrium value of the proton
ionization degree, which is always less than unity, as well as
the equilibrium value of the electron ionization degree, which
can exceed unity due to thermionic emission. Note that the
electric charge of dust particles is not an independent quantity
of the method, since it is excluded via the quasineutrality
condition (5).

It has been shown that when a dusty plasma is treated as
an ideal gas of particles, the electron and proton ionization
degrees continue to be related via the Saha equation (36),
which is not enough for their independent determination. It
has been proven that in the case of very small electron and
proton ionization degrees, they are practically independent
of the number density of dust particles. Moreover, it then
follows from the quasineutrality condition (5) that the dust
charge density should remain constant throughout a dust
cloud, although the number density of dust grains can vary
from one point in space to another. More practical expres-
sions for the electron and proton ionization degrees have
also been obtained, such that their product is equal to the
square of the plasma ionization degree in the absence of
dust particles but under the same external conditions. In the
high temperature limit, formulas have been found for the
proton ionization degree, tending to unity when the coupling
parameter vanishes, and for the electron ionization degree,
growing unlimitedly due to the phenomenon of thermionic
emission. In the limit of small degrees of ionization, it has
been shown that the nonideality of dusty plasmas leads to
a simultaneous increase in the number of free electrons and
protons as compared with the ideal gas approximation. The
corresponding values of the ionization potential depressions

have been derived for electrons and protons, which has made
it possible to obtain analytical expressions for the electron
and proton ionization degrees valid in quite a broad domain
of plasma parameters. In the case of high ionization degrees,
plasma nonideality results in an increase in both the electron
and proton ionization degrees as compared to the case of
an ideal system. Note, however, that to embrace the whole
range of ionization degrees the plasma parameters have been
deliberately chosen such that the numerical examples are not
exactly related to realistic laboratory dusty plasmas in which
the ionization degree always remains very low.

The method developed has made it possible to determine
the charge of dust particles without considering the fluxes of
plasma particles on their surfaces, which is typical for the
OML-like approximations, valid for a solitary dust grain. On
the contrary, within the framework of the present approach,
the charge of dust particles with the number density nd in
the dust cloud has been evaluated when the plasma sheaths
of neighboring dust grains overlap to a large extent. It is
demonstrated that the dust charge can be approximated as
Z ∼ nm

d Rn with the power exponents m ≈ −0.36 and n ≈ 1.2
with R being the dust particle radius.

The results presented herein can be expanded in a whole
plethora of interesting directions, which thus form provisions
for future work. First of all, we have obtained an expression
for the Helmholtz free energy of dusty plasmas in the state of
thermodynamic equilibrium, which opens up the possibility
of determining all thermodynamic functions and tracing their
influence on the spectra of collective modes of the dust
component. In addition, from the viewpoint of wider practical
application, it is important to extend the presented approach to
a nonisothermal dusty plasma with negatively charged dusts,
which can be performed in the framework of both nonequilib-
rium thermodynamics [91,92] and nonequilibrium statistical
mechanics [93]. And finally, within the framework of the
self-consistent model, there is a straightforward opportunity
to study not only thermodynamic quantities of dusty plasmas,
but transport coefficients as well, since knowledge of the
interparticle interaction potentials enable direct evaluation of
either the corresponding cross sections [37] or the Coulomb
logarithm [94].
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